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Phosphorus (P) enrichment has been observed in the historic oligotrophic Greater Everglades in Florida
mainly due to P influx from upstream, agriculturally dominated, low relief drainage basins of the Everglades
Agricultural Area (EAA). Our specific objectives were to: (1) investigate relationships between various
environmental factors and P loads in 10 farm basins within the EAA, (2) identify those environmental factors
that impart major effects on P loads using three different tree-based modeling approaches, and (3) evaluate
predictive models to assess P loads. We assembled thirteen environmental variable sets for all 10 sub-basins
characterizing water level management, cropping practices, soils, hydrology, and farm-specific properties.
Drainage flow and P concentrations were measured at each sub-basin outlet from 1992–2002 and aggregated
to derive monthly P loads. We used three different tree-based models including single regression trees (ST),
committee trees in Bagging (CTb) and ARCing (CTa) modes and ten-fold cross-validation to test prediction
performances. The monthly P loads (MPL) during the monitoring period showed a maximum of 2528 kg
(mean: 103 kg) and maximum monthly unit area P loads (UAL) of 4.88 kg P ha−1 (mean: 0.16 kg P ha−1).
Our results suggest that hydrologic/water management properties are the major controlling variables to
predict MPL and UAL in the EAA. Tree-based modeling was successful in identifying relationships between P
loads and environmental predictor variables on 10 farms in the EAA indicated by high R2 (N0.80) and low
prediction errors. Committee trees in ARCing mode generated the best performing models to predict P loads
and P loads per unit area. Tree-based models had the ability to analyze complex, non-linear relationships
between P loads and multiple variables describing hydrologic/water management, cropping practices, soil
and farm-specific properties within the EAA.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The global phosphorus (P) cycle is simplified somewhat by the fact
that there are no appreciable gaseous atmospheric P compounds,
which are critical in the carbon and other biogeochemical cycles
implicated in global climate change. The path of P from its release by
chemical weathering to its transport and burial at sea is complex,
because of the interaction of P with the biosphere and iron–
manganese oxide particles in soils (Compton et al., 2000). It has
been estimated that at global scale present-day P flux from rivers to
the ocean is in the order of 17.7–30.4×1012 g yr−1, which is about 2.5
times higher than in pre-human times (Compton et al., 2000). Land
use shifts and management practices have caused P enrichment in
naturally oligotrophic ecosystems. Large scale P enrichment has been
documented in the Gulf of Mexico due to P flux from the Mississippi
River Basin (2.9 million km2) (Rabalais et al., 2002; Alexander et al.,
2004) and in the Greater Everglades (∼8250 km2) due to P influx from
fax: +1 352 392 3902.
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upstream, agriculturally dominated, drainage basins (Everglades
Agricultural Area – EAA) (Noe et al., 2001; Bruland et al., 2007;
Grunwald et al., 2008). Phosphorus loads increased approximately 18
fold in the Chesapeake Bay and tributary estuaries since the pre-
colonial period (Boesch et al., 2001). Changes in the relative
proportions of nitrogen and P can exacerbate eutrophication, favor
harmful algal blooms, aggravate oxygen depletion, alter food webs
(Rabalais et al., 2002), and impact ecosystem functions, stability and
resilience (Porter and Porter, 2001).

Alexander et al. (2004) pointed out that the estimated aquatic P
removal rates declined with increasing stream size and rates of water
flushing (i.e., areal hydraulic loads) using total phosphorus (TP)
stream measurements from 336 watersheds in the U.S. This suggests
that drainage basins, such as the ones in southern Florida, which are
large in size with low relief, have longer residence times for P within
the system. According to Heathwaite and Dils (2000) the magnitude
and composition of the P load transported in surface and subsurface
hydrological pathways depends on the discharge capacity of the flow
route and the frequency with which pathways operate. They found
that preferential flow pathways, particularly field drains, channels and
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macropores, are important contributors to the overall P loads. Along
these pathways most of the P is transported in the particulate fraction
and associated with organic or colloidal P forms (Heathwaite and Dils,
2000). In south Florida's lowland drainage basins hydrologic manip-
ulation has created an extensive system of such preferential pathways
consisting of canals, ditches and water control structures. Diaz et al.
(2006) reported that nutrient loading from the EAA and nearby urban
communities as well as water flow rate and canal size have
significantly influenced the amount of sediment and P pools stored
in canals in Water Conservation Areas, Everglades, Florida. Phos-
phorus fractions associated with calcium and magnesium compounds
and residual organic P were the dominant forms stored in the canal
sediments. This suggests that more than 80% of the TP mass stored in
surface sediments in these canals is fairly stable representing a long-
term sink for P.

The effect of land use and management on TP loads has been well
documented in studies of lowland river tributaries (Mander et al., 2000;
Pieterse et al., 2003; Grunwald and Qi, 2006). These studies found
positive correlations between agricultural coverage and intensity of land
use and P loads exported fromdrainage basins. For example,most of the
TP exported to the Gulf of Mexico from the Mississippi River with a TP
mean of 0.22 kg ha−1 yr−1 (0.12–0.65 kg ha−1 yr−1) originated in sub-
basins where both agricultural and urban sources are large (Alexander
et al., 2004). This has stimulated the implementation of best manage-
Fig. 1. (a) Everglades Agricultural Area (EAA) and Everglades located in
ment practices (BMPs) and conservation measures to improve water
quality (Sharpley et al., 2001; Daroub et al., in press). Despite these
research findings our understanding of how different sub-basins with
different land use characteristics and conservation measures affect P
loads in lowland drainage basins is limited. Interactions between
environmental landscape factors and P loads extending over multiple
seasons are still poorly understood.

Commonly, multivariate regression models are used to character-
ize relationships between dependent and independent environmental
attributes to explain their interactions or develop predictive models
(Grunwald, 2006). Least square multivariate regressions are among
the most commonly used analytical techniques in soil and water
science applications (Trexler and Travis, 1993). However, classical
regression methods are constrained due to assumptions about the
statistical distribution of a response variable and the form of variance
structure, which are often difficult to meet with environmental
datasets (James et al., 2004). Tree-basedmodeling has been suggested
to quantify relationships between soil, water and environmental
landscape attributes, which are often complex, non-linear and show
high-order interaction effects between environmental predictor
attributes (DeAth and Fabricius, 2000). These methods include
classification trees (ClT), regression trees (RT), and variants such as
committee trees (CT) in Bagging and ARCing modes; the latter called
boosted RT (bRT). Tree-based models are distribution free (non-
the state of Florida; (b) Zoom-up of the EAA with ten farm basins.
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parametric) and make no assumptions about regression variables or
residuals (Breiman et al., 1984). The Classification and Regression
Trees (CART) methodology is based on binary recursive partitioning;
binary because parent nodes are always split into exactly two child
nodes, and recursive because the process can be repeated by treating
each child node as a parent node. Classification and Regression Trees
use either categorical or continuous data types or both, which predict
the data class (ClT) or the data values (RT). Optimized splitting rules
are identified at each level of the tree. The goal of RT models is to
partition the data into relatively homogenous (low deviation)
terminal nodes, and the mean of the values in each node is the
predicted value for that node. Tree-based modeling has been applied
in various scientific disciplines to uncover hidden structures in
complex datasets and to predict the characteristics of a chosen target
variable by a set of meaningful predictor variables (Breiman et al.,
1984). Trees have been used for ecological predictions and analysis
(DeAth and Fabricius, 2000; Prasad et al., 2006), to quantify relation-
ships between species and environmental landscape properties
(DeAth, 2002; Moisen and Frescino, 2002), to delineate ecoregions
(Hargrove and Hoffman, 2005), for environmental monitoring and
epidemiology (Schröder, 2006), and in global change biological
studies (Thuiller, 2003). In the soil science discipline RT, bRT and/or
RF were used to predict soil organic carbon (Brown, 2007; Grimm
et al., 2008; Vasques et al., 2008). Lilly et al. (2008) used RT to predict
saturated hydraulic conductivity and Grinand et al. (2008) used CT to
predict soil units based on environmental landscape properties. Tree-
based modeling has been also used widely in the hydrology discipline
in rainfall-runoff modeling (Solomatine and Dulal, 2003), to model
water level–discharge relationships (Bhattacharya and Solomatine,
2005), to quantify relationships between snow water and environ-
mental landscape properties (Mototch et al., 2005), to describe
hydraulics (Pappenberger et al., 2006), to characterize water releases
fromvarious reservoirs in different time periods of the year (Reis et al.,
2005), to investigate relationships between stream survey data and
agricultural riparian buffers (Barker et al., 2006), to assess landscape
conditions relative to water resources (Jones et al., 2000), and to
predict P delivery towater bodies from agricultural land (Brazier et al.,
2006). In this paperwe explore single and committee RT to investigate
complex interactions and effects of environmental basin attributes on
P loads in various lowland agricultural-used drainage basins. Our
specific objectives were to: (1) investigate relationships between
various environmental factors and P loads, (2) identify those
environmental factors that imparted major effects on P loads using
three different tree-based modeling approaches, and (3) evaluate
predictive models to assess P loads. The analyses were conducted in
Table 1
Characteristics of farm drainage basins in the Everglades Agricultural Area.

UF farm basin Monitoring duration
(months)

Sub-basin Irrigation water
structure/ canala

Crop

00A 118c S5A S352 WPB Suga
01A 90d S6 S2 HB Mixe
02A 118 S7 S2 NNR Suga
03A 118 S7 S2 NNR Suga
04A 118 S6 S2 HB Suga
05A 90 S8 S3 Miami Mixe
06AB 118 S5A S352 WPB Mixe
07AB 118 S6 S2 HB Mixe
08A 110f S6 S2 HB Suga
09A 118 S8 S3 Miami Suga

a Canals being serviced by each irrigation structure: WPB West Palm Beach canal; HB=H
b Soil taxonomic descriptions: Dania – Euic, hyperthermic, shallow Lithic Haplosaprists;

hyperthermic Typic Haplosaprists.
c July 1992 to April 2002.
d July 1992 to December 1999.
e Mixed: Sugarcane, vegetables, sods, melons or rice.
f July 1992 to August 2001.
spatially-distributed sub-basins nested within an agricultural lowland
drainage basin in south Florida.

2. Methods

2.1. Study area

The EAA basin (size 283,000 ha) (Fig. 1), located in south Florida,
has been in agricultural use since 1948 and is divided hydrolog-
ically into four sub-basins, S5A, S6, S7, and S8 (compareDaroub et al., in
press). It encompasses about 27% of the historic Everglades and is
characterized by deep muck soils that have been undergoing
subsidence at an annual average rate of 1.4 cm during the last
19 years due to organic matter oxidation (Shih et al., 1998). The
Histosols (Suborder: Saprist) of the EAA have a soil organic matter
content between80 and90% that is highly decomposed (Snyder,1994).
Soil series found in the EAA include Dania, Lauderhill, Pahokee, and
Terra Ceia, which mainly differ in depth of the O horizon to the
limestone bedrock (Rice et al., 2002a), and which decline from more
than 1 m (S5A and S6 sub-basins) to less than 1 m (S7 and S8)
(Table 1). The EAA is dissected by an extensive system of canals,
ditches and water control structures to control seepage irrigation and
drainage. Climate is sub-tropical with an average precipitation of
1270 mm yr−1. The annual distribution of the rainfall is however
uneven with 66% occurring during the months of June through
October (Ali et al., 2000). Land area converted to sugarcane farms
increased dramatically after the Cuban Revolution of 1959 causing
nutrient enrichment in adjacent ecosystems (Lake Okeechobee and
Greater Everglades) (Porter and Porter, 2001). Currently nearly 70% of
the EAA is planted to sugarcane with lesser coverage of vegetables,
sod, and rice (Rice et al., 2002b). U.S. Sugar Corp., the largest
sugarcane producer in the nation, has sold about 74,800 ha of
sugarcane land in the EAA, whichwill be converted intowetlands over
the next 6 years aiming to accelerate recovery of the Everglades
ecosystem (Stockstad, 2008). Growers in the EAA are required to
implement a suite of BMPs and conduct monitoring of daily rainfall,
drainage water volume and drainage water P concentrations. Growers
choose BMPs from a list that has four main categories: (1) soil testing
and application of P fertilizer according to a calibrated soil test,
(2) controlled P fertilizer applicationmethods, (3) watermanagement
practices, and (4) sediment source and transport controls. Details
about BMP implementation on various farms in the EAA can be found
in Daroub et al. (2004, in press). Topography across the EAA is nearly
flat with minor elevation changes (in the cm range) leading to slow
movement of water within fields and in ditches and canals.
s Farm size (ha) Average soil
depth (m)

Rainfall detention
(mm)

Soil seriesb

rcane 518 1.16 25.4 Pahokee
de 518 0.61 12.7 Lauderhill
rcane 130 0.46 25.4 Dania
rcane 1865 0.43 12.7 Dania
rcane 259 1.62 25.4 Terra Ceia
d 130 0.55 25.4 Lauderhill
d 710 0.88 12.7 Lauderhill
d 1012 0.98 25.4 Pahokee
rcane 106 0.73 25.4 Lauderhill
rcane 1243 0.98 25.4 Pahokee

illsboro canal; NNR=North New River canal.
Lauderhill and Pahokee – Euic, hyperthermic Lithic Haplosaprists; Terra Ceia – Euic,
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2.2. Environmental dataset

The following environmental variables for each farm drainage
basin were used as predictor variables (Tables 1 and 2): (1) Farm size
(ha) [farmsize], (2) Irrigation demand (cm) [irrdemand], (3) Irriga-
tion P concentration (mg P L−1) [irrpconc], (4) Monthly inside canal
water level (meter a.m.s.l.) [monthlyinsidehead], (5) Monthly outside
canal water level (meter a.m.s.l.) [monthlyoutsidehead], (6) Monthly
rainfall (mm) [monthlyrain], (7) Percent sugarcane coverage (%)
[percentcane], (8) Percent fallow and flood coverage (%) [percentfall-
flood], (9) Percent flood coverage (%) [percentflood], (10) Ratio
between drainage to rainfall (mm mm−1) [pumptorain], (11) Soil
depth (m) [soildepth], (12) Soil type (Soil Series: Dania, Lauderhill,
Pahokee, and Terra Ceia) [soils], (13) Location (farm basin codes: 00A
to 09A) [location], and (14) Sub-basin (sub-basin codes: S5A, S6, S7,
and S8) [sub-basin]. Water levels in farm canals and in surrounding
conveyance canals can potentially indicate conditions conducive for
seepage both into and off of a farm. Pressure transducers in canals
were calibrated to measure canal water level as meters above mean
sea level (a.m.s.l.). Canal water level was measured by a data logger on
five minute intervals during drainage pumping and hourly otherwise,
which were aggregated to derive monthly values for inside and
outside canal water levels. Monthlyinsidehead was the average canal
level adjusted to a.m.s.l. inside the farm at the farm exit drainage
pump station. Outside canal level (monthlyoutsidehead) was the
average canal level in the receiving canal outside the farm in close
proximity to the main farm drainage pump station. Rainfall at each
farmwas measured in hourly intervals by tipping a bucket rain gauge
located at the exit pump station(s) on each farm, which was
aggregated to derive monthly rainfall totals. Irrigation water data
were derived from the South Florida Water Management District-
DBHYDRO database. Irrigation demand from pan evaporation was
calculated as the difference of monthly evaporation totals from the
Institute of Food and Agriculture Science (IFAS) – Belle Glade weather
station minus farm monthly rainfall. Irrigation demand for sugarcane
farms was estimated on a monthly basis from three components, farm
monthly rainfall, monthly pan evaporation totals from IFAS Belle
Glade weather station, and Penman sugarcane crop coefficients by
month for evapotranspiration (compare Daroub et al., 2004). Average
farm soil depth values were calculated from fieldmeasurements taken
in 1995. Multiple soil depth measurements (six to ten) from within
each sampled field were averaged to obtain a field soil depth average.
4 to 24 fields per farm were sampled and an overall farm soil depth
average was determined from the field soil depth averages.

The descriptive statistics of environmental variables can be found
inTable 2. Irrigation demand had amean of 0.43 cm,median of 0.92 cm
and a large range of 46.75 cm over the whole monitoring period. The
measured P concentrations ranged from 0.02 to 0.39 mg P L−1 with
mean andmedian of about 0.12mg P L−1. Monthly outside canal water
levels showed a 1.3 times highermean thanmonthly inside canalwater
levels with a modest range compared to other environmental
Table 2
Descriptive statistics of environmental variables used to predict monthly and unit area pho

Irrigation
demand
(cm)

Irrigation
phosphorus
conc. (mg P L−1)

Monthly inside
canal water level
(m a.m.s.l.)

Monthly outside
canal water level
(m a.m.s.l.)

Mean 0.43 0.12 2.43 3.15
Std. error of mean 0.27 0.002 0.01 0.01
Median 0.92 0.11 2.44 3.19
Standard deviation 7.58 0.06 0.42 3.13
Skewness −0.38 1.16 −0.03 −1.1
Kurtosis 0.05 1.86 1.35 5.4
Range 46.75 0.37 2.85 4.92
Minimum −26.37 0.02 1.06 0.63
Maximum 20.38 0.39 3.90 5.55
variables. Monthly rainfall showed a mean of 122.5 mm and a median
of 107.2 mm with a large range of 399.8 mm across the monitoring
period. Percentages of sugarcane, fallow and flood coverage, and flood
coverage showed large ranges among all farm basins. The ratio
between pumping to rainfall showed a slightly skewed distribution
with a mean of 0.60 mmmm−1, median of 0.41 mmmm−1 and range
of 8.54 mm mm−1. The soil depth minimum was 0.43 and maximum
was 1.62 m.

2.3. Drainage and water quality monitoring

The drainage systems in the EAA feature extensive networks of
farm canals, ditches, and pump stations that are managed by both the
South FloridaWater Management District (SFWMD) and growers. The
SFWMD manages the public canals and its own pump stations in the
EAAwhile growers manage water levels on their farm drainage basins
within the EAA basin. Normally, a main farm canal runs from the farm
pump station to the far reaches of the farm, and sub-mains or farm
laterals branch off the main canal at right angles, generally on 800 m
spacing, on section and half section boundaries. Emanating at right
angles from the farm laterals are equally spaced field ditches, which
are parallel and subdivide the farm into rectangular areas with
nominal dimensions of 200 by 800 m. These 16 ha blocks are
considered the basin water management unit where sub-irrigation or
open ditch drainage practices are accomplished by either raising or
lowering field ditch water levels (Izuno and Bottcher, 1994). The
seepage-based drainage control systems are managed to maintain the
water level normally b1 m below the soil surface (Obreza et al., 1998).

We used a comprehensive water quality monitoring set which was
focused on ten farm drainage basins covering a sampling period from
1992 to 1999 and 2002 (Daroub et al., 2004). The farm basins were
selected to represent a typical range of farm sizes, soil types, crop
rotations, water management, and geographical distribution across
the EAA (Table 1). Six of the farm drainage basins (00A, 02A, 03A, 04A,
08A, and 09A) were dominated by sugarcane with more than 85% of
the farm planted to sugarcane in most years. One exception was farm
basin 08A which switched from being predominantly sugarcane
culture from 1992–1999 to 55% and 29% of the area planted to
vegetables in 2000 and 2001, respectively. The remaining four farms
had mixed-cropping systems: farm 01A was strictly a vegetable
monoculture; farm 05Awas planted with sugarcane, sod, and melons;
farm 06A/B was planted with sugarcane, vegetables, rice, sod and
trees; and farm 07A/B grew sugarcane, vegetables, rice and sod. For
mixed crop farms, vegetables are grown in thewinter, and the fields in
the summer are normally planted with flooded rice or kept flooded if
left fallow.

Best management practices were similar for the 10 farms with
minor differences for rainfall detention amount (Table 1). Each site's
drainage flow was determined using a Campbell Scientific® CR-10
data logger that was programmedwith the site's calibrated pump flow
equations and was wired to upstream and downstream pressure
sphorus loads on 10 farm basins in the Everglades Agricultural Area.

Monthly
rainfall
(mm)

Percent
sugarcane
coverage (%)

Percent fallow
and flood
coverage (%)

Percent flood
coverage (%)

Ratio between
pumping to rainfall
(mm mm−1)

Soil
depth
(m)

122.5 72.6 1.4 0.09 0.60 0.85
2.9 1.11 0.3 0.007 0.03 0.01

107.2 86.7 0.0 1.0 0.41 0.88
33.3 31.6 8.5 18.9 0.85 0.34
0.6 −1.1 8.2 2.9 5.4 0.2

−0.4 −0.1 78.6 9.3 37.9 0.009
399.8 100.0 100.0 100.0 8.54 1.19

0.0 0.0 0.0 0.0 0.00 0.43
399.8 100.0 100.0 100.0 8.54 1.62
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transducers and to drainage pump revs (pulses) per minute (RPM)
sensors (shaft encoders). The data logger was also connected to a
tipping bucket rain gauge (Texas Electronics® TE525-WSL) tomeasure
rainfall and a water sampler (ISCO® 3700) that was triggered by the
data logger to collect a water sample once the requisite amount of
drainage flow had been pumped. The water samplers collected 100 ml
volume for each sampling and composited the samples into a 4 L pre-
acidified bottle. Sample bottles were collected after drainage pumping
cessation or once the bottles became full. Water samples were
transported, stored, and analyzed according to Everglades Research
and Education Center (EREC) laboratory procedures (Chen, 2001). All
drainage water samples were analyzed for TP. Samples were digested
using the mercury oxide digestion with a block digester AS-4020
(Scientific Instruments Services, Inc., Ringoes, NC) (Method 365.4,
USEPA, 1983). After digestion, solutions were analyzed using a Flow IV
segmented flow analyzer (OI Analytical, College Station, TX) using the
ascorbic acid method (Murphy and Riley, 1962). From the monitoring
dataset daily loads were calculated from daily drainage flows and P
concentrations that were then aggregated tomonthly P loads [MPL] in
kg andmonthly unit area P loads [UAL] in kg P ha−1 (n=809 records).

2.4. Analysis

We used CARTmethodology developed by Breiman et al. (1984) in
three different modes: (i) Single RT (ST), (ii) CT with Bagging (CTb),
and (iii) CT with ARCing (CTa) implemented in CART 5.0 software
(Salford Systems, San Diego, CA). The environmental basin factors
were used as inputs (independent variables) to predict target
variables (MPL and UAL, respectively). Tree structure classifiers are
constructed by repeated splitting of the set of observations (parent
nodes) into two descendent subsets (child nodes). The splitting is
continued as long as the child nodes become purer compared to the
parent node. The entire process of tree construction revolves around
three elements: (1) the selection of the splits, (2) the decisionwhen to
declare a node terminal or to continue splitting it, and (3) the
assignment of each terminal node to a class. The aim of splitting is to
increase child node purity when compared to parent node purity. We
used the least squares splitting rule. Prime splitter and surrogate
variables are included in trees, the latter ones to model high-order
interaction effects among predictor variables.

Trees are grown until a maximum tree is reached depending on
user specified restrictions or until further splitting is impossible. We
set a minimum of three cases per terminal node for all trees. Fully
grown trees are typically over-fitted to the training dataset and usually
perform poorly when generalized to external data. Thus, we pruned
trees to an optimal size to produce parsimonious trees in ST, CTb, and
CTa modes. According to suggestions provided by Breiman et al.
(1984) we selected the optimized trees using the minimum cost tree
regardless of size assessed by the cross-validated relative error
(CVRE). Ten-fold cross-validation was used to test prediction perfor-
mances, which involves randomly dividing the data into partitions or
folds. At each step, nine of these partitions are used to fit the model
and the performance is assessed on the remaining partition held back
as the test data. The procedure is repeated for each partition
sequentially. The performance, averaged over all ten partitions held
back generates the cross-validation performance assessment.

The selection of the splits is done by an exhaustive search on all
possible variables, and for each variable, all possible splitting
thresholds. The choice of the best splitter is based on a measure of
accuracy. A least squares estimator is used and accuracy is assessed
using the resubstitution estimate (R(d)) Eq. (1), which is the
counterpart of the well-known mean squared error. The value that
minimizes the resubstitution estimate at every tree node t is the
average of the target variable (ȳt) for all cases falling into t. For every
intermediate node t, a resubstitution estimate can be defined more
specifically asR(t) Eq. (2). The best split is then defined as the onewhich
maximizes the decrease in R(t) from the parent to the child nodes Eq.
(3) (Breiman et al., 1984).

R dð Þ = 1
n

Xn

i=1

yi−d xið Þ½ �2 ð1Þ

R tð Þ = 1
n

Xn

i

yi−ytð Þ2 ð2Þ

ΔR s; tð Þ = R tð Þ− R tLð Þ− R tRð Þ ð3Þ

where: R(d)=resubstitution estimate; n=number of observations;
yi=dependent variable at observation i; d(x)i=selected independent
variables; xi=threshold values for variable d(x)i; R(t)=minimum
resubstitution estimate at node t, given that d(x)i= ȳt; ȳt=average of
the target variable for all cases falling into t; ΔR(s,t)=decrease in R(t)
from the parent to the child nodes; s=split at node t; R(tL)=
resubstitution estimate at the left child node; R(tR)=resubstitution
estimate at the right child node.

At each node, after the best variable and threshold are selected, the
dataset is split as following: For each sample in the training dataset, if
the value of the selected variable exceeds the threshold, the sample is
moved to the right (tR); if not, the sample is moved to the left (tL).
Thus, at each node, the dataset is split into two new subsets. The
partitioning continues at every node until the number of cases in the
node reaches a predetermined minimum. The node then becomes a
terminal node, and the average value for all cases falling into that node
(y ̄t) is assigned as the predicted value. In the process of minimizing
R(d) at each node, the overall tree resubstitution error (R(T)) is also
minimized. Thus, a tree with minimum within-node error is found.
This tree, however, is over-fitted to the training dataset and usually
performs poorly when generalizing to external data. The tree can be
pruned to an optimal tree size using either cross-validation or an
independent validation dataset. The selection of the optimal tree is
done by finding, among K different pruned trees, the one with
minimum relative error (REE(TK)) with respect to the validation data,
according to Eqs. (4)–(6).

R Tð Þ = 1
n

X
~
T

j=1

R tð Þj ð4Þ

R yð Þ = 1
n

Xn

i

yi−yð Þ2 ð5Þ

REE TKð Þ = R TKð Þ = R yð Þ ð6Þ

where: R(T)=overall tree resubstitution estimate; n=number of
observations; T =total number of terminal nodes of the tree; R(t)=
minimum resubstitution estimate at node j; R(ȳ)=average squared
deviation of y around ȳ; yi=dependent variable at observation i;
ȳ=average of y, for i=1 to n; REE(TK)=relative mean squared error
of a tree among K different pruned trees; R(TK)=overall resubstitu-
tion estimate of a tree among K different pruned trees.

Traditional CART modeling has been focused to model single trees
fitting input to output variables (Steinberg and Colla, 1997).
Committee trees assemble hundreds of single trees to predict a
variable of interest (Prasad et al., 2006). In CART 5.0, bootstrap
resampling is applied in a novel way, i.e., a separate analysis is
conducted for each resample or replication generated and then the
results are averaged. If the separate analyses differ considerably from
each other (suggesting tree instability), averaging stabilizes the
results, yielding much more accurate predictions. If the separate
analyses are very similar to each other, the trees exhibit stability and
the averaging will neither harm nor improve the predictions. Thus, the
more unstable the trees, the greater the benefits of averaging (CART,



Table 3
Descriptive statistics of monthly phosphorus loads (kg) on each of the 10 farm basins in the Everglades Agricultural Area.

Farm drainage basins

All 10 farm basins 00A 01A 02A 03A 04A 05A 06AB 07AB 08A 09A

Mean 103.1 94.3 357.1 7.3 71.3 18.3 15.8 222.2 159.3 3.3 50.4
Std. error of mean 8.5 18.5 66.9 1.6 9.1 2.6 2.7 34.4 20.8 0.4 5.2
Median 31.2 43.9 124.3 3.3 35.2 9.4 7.7 108.7 107.4 2.6 36.7
Standard deviation 240.4 164.0 543.4 11.5 90.9 22.2 23.4 347.5 196.0 3.2 53.7
Skewness 5.8 4.2 2.5 3.7 2.4 2.0 2.9 3.7 3.2 2.2 2.5
Kurtosis 42.5 20.6 6.3 17.4 7.1 5.1 10.6 16.8 15.5 6.7 8.9
Range 2527.9 1098.7 2526.0 70.1 512.8 114.2 133.0 2385.9 1351.0 17.6 336.1
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 2527.9 1098.8 2527.9 70.1 513.2 114.2 133.0 2386.3 1351.6 17.6 336.1
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2002). Bagging and ARCing methods (Breiman, 1996; Freund and
Schapire, 2000) were introduced to tree modeling to simulate
multiple trees. These methods are called committee trees that are
implemented in the form of bootstrap aggregation (Bagging) or
ARCing (Boosting), a set of trees is generated by resampling with
replacement from the original training data. The trees are then
combined by averaging their outputs (RT mode). The key difference
between Bagging and ARCing is the way each new resample is drawn.
In Bagging, each new resample is drawn in an identical way
(independent samples), while in ARCing the way a new sample is
drawn for the next tree depends on the performance of the prior tree
(CART, 2002). In ARCing the probability with which a case is selected
for the next training set is not constant and is not equal for all cases in
the original learn data set. Instead, the probability of selection
increases with the frequency with which a case has been misclassified
in previous trees. Cases that are difficult to classify receive an
increasing probability of selection, while cases that are classified
correctly receive declining weights from resample to resample.
Multiple versions of the predictor are formed by making bootstrap
replicates of the learning set and using these as new learning sets. The
predicted value generated by the committee trees is an average over
these multiple versions of predictors. We generated 250 trees in
Bagging and ARCing modes, respectively.

3. Results

3.1. Monthly phosphorus loads and monthly unit area phosphorus loads

Tables 3 and 4 provide an overview of MPL and UAL distributions
within farm basins over the whole sampling period. The mean MPL
was highest in farm basin 01A with 357 kg, followed by farm basins
06AB (222 kg), 07AB (159 kg), 00A (94 kg) and 03A (71 kg), and 09A
(50 kg). Phosphorus UAL showed the largest mean in farm basin 01A
with 0.69 kg P ha−1, followed by farm basins 06AB, 00A, 07AB and
05A. Sincemost of the distributions ofMPL are skewed, as indicated by
the skewness coefficients, the median is a more robust metric to
highlight differences among farm basins. The MPL median for farm
basin 01A with 124 kg was distinctly above all other medians
(06ABN07ABN00AN09AN03AN04AN05AN02AN08A). The maxi-
Table 4
Descriptive statistics of monthly phosphorus unit area loads (kg P ha−1) on each of the 10

Farm drainage basins

All 10 farm basins 00A 01A 02A

Mean 0.16 0.18 0.69 0.06
Std. error of mean 0.002 0.04 0.13 0.01
Median 0.05 0.08 0.24 0.03
Standard deviation 0.41 0.32 1.05 0.09
Skewness 6.6 4.2 2.5 3.7
Kurtosis 54.9 20.6 6.3 17.4
Range 4.88 2.12 4.88 0.54
Minimum 0.00 0.00 0.00 0.00
Maximum 4.88 2.12 4.88 0.54
mum MPL was found in 01A with 2527 kg followed by 06AB
(2386 kg) and 07AB (1352 kg). Note that medians of UAL were more
similar among farms with highest in farm basin 01A (0.24 kg P ha−1)
and lowest in 03A (0.02 kg P ha−1). Maximum UAL were observed in
farm basins 01A with 4.88 kg P ha−1 and declined in the sequence
06ABN00AN07ABN05AN02AN04AN03A∼09AN08A.

3.2. Single tree regression models to predict monthly phosphorus loads

The variable importance to predict MPL in ST mode (29 terminal
nodes) followed the ranking order: monthlyinsidehead (100)N irrde-
mand (94.6)Nmonthlyrain (90.0)Npumptorain (88.0)Npercentfall-
flood (71.2)N location (44.8)N ..... soils (2.7) (Table 5). This suggests
that hydrologic properties were more important than the irrpconc and
landscape properties (e.g. land use, soildepth, soils) to predict MPL. The
geographic location expressed by the two variables location and sub-
basinwere also less important to explain the long-termMPL in the EAA.

Similar variable importance and surrogate behavior were found for
the more parsimonious ST with 14 terminal nodes with a R2 of 0.77. If
only primary splitters are considered for the tree-building process of
ST with 14 terminal nodes the following variables are ranked
according to their scores: pumptorain (100)N irrdemand (80.4)N
percentfallflood (63.2)N location (38.0)Nmonthlyrain (25.6)N farm-
size (3.98). Thus, only hydrologic variables and the size of farms were
important for splitting parent nodes into child nodes during the tree-
building process. Less importance was placed on P concentrations and
other landscape properties included in the model. If interactions, i.e.
synergy between variables, were discounted during the tree-building
process (14 terminal nodes) the variable importance shifted slightly
with variable importance in the following order: pumptorain (100)N
irrdemand (86.9)Npercentfallflood (74.9)Nmonthlyrain (54.5)N loca-
tion (43.2)........sub-basin (2.7). This indicates that monthlyinsidehead
is dependent on interaction with other variables (possibly hydrologic
variables) in the tree model to derive their high overall variable
importance. To identify these high-order interactions is the strength of
the tree-modeling approach.

To exemplify the tree results the ST build to predict MPL with 14
terminal nodes is shown in Fig. 2. Terminal node 1 showed the lowest
mean with 12 kg (Standard deviation – STD: 19 kg) and terminal node 8
farm basins in the Everglades Agricultural Area.

03A 04A 05A 06AB 07AB 08A 09A

0.03 0.07 0.12 0.31 0.16 0.03 0.04
0.005 0.009 0.02 0.05 0.02 0.004 0.004
0.02 0.04 0.06 0.15 0.11 0.02 0.03
0.05 0.09 0.18 0.49 0.19 0.03 0.04
2.4 2.0 3.0 3.7 3.3 2.2 2.5
7.1 5.1 10.6 16.8 15.5 6.7 8.9
0.28 0.44 1.03 3.36 1.34 0.17 0.27
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.28 0.44 1.03 3.36 1.34 0.17 0.27



Table 5
Summary 10-fold cross-validation results for single and committee tree models to
predict monthly phosphorus loads on 10 farms in the Everglades Agricultural Area.

Tree
models

Terminal
nodes

Cross-validated
relative error

Resubstitution
relative error

R2 Variable importancea

(only the important
ones are listed)

Single tree 29b 0.68 0.18 0.82 monthlyinsidehead
(100)

14c 0.70 0.22 0.77 irrdemand (94.6)
monthlyrain (90.0)
pumptorain (88.0)
percentfallflood
(71.2)
location (44.8)
percentcane (28.9)
monthlyoutsidehead
(27.9)
percentflood (22.4)
farmsize (8.9)
sub-basin (7.9)
irrpconc (7.3)
soildepth (6.4)
soils (2.7)

Committee
tree
(Bagging)

126b 0.44 0.11 0.88 monthlyoutsidehead
(100)

14c 0.51 0.18 0.82 monthlyinsidehead
(97.9)
irrdemand (74.6)
pumptorain (62.6)
percentcane (56.7)
irrpconc (45.5)
monthlyrain (44.8)
location (34.3)
percentfallflood
(29.0)
farmsize (21.9)
sub-basin (15.8)
percentflood (10.6)
soildepth (8.4)
soils (2.4)

Committee
tree
(ARCing)

106b 0.05 0.01 0.99 irrdemand (100)
12c 0.21 0.16 0.84 pumptorain (84.4)

monthlyrain (66.2)
monthlyinsidehead
(63.3)
percentfallflood
(58.4)
percentflood (53.2)
location (36.7)
irrpconc (34.6)
monthlyoutsidehead
(34.5)
percentcane (27.2)
farmsize (22.8)
sub-basin (22.6)
soildepth (19.3)
soils (5.6)

a Important primary splitters are in bold [marked only for single tree models].
b Model with smallest error (“best model”).
c Parsimonious model with less terminal nodes and less complexity.
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the largest mean with 1690 kg (STD: 597). This model shows the
dominance of the primary split variables thatwere usedmultiple times in
the tree to produce the tree branches. The right branches of the tree
predicted lowmeansofMPLwith terminal nodes9,10,11, and12;whereas
one of the center branches predicted highmonthly P loads (nodes 7, 8 and
9). For example, to predict mean MPL of 1640 kg (terminal node 7) the
following splitting rules have to be met in the following sequence:

percentfallflood b100 AND
location {“01A”,“06AB”, OR “07AB”} AND
irrdemand ≤−7.62 AND
pumptorain ≤1.2 AND
monthlyrain N254 AND
pumptorain N0.9.
3.3. Committee tree models in bagging mode to predict monthly
phosphorus loads

Bagging used repeated observations to run the bootstrap to
generate 250 tree models to predict MPL for all 10 farms. It improved
the prediction of MPL across the 10 farm basins with a 126 terminal
node CT model emerging as the best one with a CVRE of 0.44, RRE of
0.11 and R2 of 0.89 (Table 5). However, the complexity of the model
structure was high with hundreds of nodes and branches in the tree.
The CTb pruned to 14 terminal nodes showed comparable predictions
with a CVRE of 0.51, RRE of 0.18 and R2 of 0.81, but with much less
complexity. This suggests that a parsimonious CT model with less
nodes is likewise suited to predict MPL. The highly complex CT model
with hundreds of terminal nodes improved predictions of MPL at the
price of including additional variables that added less to the overall
prediction accuracy. The relative importance of variables for 250 trees
in Bagging mode yielded the following ranking list: monthlyoutside-
head (100)Nmonthlyinsidehead (97.9)N irrdemand (74.6)Npumptor-
ain (62.6)Npercentcane (56.7)N irrpconc (45.5)Nmonthlyrain (44.8)N
location (34.3).....Nsoils (2.4) (Table 5). This confirmed results from the
ST models illustrating that hydrologic variables have higher predictive
power to infer on MPL when compared to irrpconc, location and soil
properties. According to the CTb the farm and sub-basin locations
showed less control to influence MPL. In summary, the CTb improved
predictions of MPL across the 10 farms over ST. However, it was also
shown that the ST model seemed robust to relate independent to the
target variables. Committee tree models derived by Bagging may
provide excellent fit to relate input to output variables; however, run
the risk to over-parameterize if the tree is grown to full extent (126
terminal nodes). Pruned trees, such as the CTb with 14 terminal nodes
performed nearly equally well when compared to the full tree but are
likely more robust to predict MPL across all 10 farm basins.

3.4. Committee tree models in ARCing mode to predict monthly
phosphorus loads

ARCing improved the prediction of MPL within 10 farm basins by
reducing the sum of residuals square of 4,933,309 kg (initial tree) to
4,265,030 kg (committee tree). It used higher counts of repeated
sampling from the total population when compared to Bagging. The
predication capabilities in ARCing mode were striking and much
improved when compared to ST and CTb. The best model with 106
terminal nodes showed a CVRE of 0.05, RRE of 0.005 and R2 of 0.99
(Table 5). This indicates that the selected predictor variables werewell
suited to predict MPL but complex with hundreds of nodes, splits and
tree branches. A more parsimonious 12 terminal node CT was
identified with ARCing that had a CVRE of 0.21, RRE of 0.16 and R2 of
0.84. This CTa was similar to the ones presented above derived from
Bagging and ST modeling. The variable importance for the ARCing 106
node committee model showed the dominance of hydrologic proper-
ties that seemed to control MPL predications. However, the ranking of
variable importance was slightly different when compared to the
Bagging and ST models with: irrdemand (100)Npumptorain (84.4)N
monthlyrain (66.2)Nmonthlyinsidehead (63.3)Npercentfallflood
(58.4)Npercentflood (53.2)..... soils (5.6). The variable of importance
for the location of farms and sub-basins as well as farmsize played a
less important role to relate to MPL. In summary, ARCing performed
best out of all tested tree modes to describe the relationships between
input and target variable (MPL). The strength of the advanced
boosting optimization method (ARCing) improved the regression
modeling process to infer on MPL in the EAA.

3.5. Single tree models to predict monthly phosphorus unit area loads

The best ST regressionmodel to predict monthly P UAL (kg P ha−1)
had 10 terminal nodes, a CVRE of 0.71, RRE of 0.31 and R2 of 0.69. The



Fig. 2. Single tree regression model (14 terminal nodes) to predict monthly phosphorus loads in kilograms in farm basins in the Everglades Agricultural Area. The tree shows the
splitting rules on top of each node. Terminal nodes (Tnodes) are shown in gray and other nodes in white. Each node shows the node number, mean (ME) and standard deviation
(STD) grouped into a specific node.
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predictionswere not as good as for trees derived to predictMPL, but still
moderately strong. The competing variables that improved the tree
model were in the order: percentfallflood (100)Npercentcane (87.6)N
irrdemand (82.9)N location (69.1)Npumptorain (67.1)N ...... soils (2.9). A
large number of observations (549) were grouped into terminal node 6
with a mean of 0.06 kg P ha−1 (STD: 0.08), whereas much fewer
observations were grouped into terminal nodes with larger UAL values
(Fig. 3). For example, terminal node 1 (count: 5) had a mean UAL of
2.63 kg P ha−1 (STD: 1.32) and terminal node 10 (count: 7) a mean of
2.61 kg P ha−1 (STD: 1.27). This is in line with the skewness of the
distribution of UAL data. Regression trees are well suited to make good
predictions even with highly skewed input and output data.

The relative importance to predict UAL using primary splitters and
surrogates in ST mode were in the order: percentfallflood (100)N
percentcane (87.6)N irrdemand (82.9)N location (69.1)Npumptorain
(67.1)Nmonthlyinsidehead (63.0)Nmonthlyrain (40.0)Nmonthlyoutsi-
dehead (38.8) N...... soils (2.9) (Table 6). This ST model that predicted
monthly P UAL ranked the variables percentfallflood and percentcane
much higher than the ST model that predicted MPL. In contrast,
monthlyinsidehead that had much more importance in the ST MPL
prediction model showed much less importance to infer on UAL. The
variables irrdemand, location, and pumptorain seemed to have equal
importance in both ST models predicting MPL and UAL. As expected,
farm size did not have much importance to predict UAL. The UALmodel
was simpler when compared to the MPL tree model as indicated by the
number of primary split variables and only considered five variables
including percentfallflood (100), irrdemand (80.0), percentcane (62.5),
pumptorain (60.8), and location (31.0) as primary split variables of
importance. The contribution of surrogates to improve predictions of
UAL in ST mode seemed minor. This suggests that interaction between
monthlyinsidehead and monthlyoutsidehead, among other variable
interactions, contributed to the prediction success of UAL. A high
monthly irrigation demand indicates lowmonthly rainfall and thus little
need for drainage pumping. In contrast, a high negative irrigation
demand is associated with high need for drainage pumping.

The tree topology of the UAL ST model is shown in Fig. 3. The left
branch of the tree used the following splitting rules (conditions) to
predict high UAL of mean 2.64 kg P ha−1 (terminal node 1):

percentfallflood≤96 AND
irrdemand ≤−7.26 AND
percentcane ≤29 AND
irrdemand ≤−6.83.

The right branch of the tree used the following splitting rules to
predict likewise high UAL of mean 2.61 kg P ha−1 (terminal node 10):



Fig. 3. Single tree regression model (10 terminal nodes) to predict monthly phosphorus unit area loads in kg ha−1 in farm basins in the Everglades Agricultural Area. The tree shows
the splitting rules on top of each node. Terminal nodes (Tnodes) are shown in gray and other nodes in white. Each node shows the node number, mean (ME) and standard deviation
(STD) grouped into a specific node.
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percentflood N96 AND
pumptorain N0.79.

In contrast, very lowUAL ofmean 0.06 kg P ha−1 (terminal node 6)
were generated using the following conditional rules:

percentfallflood ≤96 AND
irrdemand N−7.26 AND
location is {“00A”,“02A”,“03A”,“04A”,“05A”, “07AB”,“08A”, OR
“09A”}.

3.6. Committee tree models in bagging mode to predict monthly
phosphorus unit area loads

Bagging improved the predictions of UAL when compared to the ST
regression model. However, the improvement was small as indicated
by the R2 that improved only 0.06 units. The best CTb model had 8
terminal nodes, a CVRE of 0.66, RRE of 0.25, and R2 of 0.75 (Table 6).
All CT generated with Bagging were parsimonious (i.e., had relatively
few terminal nodes) and did not show the extreme overfitting with
hundreds of terminal nodes that were generated with Bagging to
predict MPL. Similar to the STmodel to predict UAL the CTb confirmed
the importance of the variable percentfallflood to predict UAL. The
relative variable importance ranking for the UAL CTb was in the
following order: percentfallflood (100)N irrdemand (85.6)Nmonth-
lyoutsidehead (79.8)Npumptorain (68.8)Nmonthlyrain (50.4)N
monthlyinsidehead (42.7).......soils (0.0) (Table 6). The variable
percentcane was less important in the Bagging model than the ST
model.
3.7. Committee tree models in ARCing mode to predict monthly
phosphorus unit area loads

The ARCing model improved much over the ST regression model
shifting the R2 from 0.69 to 0.95. The best ARCing model had 29
terminal nodes, a CVRE of 0.08, RRE of 0.04, and R2 of 0.95. The CTa
was able to accurately predict UAL with a parsimonious underlying
model structure of 10 terminal nodes. The relative importance of
variables was in the following order: pumptorain (100)Npercentflood
(72.5)N irrdemand (70.0)Npercentfallflood (61.0)N irrpconc (57.5)N
monthlyrain (54.5)Nmonthlyoutsidehead (54.5)Nmonthlyinside-
head (43.4)N......soils (2.7) (Table 6). In the CTa model the variable
percentfallflood lost importance when compared to the Bagging
model with scores dropping from 100 to 61. But pumptorain hadmore
importance in the ARCing model with a score of 100 when compared
to the Bagging model (68.8). It is interesting to note that irrpconc was
much more important to predict UAL in the ARCing committee tree
(relative importance score: 57.5) when compared to the Bagging tree
(5.0). The variable percentflood with a relative importance score of
72.5 in the ARCing model showed much less importance in the
Bagging model with a score of 21.1. Overall, variables that characterize
geographic locations, such as sub-basin and location, had less
importance in the ARCing model. Variables with comparable
importance to predict UAL in ARCing and Bagging modes were
pumptorain, irrdemand, percentfallflood and monthlyrain suggesting
the importance of drainage/hydrology to predict UAL. The terminal
nodes of the ARCing CT (trees not shown) showed a much more even
distribution of observations grouped into different terminal nodes
when compared to the Bagging committee tree. This may have also



Table 6
Summary 10-fold cross-validation results for single and committee tree models to
predict monthly phosphorus unit area loads on 10 farms in the Everglades Agricultural
Area.

Tree
models

Terminal
nodes

Cross-validated
relative error

Resubstitution
relative error

R2 Variable importancea

(only the most
important ones
are listed)

Single tree 10b 0.71 0.31 0.69 percentfallflood
(100)
percentcane (87.6)
irrdemand (82.9)
location (69.1)
pumptorain (67.1)
monthlyinsidehead
(63.0)
monthlyrain (39.9)
monthlyoutsidehead
(38.8)
percentflood (34.8)
irrpconc (15.9)
sub-basin (8.7)
farmsize (7.7)
soildepth (7.5)
soils (2.9)

Committee
tree
(Bagging)

8b 0.66 0.25 0.75 percentfallflood
(100)
irrdemand (85.6)
monthlyoutsidehead
(79.8)
pumptorain (68.8)
monthlyrain (50.4)
monthlyinsidehead
(42.7)
percentflood (21.1)
location (17.5)
percentcane (14.2)
irrpconc (5.0)
sub-basin (4.3)
soildepth (4.3)
farmsize (1.6)
soils (0.0)

Committee
tree
(ARCing)

29b 0.08 0.05 0.95 pumptorain (100)
10c 0.26 0.22 0.78 percentflood (72.5)

irrdemand (70.0)
percentfallflood
(60.9)
irrpconc (57.5)
monthlyrain (54.5)
monthlyoutsidehead
(54.0)
monthlyinsidehead
(43.4)
location (18.6)
percentcane (14.2)
soildepth (13.0)
sub-basin (11.6)
farmsize (8.8)
soils (2.7)

a Important primary splitters are in bold [marked only for single tree models].
b Model with smallest error (“best model”).
c Parsimonious model with less terminal nodes and less complexity.
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contributed to the superior performance of ARCing over Bagging to
predict UAL.

4. Discussion

According to Walker (1999) P concentrations in the water column
of the least impacted Everglades are typically b10 μg L−1, which
resemble the proposed goal set by the Everglades Forever Act of 10 μg
L−1 TP for the Everglades Protection Area. The mean P concentrations
in this study were elevated with 0.12 mg P L−1 (1992–2002) and
comparable to those observed by Adorisio et al. (2006) with 0.13 mg P
L−1 (water years 1994–2005) in the EAA basin. Water flow velocities
are low in lowland drainage basins, but in the EAA, water flow
velocities in farm drainage canals can be high depending on canal
dimensions and canal water levels. This may lead to sediment re-
suspension and transport. Substantial amounts of P can be stored in
the sediment that is a magnitude of order higher when compared to P
in the water column (Reddy et al., 1999). These P retention
mechanisms include uptake and release by vegetation and micro-
organisms, sorption and exchange reactions with soils and sediment,
chemical precipitation in the water column, and sedimentation and
entrainment. In this study the average MPL on sugarcane farms was
40.8 kg (3.3–94.3 kg), whereas MPL on mixed-used farm drainage
basins was 4.5 times higher with 188.6 kg (15.8–357.1 kg). The same
trend was confirmed by monthly UAL on sugarcane farms averaging
0.07 kg P ha−1 (0.18–0.03 kg P ha−1), whereas mean UAL were much
higher onmixed-use farmswith 0.32 kg P ha−1 (0.12–0.69 kg P ha−1).
These results are not surprising given the higher P fertilizer
requirement and more intensive water management that crops
besides sugarcane generally need. On sugarcane farm basins UAL
were controlled mainly by pumptorrain, irrdemand, monthlyrain and
monthlyoutsidehead, whereas UAL on mixed-use farms were con-
trolled by monthlyrain, pumptorain, percentcane, and irrpconc
(ARCing mode). Rice et al. (2002a,b) observed average baseline UAL
on sugarcane farms (1992) of 1.25 kg P ha−1 (0.51–2.47 kg P ha−1) and
2.82 kg P ha−1 (0.51–5.75 kg P ha−1) during a BMPmonitoring period
(1994–1998) in the EAA. On mixed-vegetable farm drainage basin in
the EAA they found 5.60 kg P ha−1 (baseline) and 4.79 kg P ha−1 (BMP
period), and on a sugarcane-rice farm drainage basin 1.29 kg P ha−1

(baseline) and 1.43 kg P ha−1 (BMP period), respectively. Daroub et al.
(in press) observed a decreasing temporal trend (1992–2002) in flow-
weightedmonthly P concentrations and P loads on five out of ten farm
drainage basins in the EAA with four of these basins being sugarcane
monoculture. Changes in BMP implementation in the EAA since 1995
have resulted in average annual P load reductions of N50%, compared
with baseline values (Daroub et al., 2004).

Factors that describe cropping practices (percentcane, percentfall-
flood, and percentflood) were less important to predict MPL than UAL.
In CTb mode to predict MPL the importance of cropping practices
declinedwith percentcane (56.7), percentfallflood (29.0), and pecent-
flood (10.6); and in CTa mode with percentfallflood (58.4), percent-
flood (53.2), and percentcane (27.2). Cropping practices were more
pronounced to infer on UAL with percentfallflood (100), percentflood
(21.1), percentcane (14.2) in CTb mode; and percentflood (72.5),
percentfallflood (60.9), and percentcane (14.2) in CTa mode.

In our study rainfall ranked moderately high across all tree models
with variable importance of 44.8 (CTb) and 66.2 (CTa) to control MPL;
and 50.4 (CTb) and 54.5 (CTa) to predict UAL. This confirms the
importance of rainfall relative to P loads emphasized earlier by Rice
et al. (2002a,b). Farm-specific variables (farm size, location, and sub-
basin) did not impart major inferences to MPL and UAL. This suggests
that overall farm-specific differences are of less importance to control
P loads in the EAA basin.

Our results derived from tree-based modeling suggest that
hydrologic/water management properties are the major controlling
variables to predict MPL andmonthly P UAL in the EAA. The CTbmodel
selected monthlyoutsidehead, monthlyinsidehead, irrdemand and
pumptorain as most important variables; and the CTa model
irrdemand, pumptorain, monthlyrain, and monthlyinsidehead to
infer on MPL, respectively. Other sets of hydrologic/water manage-
ment predictor variables were prominent to predict UAL with highest
variable importance including percentfallflood, irrdemand, month-
lyoutsidehead, and pumptorain (CTb model), and pumptorain,
percentflood, irrdemand and percentfallflood (CTa model). Walker
(1999), Stuck et al. (2001) and Diaz et al. (2006) emphasized that the
magnitude of P loads is dependent on a combination of factors
including nutrient loading, cross-sectional area (dimension) of canals
and ditches that controls drainage volume, and pumping activities.
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Izuno and Rice (1999) showed that particulate P (PP) accounted for
20% to 70% of the TP exported from EAA farms, subject to various
cropping practices and rainfall characteristics, suggesting that the
major mechanism for P is through sediment transport. They also
showed that spikes in TP and PP loads coincided. In contrast, Stuck
et al. (2001) indicated that farm canals in the EAA have a significant
impact on TP loads discharged from agricultural farms, whereby the
bulk of exported PP is sourced from biotic material growing in farm
canals. They also showed that P adsorption–desorption was relatively
unimportant for the high organic content particulates encountered in
the EAA in field ditches.

The ratio between pumping to rainfall was identified as very
important to predict MPL with high relative importance in ST (88.0),
CTb (62.6), and CTa (84.4) models. Similarly, the relative importance
of pumptorain was very high to predict UAL in ST (67.1), CTb (68.8),
and CTa (100) modes. The relationship between pumping activities
and P loads was investigated by Stuck et al. (2001) who found that
farm pumping events produced specific total suspended solids (TSS)
profiles in channels in the EAA with highest TSS concentrations
coinciding with the beginning of pumping and then steadily declining
followed by relatively low levels for the duration of the pumping event
(Stuck et al., 2001). Interestingly, total TSS loads showed an inverse
relationship with P loads across all farm pumping events during the
monitoring period in the EAA (Stuck et al., 2001).

The pronounced structure of ditches and canals in this low relief
landscape of the EAA provides preferential hydrologic pathways that
seem to have a major impact on P load export from farm drainage
basins as indicated by all tree models (ST, CTa and CTb). In contrast,
field soil characteristics such as soil depth and soil type did not seem
to impart major control on P loads, which may have been due to the
relative homogeneous distribution of soils across the EAA that did not
show major differences in soil characteristics. This can be confirmed
by Stuck et al. (2001) who observed 9 to 20 times higher P content in
ditch sediment samples when compared to field soil samples with 700
to 750 mg kg−1 suggesting the dominant role of ditches/canals to
modulate drainage on P loads. They found that P content of the
exported suspended solids and P content of macrophytes corre-
sponded closely suggesting that exported solids are sourced from
macrophytes rather than sediments (Stuck et al., 2001). An earlier
study by Fiskell and Nicholson (1986) on 11 different fields under
various crop management practices observed P content of the top
5 cm profile from 298 to 814 mg kg−1, averaging 496 mg kg−1. In the
same study, the P content of field ditch sediments, and of the canal
sediment samples not associated with macrophytes, was slightly
higher ranging from 500 to 900 mg kg−1.

5. Conclusions

Overall, tree-based modeling was successful in identifying
relationships between P loads and environmental predictor variables
on 10 farms in the EAA indicated by high R2 and low prediction
errors. Committee trees in ARCing mode generated the best
performing models followed by CTb and ST to predict MPL as
well as UAL. Tree-based models had the ability to analyze complex,
non-linear relationships between P loads and multiple variables
describing hydrologic/water management, cropping practices, soil
and farm-specific properties within the study area. Hydrologic/water
management variables showed the strongest relationships to MPL
and UAL. A long-term BMP implementation program has reduced P
loads from cropped fields to ditches, but it is not clear how much P is
still retained within the EAA drainage basin. Given the importance of
hydrologic preferential pathways (ditches/canals) in this lowland
drainage basin, which imparts major control on P loads attention has
to focus on mechanisms to either retain as much P within the system
or reduce P export along these drainage pathways. The measured P
loads in the EAA (1992–2002) do not resemble historic, oligotrophic
conditions andmay pose a future threat to the restoration of the Greater
Everglades. However, agricultural use imposes some higher nutrient
status when compared to areas not impacted by human management.
Combining BMPs and stormwater treatment areas has the potential to
reduce P loads to 10 ppbwhich is the restoration goal of the Everglades.
Expected land use shifts from sugarcane to more natural wetland
ecosystems thatwill impact about 27% of the EAA in the near futuremay
come at the risk of accelerating re-suspension and transport of P
currently retained within the EAA. It will be critical to continue the
monitoring of P concentrations and drainage from farm basins, which
can be complemented by tree-based analysis of P data.
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