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s u m m a r y

Wetland restoration is often measured by how close the spatial and temporal water level (stage) pat-
terns are to the pre-drainage conditions. Driven by rainfall, such multivariate conditions are governed
by nonstationary, nonlinear, and nonGaussian processes and are often simulated by physically based
distributed models which are difficult to run in real time due to extensive data requirements. The objec-
tive of this study is to provide the wetland restorationists with a real time rainfall–stage modeling tool
of simpler input structure and capability to recognize the wetland system complexity. A dynamic mul-
tivariate Nonlinear AutoRegressive network with eXogenous inputs (NARX) combined with Principal
Component Analysis (PCA) was developed. An implementation procedure was proposed and an applica-
tion to Florida Everglade’s wetland systems was presented. Inputs to the model are time lagged rainfall,
evapotranspiration and previously simulated stages. Data locations, preliminary time lag selection, spa-
tial and temporal nonstationarity are identified through exploratory data analysis. PCA was used to
eliminate input variable interdependence and to reduce the problem dimensions by more than 90%
while retaining more than 80% of the process variance. A structured approach to select optimal time
lags and network parameters was provided. NARX model results were compared to those of the linear
Multivariate AutoRegressive model with eXogenous inputs. While one step ahead prediction shows
comparable results, recursive prediction by NARX is far more superior to that of the linear model. Also,
NARX testing under drastically different climatic conditions from those used in the development dem-
onstrates a very good and robust performance. Driven by net rainfall, NARX exhibited robust stage pre-
diction with an overall Efficiency Coefficient of 88%, Mean Square Error less than 0.004 m2, a standard
error less than 0.06 m, a bias close to zero and normal probability plots show that the errors are close to
normal distributions.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Wetland hydrology is perhaps the most important key element
in wetland restoration projects. Wetlands have been drained and
destroyed by human activities such as drainage, filling, dam con-
struction, water diversions, groundwater pumping, canal dredging,
and levee delineation. Such activities altered the spatial and tem-
poral hydropattern characteristics including timing, amplitude,
frequency, and duration of high and low waters. For example, the
implementation of water management measures in Florida’s Ever-
glades in the late 1940s has destroyed many tree islands by either
inundation due to prolonged high-water levels or by peat fires due
to prolonged low-water levels. Improvement of such management
practices requires proper prediction, as a first step, of restoration
targets based on pre-drainage wetland response to current weath-
er conditions.

The pre-drainage wetland hydrology is dominated by surface
water processes and is driven by rainfall and evapotranspiration
ll rights reserved.
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where surface water generally moves slowly downstream in re-
sponse to the low land surface water gradient. Storm events within
this system have an immediate local impact and a fading but per-
sistently prolonged effect on areas downstream. Such a highly non-
linear stage is typically simulated by two dimensional physically
based models that are typically used in planning studies and are
difficult to run in real time applications due to extensive input data
preparation and processing requirements. A real time modeling
tool of such a complex environment with a simpler input structure
to predict pre-drainage stage target time series is the focus of this
study. Real time optimization of the managed system inflows and
outflows, as a second step, to achieve the predicted stage targets is
deferred to another manuscript.

System theoretic approach often serves as a viable alternative to
physical modeling in real time applications. In this approach, dif-
ference or differential equations are used to characterize mapping
of the input to the output directly with less emphasis on the inter-
nal structure driving the physical process. An example of this ap-
proach is the linear time series models (Salas et al., 1980; Bras
and Rodriguez-Iturbe, 1985) where the emphasis has been the
rainfall–runoff (R–R) modeling for flooding prediction. Although

http://dx.doi.org/10.1016/j.jhydrol.2009.06.033
mailto:aali@sfwmd.gov
mailto:aali@members.asce.org
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


A. Ali / Journal of Hydrology 374 (2009) 338–350 339
these models produced reasonable predictions in many applica-
tions, they did not recognize the inherent nonlinearity of the R–R
relationship. Those studies found R–R mapping to be complex,
nonlinear, and nonstationary both spatially and temporally.

While a considerable research has been conducted on R–R stud-
ies, none or little was done to address the rainfall–stage (R–S) pro-
cess. Van Lent (1995) provided the first attempt to model the R–S
process in the Florida Everglades wetlands. He used weekly data at
three rainfall stations and one Potential Evapo-Transpiration, PET,
station to predict weekly stage target at three locations. In the ab-
sence of historical pre-drainage observations, the data used for the
stage targets are taken from the 1965–1995 output of the South
Florida Water Management District (SFWMD) physically based dis-
tributed Natural System Model (NSM), V4.6, which is based on
extensive ecological conceptualization (SFWMD, 2000). Van Lent
focused on modeling rainfall, PET, and stage residuals’ covariance
structure using a linear Autoregressive Moving Average model
(ARMA). Based on his analysis, rainfall residuals were uncorrelated
and nonGaussian while both PET and stage were correlated but
Gaussian. He concluded that any stochastic model for this relation-
ship must take nonGaussian white noise and Gaussian correlated
signals to produce a Gaussian correlated signal. While the model
results for one step ahead prediction were very reasonable, the re-
sults for the recursive prediction were unsatisfactory. Van Lent
(1995) concluded that a linear model is not adequate for recursive
prediction of the R–S relationship.
Artificial neural network and nonlinear modeling

As a system theoretic model, ANNs are a mathematical scheme
with interconnected nodes and layers that is capable of mapping
complex nonlinear processes from the input side to the output
side. They are typically composed of three parts: inputs, one or
many hidden layers and an output layer. Hidden and output neu-
ron layers include the combination of weights, biases, and transfer
functions. A neuron on a given layer is a hub that receives weighted
contributions from the preceding layer’s neurons and it sends
weighted contributions to the succeeding layer’s neurons. The
weights are connections between neurons on one layer and an-
other while the transfer functions are linear or nonlinear algebraic
functions. When a pattern is presented to the network, weights
and biases are adjusted so that a particular output is obtained.
Such a learning is often achieved by means of backpropagation
where such weights and biases are updated in the direction in
which the performance function (e.g., Mean Square Error, MSE) de-
creases most rapidly (steepest descent). Because this does not nec-
essarily lead to the fastest convergence, numerical nonlinear
optimization techniques such as Conjugate Gradient and Leven-
berg–Marquardt Algorithms are often employed (Masters, 1995).

A satisfactory level of ANN training is the one that results in a
good network generalization (i.e., satisfactory network perfor-
mance on input data that was not part of the training). To help
the network generalize, two data sets during training (modeling)
are utilized; one to develop (train) the network and one to validate
(verify) the performance. The training is stopped early (despite a
continuous result improvement based on the training data set) if
the network performance on such verification data failed to im-
prove, remained the same, or deteriorated for a number of consec-
utive iterations.

ANNs can be classified into static feedforward networks and dy-
namic feedback networks. The feedforward networks are the most
common form of ANNs. The architecture of this network consists of
neurons connected by links across the input, hidden, and output
layers. In this network, learning is based on a purely feedforward
input to output mapping. The resulting weights are fixed where
the state of neurons at a given time is determined by the input–
output pattern for that time only without any consideration of
the previous inputs, outputs, and states of network and hence
called static network. Such networks are easily constructed with
simple optimization algorithm and are of wide use in hydrology.
These networks, however, are not efficient for highly dimensional;
time dependent problems because of the slow convergence with a
likely freeze in local minima, system memory modeling deficiency,
and the need for a large training data set. The dynamic network has
feedback connection(s) from the output layer (time delayed out-
puts); and/or hidden layers (previous states). The feedback feature
provides a powerful learning capability for the network when
memory is important in the system being modeled. The resulting
network weights are adjustable to account for the previous neuron
states, input and output. The dynamic network requires less train-
ing data sets for the same problem size (compared to static net-
work). However, there are always network stability issues due to
the dynamic nature of weights. A comparison between static and
dynamic networks in an application to rainfall–runoff (R–R) mod-
eling is provided by Chiang et al. (2004).

R–R modeling receives a major, if not the most major, share
among ANN applications in hydrology (Hsu et al., 1995; Sajikumar
and Thandaveswara, 1999; Govindaraju and Ramachandra Rao,
2000; Chang and Chen, 2001; Chang et al., 2002, 2004; Rajurkar
et al., 2004; Ali et al., 2006, and Lin and Wang, 2007). In these stud-
ies, ANN architecture, learning algorithms and parameters in addi-
tion to R–R memory structure and memory length were the main
issues of interest to address the nonlinear dynamics and complex-
ity of the R–R process. ANN studies to address the R–S relationship
are limited in the literature. One of these models reported by
Chang and Chen, 2003 used a ‘‘novel” Radial Basis Function ANN
to develop a one time step forecasting model for water stage at
one station in an estuary subject to riverine and marine processes
as a function of lunar calendar and measured stage at six locations.
They used a two step process: (1) unsupervised training using
fuzzy min–max clustering and (2) supervised learning using multi-
variate linear regression. The one hour forecasting results demon-
strate satisfactory performance. No recurrent and/or multi stage
concurrent prediction was reported in their study.

In this study, we provide a framework for the practitioner to de-
velop and apply an ANN based model to predict stage target time
series in response to rainfall and PET (aka Rainfall Driven Formula
(RDF)) that recognizes the nonlinear, multivariate and temporal
dynamics of large wetland systems and to demonstrate its efficacy
in addressing system spatial and temporal nonstationarities. An
application of this framework to Florida’s Everglades will be
presented.
Development of Rainfall Driven Formula

The development of the nonlinear RDF is based on the original
linear AutoRegressive model with eXogenous input (ARX). To
understand the nonlinear model, we first present the linear case
as developed by Van lent (1995) followed by a full presentation
of the RDF based on a Nonlinear AutoRegressive Dynamic Network
with eXogenous variable (NARX).

Multivariate AutoRegressive model with eXogenous variable (ARX)

Van Lent (1995) applied the moving average coefficient matrix
to rainfall and PET residual vector in lieu of the error vector which
is, in essence, equivalent to AutoRegressive model with eXogenous
input (ARX) (Box and Jenkins, 1970). The construction of the ARX
model for this study is important to: (1) understand the develop-
ment of the nonlinear model and (2) perform comparison between
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the linear and nonlinear cases. For theoretical description and lim-
itations of the linear ARX, the reader is referred to Shumway and
Stoffer (2000). The multivariate R–S residual time series relation-
ship can be expressed as follows:

st ¼
Xq�1

i¼0

Ciut�i þ
Xp

j¼1

Ujst�j þ mþ xt ð1Þ

where q and p are the input and output maximum time delays
(model orders), n and m are state and exogenous variable observa-
tions at any time t, u is the mxq residual exogenous input matrix, s
is the p � n residual state variable matrix, C is the nxm exogenous
coefficient matrix, U is the p � p state transition matrix, and m is
the bias vector, and x is a random vector with zero mean and
covariance matrix. Input and output data are residuals of the origi-
nal time series after subtracting the corresponding periodic mean
based on the development data period of record. Parameter Matri-
ces C, U, m, and x are estimated using stepwise regression accord-
ing to Neumaier and Schneider (2001). The model optimal orders (p
and q) is selected based on the minimum Akaike Information Crite-
ria (AIC) score formulated by Bedrick and Tsai (1994). An applica-
tion of this model is presented and compared to the nonlinear
case in the application section. The ARX assumes linearity where
the system can be adequately described by the principle of superpo-
sition where input individual contribution to the output is indepen-
dent and additive. In a nonlinear system, coupling across all
possible connections must be properly modeled. A nonlinear rain-
fall–stage model in wetland systems presented in a multivariate
recursive framework as follows.

Nonlinear AutoRegressive Network with eXogenous variables (NARX
or the RDF)

A nonlinear form of the ARX model is represented by a recurrent
dynamic network with feedback connections enclosing several lay-
ers of the network. This two-layer network is used to approximate
a nonlinear characteristics function } in a nonlinear multivariate
framework. Given Eq. (1) variables, the mathematical representa-
tion of a noise free nonlinear system can be expressed as:

st ¼ } s1
t�1 � � � sn

t�p � � � u1
t � � � um

t�1�q

� �
ð2Þ

Large values of n, m, q, and p can significantly increase the problem
dimensionality resulting in insufficient data size for sound training.
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Fig. 1. Schematic diagram of for
Also, input vector elements ‘‘s” and ‘‘u” may be interdependent vio-
lating the ARX model assumption. To address these two issues, we
use Principal Component Analysis, PCA (Jolliff, 2002) to transform
the input data to orthogonal components. In this analysis, we com-
pute the Eigenvectors, V, of the input covariance matrix, C, such
that, V�1CV = D, where D is the Eigen value diagonal matrix. We cre-
ate the Principal Component (PC) coefficient matrix ‘‘A” by: (1) re-
arranging columns of matrix V and Eigen value matrix D in order
of descending Eigen value, and then (2) retaining the minimum
number of Eigenvectors, r, corresponding to cumulative Eigen val-
ues that explain most of the data variance. The 1 � (np + mq) input
vector of Eq. (2) can be transformed to its first ‘‘r” PCs using the
(np + mq) � r ‘‘A” PC coefficient matrix. Eq. (2) can be re-written
as follows:

st ¼ R s1
t�1 � � � sn

t�p � � �u1
t � � �um

t�1�q

h iT

1�ðnpþmqÞ
� ½A�ðnpþmqÞ�r

� �
ð3Þ

A diagram of the resulting network is depicted in Fig. 1. The ANN is
composed of one input layer, a hidden layer, and an output layer.
The input layer takes time delayed exogenous input signal, u, and
time delayed output signal, s, processes the first ‘‘r” PCs and passes
them on to each neuron of the hidden layer which approximates the
nonlinear characteristic function R using a hyperbolic tangent sig-
moid transfer function. The output layer takes a linear combination
of the hidden layer signals and connects them to each output neu-
ron. The output signal is then fed-back into the input layer for the
next time step simulation.

Bayesian regularization backpropagation as part of the Leven-
berg–Marquardt Optimization is used as the training function to
speed the backpropagation convergence rate. Bayesian regulariza-
tion minimizes a linear combination of squared errors and weights.
It also modifies the linear combination so that at the end of train-
ing, the resulting network has good generalization qualities. For
more detailed discussions of Bayesian regularization, the reader
is referred to MacKay (1992).

Model implementation

The Comprehensive Everglades Restoration Plan (CERP) is one
of the largest wetland restoration projects in the world’s history
(Fig. 2). The operation of CERP components aims at improving
the amount and timing of water delivery to/from the Florida’s 2.4
million acre Everglades to attain stage targets based on pre-drain-
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Fig. 2. Project area with overall Comprehensive Everglades Restoration Plan (CERP) components.
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age conditions and as modeled by SFWMD Natural System Model
(NSM), V4.6. Real time observations from such a natural system
are not possible and hence recursive prediction of stage target time
series must rely on previously predicted values representing a
challenge to model robustness against error propagation. In this
section we provide procedures to implement ARX and NARX mod-
els presented in the preceding section to predict stage targets in
the half million acre Water Conservation Areas 3A (WCA-3A),
and the one million acre Everglades National Park (ENP) using a
limited data of rainfall and PET. Data is analyzed first to understand
the system dynamics, select rainfall data locations, and determine
preliminary time lags and to explore climatic nonstationarity.
Model data and parameterization is then presented for ARX and
NARX models.

Exploratory analysis

Historical data used to develop and test the ARX and NARX
models are rainfall and PET as input and pre-drainage stage at five
locations as output (solid triangles in Fig. 3). In the absence of his-
torical pre-drainage observations, simulated stage target data
based on Natural System Model (NSM), V4.6, is used. Two PET sta-
tions at ‘‘Belle Glades” and ‘‘TAMIAMI Trail” locations are selected
for their proximity to the study area (light squares in Fig. 3). To se-
lect a limited but effective rainfall data set out of the SFWMD rain-
fall network, we first identified the spatial extent of all rainfall
stations whose cross correlation with at least one stage trigger is
0.66 (the light circles in Fig. 3). A subset of 24 rainfall satiations
was then selected (solid circles in Fig. 3) based on current opera-
tion, data quality, value of correlation, and many preliminary trial
and error model runs.

Weekly time step for long term restoration has been an accept-
able time scale for CERP planning, modeling, and operations of
South Florida hydrologic systems. System dynamics of smaller
than weekly scale is local in nature and is not in the interest of
wetland long term restoration while larger than weekly scale
smears pattern periodic variability that is of such a restoration
interest. Weekly stage Auto Correlation and Partial Auto Correla-
tion Functions (ACF and PACF) describe the system linear temporal
behavior, provide insight about the system’s memory and help
identify preliminary time lags for both models. Fig. 4 shows stage
ACF and PACF at the five stage trigger locations. The ACF shows a
long slowly fading memory in the system that converges at lag
26 after which the correlation spuriously increases due to the sea-
sonality. The PACF shows that most of the system’s memory is
stored in the most recent 2–4 weeks. Stage below ground surface
behaves differently from that above the ground surface at all loca-
tions (Fig. 5 shows representative behavior at WCA3A central loca-
tion ‘‘WC3A4”). The analysis in this section suggests preliminary
model orders in the range of 2–4 weeks and also indicates spatial
nonstationarity of stage responses if stage across the sites has
mixed positions with respect to ground surface.



Fig. 3. Overall high rainfall–stage correlation zone (>0.66) (denoted by light blue
circles) and data locations. Rainfall stations are denoted by black circles, PET
stations are denoted by yellow boxes and stage trigger locations are black triangles.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Climatic global trend

The Central and South Florida hydrologic system was signifi-
cantly wetter during the 1991–2000 period, as compared to the
1965–1990 period. A spatially averaged stage time series across
the five stage target sites shows this trend clearly (Fig. 6). It is
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effortless to notice the distinct pattern differences between the
post-1991 and pre-1991 stage target variation. The pre-1991 pat-
tern exhibits lower stage levels reflecting dryer conditions with
larger amplitude reflecting more variable weather with severe
dry weather in the dry season. The post-1990 pattern exhibits
higher stage levels reflecting wetter conditions with smaller ampli-
tude reflecting persistent wet conditions that sustained the
troughs above certain levels. A traditional filtering of periodic
means (e.g., spectral analysis) of these data is not sufficient to pro-
duce stationary residuals.

Normal probability plots for the two periods’ stage (Fig. 7) de-
pict distribution differences. The post-1991 stage is nearer to
Gaussian distribution compared to the pre-1991 period. Historical
weekly averages for the post-1991 and pre-1991 periods exhibit
different patterns (Fig. 13, upper portion, solid black and white
traces). Not only did the climatic trend result in wetter conditions,
but it also caused a 4 week seasonality shift creating a longer, wet-
ter than average dry season. Model application in such a tempo-
rally nonstationary environment is a challenge.

ARX model data and parameterization

In this study, 24 rainfall stations and two PET stations as exog-
enous input data and NSM simulated stage target at five stations in
WCA-3A and ENP as output data were selected (Fig. 3). Daily data
were converted into a weekly time step and were partitioned into
two sets: modeling set (1965–1990) and testing set (1991–2000).
Rainfall, PET, and stage residuals are obtained by subtracting the
weekly data from its respective weekly periodic mean using Fast
Fourier Transform (Duhamel and Vetterli, 1990). Global mean
and variance of the stage residuals for the development data set
is significantly different from the corresponding measures of the
testing data set with the mean being higher and the variance being
lower (Table 1). Such an observed nonstationarity is a challenge for
the linear ARX application. AIC score exhibited a flat trend where
the model order could not be uniquely defined. According to the
aforementioned ACF and PACF analyses and according to subse-
quent lag selection for the nonlinear model, rain, PET, and stage
maximum lags were selected to be 4, 4, and 2 weeks, respectively.
For space limitation, we refer the reader to Van Lent (1995) for full
details of the model parameter selection of the ARX model (Eq. (1)).
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NARX model data and parameterization (the RDF)

The 26 year weekly modeling data set used to develop the ARX
model was randomly sub-sampled without replacement to pro-
duce development (18 years) and validation (8 years) subsets
adopting a technique that preserves the associated serial sequence
for any data entry. Two hundred partition scenarios were obtained
to allow for the exploration of different combinations of develop-
ment/validation subsets that result in a good selection of optimal
parameters and a good NARX network generalization indepen-
dently from the testing data set. To eliminate disparity across rain-
fall, PET, and stage data, each time series in each of the three data
subsets is standardized by subtracting the respective mean and
dividing by the respective standard deviation of the development
data subset.

Given 26 rain and PET stations and five stage output variables
with time lag sensitivity range of 4 weeks, the model input can
be as large as 26 � 4 + 5 � 4 = 124 variables. PCAs on such variables
for different lag combinations show that the majority of data var-
iance is retained by the first 10 components. A pareto plot of a typ-
ical PCA shown in Fig. 8 displays bar chart of % variance explained
by each component in a descending order along with cumulative
curve of variance explained. The first 10 components explain about
82% of the variance with diminishing contribution beyond the 10th
PC.

Given the first 10 PCs, and Bayesian regularization backpropa-
gation training function, the stage and rain/PET time lags (model
orders), the number of hidden layers and hidden nodes are selected
based on numerous NARX sensitivity runs looping through the
parameter ranges presented in Table 2 for each of the 200 develop-
ment/validation partition scenarios. For each partition scenario,
the least MSE score and the associated four parameter values are
recorded. The MSE scores across the 200 partitions were more sen-
sitive to time lags more than NARX hidden layers or hidden nodes.
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Table 1
Global mean and variance of stage residuals for both modeling and testing periods.

NWC3A WCA3A WC3A4 NESRS NWPRK

Modeling
Mean, m 0.000 0.000 0.000 0.000 0.000
Variance, m2 0.228 0.356 0.266 0.340 0.665

Testing
Mean 0.313 0.412 0.447 0.494 0.581
Variance, m2 0.179 0.190 0.119 0.182 0.211
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Table 3 shows the relative frequency of each lag combination that
achieved the least MSE across the 200 partition runs. Two week
stage and 4 week rain/PET S2R4 lag combination has a fairly higher
relative frequency than the rest of the other lag combinations. In
this exercise we record for each partition scenario, the minimum
MSE, the associated time lag combinations, standard error (SE),
and bias (AvgE). We also record the maximum ‘‘worst” MSE and
the associated time lag combinations (Fig. 9). Lag combinations left
to S2R4 on the x-axis exhibited spurious jumps in the maximum
MSE and bias measures. The poor maximum MSE performance
may be attributed to insufficient stage/rain predictors to model
the process based on drastically nonstationary development/vali-
dation data random partition scenario. The error performance sta-
bilizes for all stage–rain combinations right to S2R3 on the x-axis
(for all partition scenarios regardless of nonstationarity). Among
such combinations, S2R4 recorded the lowest bias and the lowest
‘‘minimum” MSE scores. It ranked the 4th lowest standard error,
SE, and the 5th lowest ‘‘maximum” MSE. The other lag combina-
tions with reasonable error scores are S3R3 and S3R4 with low
SE but high ‘‘minimum” MSE and high error bias. Given the order
of importance of these statistics, the stage–rain S2R4 lag combina-
tion appears to be the best selection for the RDF model associated
with one hidden layer, eight hidden nodes, and five output nodes.
Results

The overall results for ARX and NARX (RDF) models for one step
ahead and recursive predictions, respectively are presented in Sec-
tion ‘‘Overall one step ahead prediction”, and part of Section ‘‘Over-
all recursive prediction performance”. Detailed results of NARX
model is presented in the remainder of Sections ‘‘Overall recursive
prediction performance” and ‘‘NARX (RDF) performance at central
WCA3A (WC3A4 site)”. The reader is referred to the original report
of this study (Ali, 2007) for full results presentation.

Overall one step ahead prediction

The ARX and NARX models are applied using rain, PET, and the
previous time step true stage to predict stage at the current time
step. The use of the previous time step true data makes the predic-
tion much more accurate than the recursive case where the previ-
ous time step simulated stage is used. While such a prediction is
not important for long term restoration, it reflects the model capa-
bility in modeling the change in the system state within one time
step. Table 4 presents lumped statistical measures such as Effi-
ciency Coefficient (EC) (Nash and Sutcliffe, 1970), MSE, SE and bias
between the observed and predicted stage for ARX and NARX,
respectively. The overall results for both models are very good with
ARX being slightly better. The EC of ARX is almost 1 during the
modeling period and it deteriorated by an average of 6% during
the testing period with EC score below 0.9 for WCA3A4 location.
The other statistics exhibit similar performance. The EC of NARX
on the other hand is in the range of 0.91–0.94 for the modeling per-
iod and has improved in the testing period by 2% on the average.
Both MSE and SE exhibit similar slight improvement during the
testing period while the bias exhibits slight deterioration. Such
counterintuitive results are attributed to the wetter conditions
with lower variability during the testing period. The statistics show
better performance for ARX in both modeling and testing periods.
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Table 2
Parameter ranges for the Rainfall Driven Formula (RDF) model.

Parameter Range Value selected

Stage lag 1–4 weeks 2
Rain/pet lag 1–4 weeks 4
# Hidden layers 1–3 layers 1a

# Hidden nodes 4–12 8a

a Solution was not sensitive to this parameter and the value selected was inci-
dental to a low MSE score.
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However, the relative performance in both periods suggests that
NARX generalizes better than ARX.

Overall recursive prediction performance

Table 5 presents the same measures as in Table 4 for recursive
prediction where the previous output is fed-back into the input for
the current time step prediction. ARX statistics show fair perfor-
mance during the modeling period and unsatisfactory performance
during the testing period with EC, MSE, SE, and bias being multiple
folds worse indicating ARX failure under recursive environment gi-
ven its good performance in one step prediction. This deterioration
is partially attributed to the significantly different statistics exhib-
ited in the testing period (Table 1) where ARX is strictly stationary
model. The NARX, on the other hand, shows good performance in
the testing period that shows EC above 0.8, MSE ranging between
0.002 and 0.004 m2, the SE ranging between 0.04 and 0.06 m, and
the bias is in the .005–.02 m range. Given the results presented
thus far, it is preferred to reserve the remaining space of this sec-
tion for NARX results only.
Table 3
Relative frequency of lag combination occurrence corresponding to the least mean square

Stage lag 2 2 4 4 1

Rain/PET lag 4 3 2 4 3
Percentage of the least MSE occurrences (%) 18 11 10 9 9
The above lumped statistic tables summarize the global model
performance during the modeling and testing periods. The results
were presented for temporally averaged statistics that do not pro-
vide any information about the RDF temporal performance.
Fig. 10 shows the RDF and NSM stage time series for three locations
(Fig. 3) NWCA3A, WC3A4, and NESRS representing the Northern,
Central, and Southern Everglades, respectively. Despite the global
similarity among the three graphs, local differences are observed
and are captured individually. The peaks and troughs are reason-
ably captured except during the 1997–1998 water year especially
in the North. The dry season for that year received significant rain-
fall events in the North compared to the Central area and South and
compared to its typical average. The NSM stage spatial/temporal
variation for this dry season of the year was exceptionally unusual.
The stage amplitude within that dry season was 0.35 m in the North
while it was less than 0.12 m in the Central area and in the South.
Fig. 11 shows the RDF performance for each week of the year where
spatially averaged stage data are averaged for that week over the
years of for the modeling and testing periods. The figure shows very
good matching between the RDF and the NSM data for the two peri-
ods with about .012 average bias in the modeling period and it
shows also a 4 week seasonality shift in the post-1991 period which
is very well captured with as a good or better performance as that of
the modeling (pre-1991) period. Figs. 12a and 12b show other error
graphical representations. Fig. 12a is a scatter plot exhibiting a tight
dispersion around the 45� line indicating a strong correlation of
0.89 between predicted and NSM averaged stage restoration target.
Fig. 12b shows a close to a straight line error distribution on a nor-
mal probability paper indicating that the global errors probability
distribution is close to normal.
error (MSE) scores across the 200 data partitions.

3 3 1 2 4 1 3 2 3 4

3 4 4 2 3 2 2 1 1 1
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Table 4
One step ahead prediction performance for ARX and RDF models. Performance measures used are model efficiency, EC, mean square error, MSE, standard error, SE, and bias.

NWC3A WCA3A WC3A4 NESRS NWPRK

ARX RDF ARX RDF ARX RDF ARX RDF ARX RDF

Modeling
Efficiency 0.997 0.909 0.995 0.928 0.995 0.939 0.998 0.944 0.997 0.931
MSE, m2 0.000 0.003 0.000 0.003 0.000 0.002 0.000 0.002 0.000 0.005
SE, m 0.010 0.051 0.015 0.057 0.014 0.047 0.010 0.049 0.014 0.074
Bias, m 0.000 �0.002 0.000 0.001 0.000 �0.001 0.000 0.001 0.000 0.000

Testing
Efficiency 0.964 0.921 0.949 0.921 0.887 0.962 0.985 0.970 0.915 0.963
MSE, m2 0.001 0.002 0.001 0.002 0.002 0.001 0.000 0.001 0.002 0.002
SE, m 0.025 0.042 0.028 0.048 0.038 0.032 0.020 0.036 0.050 0.046
Bias, m �0.002 0.018 �0.004 0.013 �0.007 �0.015 �0.002 �0.013 �0.003 �0.011

Table 5
Recursive prediction performance for ARX and RDF models. Same measures as those used in Table 4.

NWC3A WCA3A WC3A4 NESRS NWPRK

ARX RDF ARX RDF ARX RDF ARX RDF ARX RDF

Modeling
Efficiency 0.483 0.748 0.48 0.779 0.505 0.788 0.49 0.828 0.357 0.742
MSE, m2 0.015 0.007 0.023 0.01 0.018 0.008 0.022 0.007 0.051 0.02
SE, m 0.121 0.083 0.153 0.098 0.133 0.085 0.147 0.084 0.225 0.141
Bias, m �0.003 �0.016 �0.003 �0.018 �0.003 �0.017 �0.004 �0.017 �0.005 �0.019

Testing
Efficiency �2.056 0.833 �2.24 0.857 �5.332 0.899 �2.694 0.916 �11.832 0.909
MSE, m2 0.054 0.004 0.05 0.004 0.085 0.002 0.096 0.003 0.374 0.005
SE, m 0.23 0.059 0.218 0.062 0.277 0.044 0.295 0.053 0.599 0.065
Bias, m �0.027 0.011 �0.049 0.005 �0.09 �0.02 �0.095 �0.023 �0.127 �0.019
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NARX (RDF) performance at central WCA3A (WC3A4 site)

Of interest in the remainder of the results section is to depict
the RDF’s capability in capturing certain features of the stage target
signals at WC3A4 site by comparing the simulated versus the NSM
restoration targets for the modeling and testing periods. The
WC3A4 site is located in the center of the Water Conservation Area
3A. As seen in Fig. 10 middle plots, the RDF captured the variation
trend very well and reproduced most of the peaks and troughs
with the exception of early dry season peak late 1994 and early
1995. The RDF performance at this location was better than that
in the Northern NWCA3A. Fig. 13 presents the predicted and
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NSM weekly average and standard deviation of stage target for the
modeling and testing periods. The figure shows very good match-
ing between the RDF and the NSM weekly average during the mod-
eling period and the testing period with less bias than that
observed in the overall plots in Fig. 11. Fig. 13 shows also a very
good matching between the RDF and NSM weekly standard devia-
tion for the modeling period and a fair performance during the
testing period where the standard deviation trend is well captured.
For full presentation of the RDF performance at all stage target
sites, the reader is referred to Ali, 2007.

RDF sensitivity to the number of rainfall stations

In the application of this study, we used twenty four rainfall sta-
tions. This number may not be practically feasible for real time
data acquisition by many agencies. To illustrate the efficacy of
the RDF model with smaller number of rainfall stations, we per-
formed two sets of RDF model runs using: (1) 50% of the original
rainfall stations and (2) rainfall stations at the five stage gage loca-
tions. For space limitation, we only present lumped results in
terms of Efficiency Coefficient only (Table 6). From Table 6, the per-
formance of RDF for five stations seems reasonable and it improves
monotonically as the number of stations increases. During the test-
ing period, RDF generalizes reasonably well with monotonic
improvement as the number of stations increases. RDF perfor-
mance for five and 12 stations at the downstream gages is very
similar due to the information conveyed from the upstream gages.

Summary

Pre-drainage wetland stage is essential measure for any wet-
land restoration project. In this study, a nonlinear multivariate
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Rainfall Stage model (RDF) was developed to provide a real time
recursive prediction for stage restoration targets in a complex wet-
land system with an application to Florida’s Everglades. Although
the techniques adopted are not new, the algorithm to utilize such
techniques provided the first R–S model in complex wetland sys-
tems. The RDF is based on a dynamic Nonlinear AutoRegressive
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Table 6
Effect of number of input rainfall stations on the model efficiency during the
modeling and testing periods.

# Stations NWC3A WCA3A WC3A4 NESRS NWPRK

Modeling
5 Stations 0.623 0.695 0.887 0.869 0.881
12 Stations 0.708 0.779 0.861 0.864 0.878
24 Stations 0.833 0.857 0.899 0.916 0.909

Testing
5 Stations 0.556 0.534 0.626 0.687 0.568
12 Stations 0.621 0.651 0.679 0.659 0.595
24 Stations 0.748 0.779 0.788 0.828 0.742
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ANN with eXogenous inputs, NARX, with feedback connection and
with certain architecture. Spatial correlation analysis was first per-
formed to select effective number of rainfall and PET stations, and
temporal correlation analysis was performed to select preliminary
time delays for rainfall/PET and stage. Further analysis is per-
formed to explore system spatial and temporal nonstationarity.
PCA was performed to eliminate interdependence and to reduce
the problem dimensions into manageable few representative PCs.
A structured approach was designed to combine PCA with NARX
training to identify optimal time delays, significant PCs, and num-
ber of ANN hidden layers and hidden nodes.

The above procedure has been applied to the 1.5 million acre
Everglades wetland WCA-3A and ENP. The implementation takes
the raw data consisting of rain/PET at the 26 designated locations
over the most recent 4 weeks and previously simulated stage at
the five stage trigger locations over the preceding 2 weeks; trans-
forms the data set into its first ten PCs, train, validate and test
NARX. The training proceeds forward with the stage output of
the last two time steps are back-fed into the input of the current
time step. The training stops when the ANN performance on the
validation data set stops improving or deteriorating for five consec-
utive iterations. For comparison purposes, a classic ARX model was
constructed and applied using the same data set.

Driven by only rainfall and PET, the ARX and RDF models pro-
vide very good performance for one step ahead prediction. For
recursive prediction, however, the RDF performance was signifi-
cantly better especially during the testing period. The RDF effi-
ciency coefficient is 0.75 or higher during the modeling period
and 0.83 or higher during the testing period. The RDF other statis-
tics exhibit the same high performance with more improvement in
the testing period. The improvement during the testing period is
attributed to lower data variance.

The stage quantiles, weekly average and weekly standard devi-
ation are all well captured at each trigger location during the mod-
eling and testing periods. Individual error plots indicate Gaussian
distribution and tight scatter plots indicating a sound unbiased
prediction. The ability of the RDF to capture the hydrology wetter
conditions in the 1990s and adapt to the smaller amplitude (char-
acteristics that were never seen during training) is a powerful indi-
cator that the RDF development has come very close to the unique
solution of this problem.

The RDF parameters were selected based on a nested loop sys-
tem through several parameters where thousands of ANN runs are
generated and parameter sets corresponding to improved results
are recorded. Identification of unnecessary variables/parameters/
weights to achieve parsimony was not an easy process. The PCA
capability in exploiting the system spatial and temporal depen-
dence allowed for filtering out the components with insignificant
representation of the data variability. In the Everglades, the PCA
has reduced the input vector from 114 entries into 10 PCs who rep-
resented 82% of the input data variance. There has been noticeable
improvement and generalization to the model performance with
the increase of the number of PCs being added beyond the 10 com-
ponents. Such an improvement is on the expense of model parsi-
mony and simplicity of subsequent model application. Such a
trade off between model parsimony and model adequacy in the
context of ANNs structure deserves more research effort which is
outside the scope of this paper.

The RDF model exhibited modest sensitivity to the number of
rainfall stations being used with improved results as more rainfall
stations being added. Rainfall stations limited to the stage gage
locations provided reasonable Efficiency Coefficient results indicat-
ing model efficacy using limited number of data.

There are numerous sources of uncertainty associated with the
data selection, period of record partition, process and ANN param-
eter selection leading to uncertainty in the model prediction. An
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improvement to the real time prediction is often achieved by an
adaptive component (e.g., Kalman filter) where subsequent predic-
tion is improved based on the relative performance of previous
predictions against observations that are made available. Due to
the lack of current observations of pre-drainage stage and the dif-
ficulty to characterize the non Gaussian structure of the signal
noise in such a nonlinear system, adaptive prediction was not fea-
sible in this study. In the subsequent optimization of system oper-
ation where real time stage is adjusted to achieve predicted stage
targets, an extended Kalman filter (Julier and Uhlmann, 2004) for
nonlinear non Gaussian system may be utilized. Without adaptive
prediction component, a quantification of uncertainty becomes
particularly important to guide subsequent system operation and
to guide future selection of additional data locations and improve-
ment of model parameters and structure.
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