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Summary

Ecological restoration plans in the Florida Everglades require detailed information about the status and change

of thenutrient contentof the soil.The soil totalphosphorus (TP)content isofparticular importanceas the system

is naturally P limited and the TP enrichment has led to changes in thewetland vegetation communities. Oneway

to provide the relevant information is by geostatistical prediction from sampled data. However, conventional

geostatisticalmodels assume thatpropertiesbeingmonitoredare realizationsof second-order stationary random

functions. The assumption of second-order stationarity is not appropriate for soil TP in Water Conservation

Area1 (WCA-1)of theFloridaEvergladesbecause themeanandvarianceof soilTPare larger at sites adjacent to

the canals which bound WCA-1 and deliver P to the system than at sites in the interior of the region.

We develop a novel linear mixed-model framework for spatial monitoring of a property for which this

assumption is not valid. Specifically we use this non-stationary model to map the status and change of TP

within WCA-1 from surveys carried out in 1991 and 2003. We fit the parameters of the model by residual

maximum likelihood (REML) and compare the effectiveness of this non-stationary model with the con-

ventional stationary model.

Conventional second-order stationary models fail to represent accurately the large uncertainty in pre-

dictions of TP adjacent to the canals. The non-stationary model predicts an invading front of P entering

the interior of the region which is not evident in the predictions from the stationary model. Tests on the

log-likelihood and the standardized squared prediction error of the fitted models provide further evidence

in favour of the non-stationary model.

The sampling intensity required to ensure a certain precision of TP predictions varies across WCA-1

with the variance of TP. Therefore we apply a spatial simulated annealing optimization algorithm to

design future monitoring surveys based upon our non-stationary model which ensure that the status

and change are efficiently and effectively predicted across the region.

Introduction

Spatial monitoring of non-stationary soil properties

The standard geostatistical approach to mapping the change

that occurs between surveys of non-colocated observations

assumes that the surveys are realizations of coregionalized and

second-order stationary random functions (Papritz & Flühler,

1994).We denote the random functions at each time as Z1(x) and

Z2(x), where x denotes location. Random functions Zi(x) i ¼ 1,

2 are jointly second-order stationary if the mean value of each

function is constant across the study region, i.e.

E ½ZiðxÞ � Ziðx þ hÞ� ¼ 0; "x; ð1Þ

and if the auto- and cross-variograms are functions of lag h

only, i.e.

E ½fZiðxÞ � Ziðx þ hÞgfZjðxÞ � Zjðx þ hÞg�
¼ 2gijðhÞ; "x; ð2Þ

where i ¼ 1, 2; j ¼ 1, 2; h is a lag vector that represents the sep-

aration in space between a pair of observation sites and gij(h)

is the auto-variogram of Zi(x) if i ¼ j or the cross-variogram of

Zi(x) and Zj(x) if i 6¼ j.

Papritz & Flühler (1994) predict the change in the property by

cokriging the temporal differences Z2(x) – Z1(x) where the cor-

egionalization for Z1(x) and Z2(x) is represented by a linear

model (LMCR). They fit the LMCR to point estimates of theCorrespondence: B. P. Marchant. E-mail: ben.marchant@bbsrc.ac.uk
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auto- and cross-variograms — or pseudo cross-variogram

(Clark et al., 1989; Myers, 1991) if the surveys do not observe

the property at the same sites — of Z1(x) and Z2 (x) under con-

straints which ensure that the coregionalization structure is pos-

itive definite. Fitting such a model is not trivial since the

number of variogram parameters is greater than in the univari-

ate case and the precision of the point estimates vary over dif-

ferent lags and at different times.

Stationarity is a property of the random functions Zi(x) and

not of the observed data. However, exploratory analysis of the

observed data can indicate that the assumption of stationarity

is not plausible. For example, initial analyses of surveys of

total phosphorus (TP) content in Water Conservation Area 1

(WCA-1) suggest that both conditions of second-order statio-

narity may be invalid. The assumption of a stationary mean

(Equation 1) can be relaxed if the soil property is represented

by a linear mixed model (Lark et al., 2006). This allows the

mean of each Zi (x) to vary across the study region or accord-

ing to an auxiliary property. The parameters of the linear

mixed model may be fitted with minimum bias by residual

maximum likelihood (REML). Marchant & Lark (2007) dem-

onstrated that LMCRs could be included in a linear mixed

model and the parameters may be fitted by REML. The maxi-

mization of the residual likelihood function is a rigorous sta-

tistical criterion for fitting a LMCR which fully accounts for

the spatial and temporal correlations between observations.

Another advantage ofREML is that because it ismodel-based

it allows appropriate parametric variance models to be fitted in

which the assumption of stationarity in the variance (Equation

2) can be relaxed. Lark (in press) explored simple methods of

modelling the spatial structure of a single property with a vario-

gram that varied along a transect. He assumed that the spatial

correlation of the property was fixed across the transect but the

variance varied. He divided the transect into two sub-transects

along which the property had different constant variances. The

parameter defining the boundary between the two sub-transects

was fitted byREMLalongwith the other variogramparameters.

In this paper we extend this approach to include two-

dimensional study regions andmultiple spatially correlated prop-

erties via the LMCR. Thus the resulting non-stationary linear

mixed model is suitable for the general problem of monitoring

properties for which neither stationarity assumption is valid.

Monitoring soil properties in the Florida Everglades

Effective ecosystem restoration to mitigate environmental deg-

radation requires a sound and thorough survey of the state of the

ecosystem prior to the implementation of the restoration plan,

and a continual monitoring of the system as the restoration

measures take effect.

The Florida Everglades is an example of a system in which the

ecosystem degradation due to hydrological and nutrient impacts

has led to the implementation of large-scale and long-term resto-

ration plans. Restoration plans in the Florida Everglades are

designed tomaintain and restore characteristic landscape features

such as the patterns of indigenous wetland vegetation communi-

ties (e.g. tree islands, ridge and sloughcommunities).Twoprimary

drivers in establishing the indigenous Everglades ecosystems are

hydrology and soil nutrient content. TheEverglades is historically

a nutrient-limited system, particularly P-limited, and the ecosys-

tem has evolved within these constraints (Davis, 1991). Nutrient

influxes from neighbouring agriculture have increased the soil P

content. Where the concentration of soil P has exceeded 450–500

mg kg–1 the result is a change in composition of plant communi-

ties with a shift to a predominance of cattail (Typha spp.). These

visible changes in the plant community composition have been

linked to changes in the soil nutrient status.

Restoration consists of diversion or treatment of the agricul-

tural runoff and restoration of the historical hydrological pat-

terns. As part of the restoration, the baseline spatial patterns of

soil nutrient content need to be established. This has been done

repeatedly for sections of the Everglades such as WCA-1

(Newman et al., 1997; Corstanje et al., 2006) and WCA-2a

(DeBusk et al., 2001; Rivero et al., 2007). All of these studies

assumed that the soil properties being mapped were second-

order stationary. This study is concerned with mapping the

change in soil TP within WCA-1 (Figure 1) based upon

surveys (Figure 2) carried out in 1991 (Newman et al., 1997)

and 2003 (Corstanje et al., 2006). Phosphorus is known to be

delivered to WCA-1 by the canals which bound the area, lead-

ing to different patterns of TP variation adjacent to these

canals from those in the interior of the region.

Monitoring TP within a non-stationary framework

The different patterns of TP variation adjacent to the bounding

canals and within the interior of WCA-1 invalidate the assump-

tionof stationarity. Thereforewemodel TPwithinour novel non-

stationary framework in a manner that accounts for variation in

the means of Z1(x) and Z2(x) and the auto- and cross-variograms

of Z1(x) and Z2(x). Unlike Lark’s (in press) case study the obser-

vations of TP are made within a two-dimensional region. There-

fore it is more complicated to divide this region into sub-regions

within which the variance of TP is stationary. We compare two

approaches. The first divides the region into two sub-regions

based upon the shortest distance to a bounding canal. The sec-

ond approach divides the region into two sub-regions based on

auxiliary information: specifically, an interpolated map of Typha

spp. coverage. In both cases a parameter defining the boundary

between the two sub-regions is fitted by REML.

We use the estimated model in the best linear unbiased pre-

dictor (BLUP) to predict the concentration of TP at unsampled

sites on each survey date and to predict the change in TP

concentration at these sites and the corresponding prediction

variances. We compare these predictions with those from a

second-order stationarymodel in terms of statistical diagnostics

and properties of the predicted maps.
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Future TP surveys will be required to assess the effectiveness

of restoration strategies. The optimal configuration of sampling

locations for these surveys will depend upon the coregionaliza-

tion structure of TP. We assume that this structure will remain

broadly similar to themodel fitted here anduse thismodelwithin

a spatial simulated annealing algorithm (van Groenigen et al.,

1999) to select the configuration of sampling locations which

minimize the mean root prediction variance across WCA-1.

In summary, the aim of this paper is to devise a linear mixed

model framework to represent the spatial variation of properties

such as TP inWCA-1which are non-stationary in themean and/

or variance. Thismodelmay then be used to predict the property

at unsampled locations or to optimize the location of observa-

tions in future surveys.

Theory

Geostatistical prediction of non-stationary variables

It is generally well understood that the assumption of stationar-

ity in the mean of a soil property can be relaxed by representing

the property as a linear mixed model

z ¼Mb þ h; ð3Þ

where z is a vector of n observations of the property, M is an

n � p design matrix containing values of p auxiliary variables

or the fixed effects, b is the length p vector containing the co-

efficients of the fixed effects and h ; Nð0;VÞ is a vector of

spatially correlated and normally distributed random residuals

with covariance matrix V. In this paper we will assume that

Figure 1 Map of Florida indicating position of WCA-1.
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the variogram of the residuals is isotropic (i.e. is a function of

the length of lag vector h but not the direction) and may be

modelled by a nested nugget and exponential model,

gðhÞ ¼ c0 þ c1exp

�
�h

a

�
; ð4Þ

where h is the length of h, c0 is the nugget variance, c1 the par-

tial sill variance and a a distance parameter. Under this

assumption the residuals are second-order stationary, and the

covariance function exists and can be obtained from the vario-

gram parameters, a ¼ ðc0; c1; aÞ.
If a and b are estimated by the method of moments then the

a estimate is biased due to the uncertainty in estimates of b.

This bias may be reduced if the parameters are estimated by

REML (Patterson & Thompson, 1971) and this approach is

becoming more widespread among environmental scientists

(e.g. Lark et al., 2006). The method reduces bias in the esti-

mated variogram parameters by projecting z into a residual

space where all the fixed effects have zero expectation. This

projection, denoted S, is a function of the design matrix M

with SM ¼ 0 and Rank(S) ¼ n – Rank(M). The negative log-

likelihood of the projected data Sz is

lRða;M; SzÞ ¼ CðMÞ � 1

2
lnjVj � 1

2
lnjMTV�1Mj

� 1

2
ðz �Mb̂ÞTV�1ðz �Mb̂Þ; ð5Þ

where CðMÞ ¼ 1

2
fn � RankðMÞglnð2pÞ � ln jMMTj and ele-

ment (r, s) of V is given by

Vðr; sÞ ¼ c0 þ c1 � gðhrsÞ; ð6Þ

for observations r and s separated by hrs when g(h) is a boun-

ded (i.e. second-order stationary) variogram function. A

numerical algorithm is used to find the a vector which mini-

mizes Equation (5). For each candidate a the covariance

matrix V is used to estimate b by generalized least squares

b̂ ¼ ðMTV�1MÞ�1MTV�1z: ð7Þ

Having fitted a linear mixed model it can then be substituted

into the BLUP to form the empirical best linear unbiased pre-

dictor (EBLUP) and predict z at unsampled locations. The

BLUP including fixed effects is often referred to as universal

kriging (Webster & Oliver, 2007). If xp is a vector of N unsam-

pled target points then the EBLUP estimate for z is

ẑðxpÞ ¼ ðMp � VpoV�1MÞb̂ þ VpoV�1z; ð8Þ

where Mp is the design matrix for the prediction sites and Vpo

is the covariance matrix of the observed z with the values at

the target sites.

The covariance matrix of the prediction errors is given by

C ¼ ðMp � VpoV�1MÞG�1ðMp � VpoV�1MÞT

þ Vpp � VpoV�1VT
po; ð9Þ

where G ¼ MTV–1M and Vpp is the covariance matrix for z at

the target sites. Elements of Vpp and Vpo are calculated in the

same manner as V (Equation 6).

Recently, Lark (in press) proposed that this approach could

be extended to properties where the residuals are non-stationary

in the variance by scaling the elements of a second-order station-

ary covariance matrix Q such that V ¼ RQR for diagonal

matrix R. Such a covariance matrix V is positive definite if Q is

positive definite and the elements of R are real valued. This

form of covariance matrix allows the variance of z to vary

across the study region. Lark (in press) tested this approach on

a survey of the slope of a soil surface along a transect and

Figure 2 Locations of observations in 1991

(left) and 2003 (right).
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demonstrated that the random variation in the slope may be

effectively modelled if a boundary on the transect is fitted and

the elements of R take one of two values depending on which

side of the boundary they lie. However R can arise from any

parametric model such as one which uses an auxiliary variable.

The parameters of such a model, including the boundary posi-

tion, may be fitted by REML. Similarly the EBLUP may be

applied with Vpo replaced by RpQpoRo and Vpp replaced by

RpQppRp in Equations (8) and (9).

Marchant&Lark (2007) showed that theREML-EBLUP can

be extended to Nu coregionalized properties by including

observations of the Nu properties in the z vector and pre-

dictions of the Nu properties in the ẑ vector. The corresponding

covariance matrices must account for the cross-correlation

between the different properties. In this study we assume that

each auto- and cross-variogram can be represented by a nested

nugget and exponential model and we denote the parameters

of auto-variogram i by c0
i,i, c1

i,i and ai,i and the parameters of

the cross-variogram between variables i and j by c0
i,j, c1

i,j and

ai,j. Element (r, s) of the second-order stationary covariance

matrix V is given by

Vrs ¼ ci; j
0 þ ci; j

1 � gi; jðhrsÞ; ð10Þ

where the rth entry of z is an observation of zi (x), the sth entry

of z is an observation of zj (x), and hr,s is the lag separating the

rth and sth observations.

Sufficient conditions to ensure that the covariance structure is

positive definite are that the auto- and cross-variograms are all

represented by the same authorized model such as the nested

exponential and nugget model (Equation 4), the spatial para-

meters for each auto- and cross-variogram are equal and

c1;20 � ðc
1;1
0 c2;20 Þ; ð11Þ

c1;21 � ðc
1;1
1 c2;21 Þ: ð12Þ

In this study the coregionalized properties are the same prop-

erty measured at different times. We can predict the change in

this property at site x0 as the difference between the EBLUP

predictions at each time, i.e.

ẑcðx0Þ ¼ ẑ2ðx0Þ � ẑ1ðx0Þ; ð13Þ

where ẑc denotes the prediction of the change and ẑ1 and ẑ2
denote the predictions of the property at each time which we

calculate from Equation (8).

The prediction variance for the change is given by

s2cðx0Þ ¼ s21ðx0Þ þ s22ðx0Þ � 2Cov ½̂z1ðx0Þ; ẑ2ðx0Þ�; ð14Þ

where s2c(x0) is the prediction variance of the change, s2i (x0) is
the prediction variance of ẑðx0Þ at time i and Cov½ẑiðx0Þ; ẑjðx0Þ�
is the prediction covariance between the predictions of z at

times i and j. The s2i (x0) and Cov½ẑiðx0Þ; ẑjðx0Þ� values can be

extracted from the prediction covariance matrix C (Equation 9).

In this paper we further extend this approach by using the

REML-EBLUP to predict the change in properties with non-

stationary residuals by assuming that the covariancematrixmay

be written V ¼ RQR for second-order stationary covariance

matrix Q and diagonal matrix R.

Selection of covariance models and fixed effects

Once a general linear mixed model has been fitted to the data we

can decide whether each covariance parameter or fixed effect

within the model is necessary by comparing the full fitted model

with nested sub-models by means of likelihood ratio tests.

Details of these tests are given in the Appendix.

Cross-validation of models

We cross-validate our models via the standardized square pre-

diction error

uðxiÞ ¼
fzðxiÞ � ẑ � ðxiÞg2

s2ðxÞ ; ð15Þ

where ẑ � ðxiÞ is the EBLUP prediction of z at xi when z(xi) is

removed from the observation vector z. The models under

investigation are fitted to the full observation vector. If the

prediction variance correctly describes the uncertainty in the

EBLUP then �u, the expectation of u over all observation loca-

tions, is 1.0 and assuming normally distributed prediction

errors, the expected value of ~u, the median of u, is 0.455. Lark

(2000) suggests that ~u should be used to validate fitted models

because it is more robust to outliers that may be present. We

can deduce confidence limits on ~u by simulating multiple real-

izations of the fitted linear mixed model by Cholesky factor-

ization (Deutsch & Journel, 1998) and then calculating ~u for

each realization.

Optimization of sampling schemes

Van Groenigen et al. (1999) suggested that if the covariance

structure of a property is known then the configuration of the

sampling sites for prediction of this property can be optimized

by spatial simulated annealing (SSA). Spatial simulated

annealing is a stochastic algorithm which finds the elements of

X which minimise some objective function f(X). In this con-

text X contains the sampling locations and f(X) is the mean of

the root prediction variance across the study region when

observations are made at locations X. Van Groenigen et al.

(1999) found that for second-order stationary variables such

an algorithm led to sampling locations being evenly spread

across the study region. Brus & Heuvelink (2007) explored

how optimal sampling schemes changed when fixed effects

were included.
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Methods

The survey

The original Everglades was a contiguous system in which water

flowed north to south by continuous sheet flow (Parker, 1974).

The ecosystem remnant is reduced in size and fragmented into

managed impoundments (water conservation areas) and the

Everglades National Park, with water moving north to south

through a series of canals. Water Conservation Area 1 is the

northernmost conservation area. Figure 1 shows a map of

WCA-1. It is bounded by a 92-km levée and an internal peri-

meter canal. This area forms part of the Loxahatchee National

Wildlife Refuge (LNWR) and contains much of the ecosystem

features desired under the Greater Everglades restoration plans

such as wet prairies, sloughs and sawgrass communities and tree

islands. As of 1991, the cattail areas had increased to covermore

than 10% of the area from < 1% surveyed in the 1960s. For

a more detailed description on the LNWRwe refer the reader to

Corstanje et al. (2006) or Newman et al. (1997).

The spatial distribution of nutrients within WCA-1 is greatly

influenced by the pattern of water flow through and around the

area. The agricultural runoff water from the Everglades Agri-

cultural Area (EAA)was previously pumped into the water con-

servation area. The EAA is located to the north and west of

WCA-1 and these were the main entry points of the nutrient-

laden runoff water. This water was pumped into the boundary

canals, with no hydrological boundaries between them and the

interior of the marsh. The overall direction of the water move-

ment is to the south down a slight gradient of 2–3 cm km–1. In

addition the internal perimeter canal drains the northern end

and tends to direct inflow around the area rather than through

it, as the geology of the interior area is slightly dome-shaped.

The introduction of the runoff water is primarily into the

boundary areas of WCA-1 and less into the interior. In low-

water periods, runoff water flows south through the canals

and does not penetrate the marsh interior. However, the

boundary region is influenced by hydraulic and nutrient loads

from surrounding canals. In high-water periods there is

increased pumping, and rainfall and canal water enters the

interior marsh. Most of the water exits the area through

a series of water control structures on the southern boundary.

As a result of this dome shape, the areas of P enrichment do

not conform as clearly to enrichment gradients as has been

reported for the adjacent area, WCA-2a (DeBusk et al., 2001),

but are slightly more patchy. In 2001, EAA runoff was either

treated or diverted.

Three surveys of TP content in WCA-1 have been made. In

1987 Richardson et al. (1990) collected 100 soil samples

throughout WCA-1. A second survey of 90 soil samples was

made by Newman et al. (1997) in 1991. The samples were

located where the 1987 survey suggested there was a large spa-

tial gradient in TP. A third survey was made at 120 sites in

March 2003 (Corstanje et al., 2006). These sites were chosen

by stratified random sampling, with the strata based upon the

previous surveys and historical, ecological and hydrological

data. The 2003 survey also recorded the proportion of cover-

age by different vegetation types at each site.

The factors described above tend to lead to larger TP content

in regions adjacent to the canals. In particular, Newman et al.

(1997) and Corstanje et al. (2006) observed the largest TP con-

tent adjacent to the canal on the western boundary. Newman

et al. (1997) observed that Typha spp. incursions tended to

occur in these regions where the TP content was largest.

A non-stationary monitoring framework

We propose to model TP in WCA-1 by treating each survey as

a realization of a non-stationary coregionalized random func-

tion. We express our monitoring framework as a linear mixed

model

z ¼Mb þ h; h ;Nð0;V ¼ RQRÞ; ð16Þ

The vector z contains observations from the 1991 and 2003

surveys. The data collected in each year are strongly positively

skewed (skew ¼ 3.0 for 1991 and skew ¼ 1.96 for 2003). Con-

ventional geostatistical models assume that the realizations of

the random function have a normal distribution and hence are

not skewed. The introduction of a non-stationary mean and/or

variance into the geostatistical model may account for the pos-

itive skew but motivated by a desire to use as simple a model

as possible we log-transform the data prior to our analysis.

After transformation of the data the skew is reduced to 1.65

for 1991 and 0.92 for 2003. We assume that for each survey

the transformed TP content is non-stationary but WCA-1 can

be split into two regions within which the variance of the

transformed TP content is stationary. Region A is in the inte-

rior marsh where the water input is predominantly rainwater.

Region B is adjacent to canals, from which it receives nutrient-

enriched water. We assume that the spatial correlation across

WCA-1 may be described by a nested nugget and exponential

function but that the variance in Region A is scaled by a factor

ri for survey i. Thus Q is a second-order stationary covariance

matrix and R is a diagonal matrix with entry r1 if the corre-

sponding observation is from the first survey and lies in

Region A, r2 if the corresponding observation is from the sec-

ond survey and lies in Region A and 1 if the observation lies in

Region B.

If the spatial extent of regions A and B are known the para-

meters which determine the covariance matrix V may be fitted

by REML. However the problem of deciding the extent of

each area is not trivial. The observations considered by Lark

(in press) were made along a transect and he assumed that all

observations made on one side of a fitted boundary were in

region A and the others were in region B. This boundary

parameter was fitted by REML. Our problem is more
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complicated because we are investigating a two-dimensional

region rather than a transect. We test two different ap-

proaches to determining each region. The first is similar to

Lark’s (in press) approach in that we assume that all obser-

vations within distance d* of the bounding canal are in

region B whereas the other observations are within region A.

We denote the shortest distance from a site to a bounding

canal by d and assume that the variance of TP for d < d* is

scaled by a factor ri.

The second approach uses auxiliary information about Typha

spp. incursions. Typha spp. coverage (% coverage) was recor-

ded at the observation sites in 2003. We fit a second-order sta-

tionary nested nugget and exponential model to these

observations by REML and predict the Typha spp. coverage at

unsampled locations by the EBLUP. The resulting map of

Typha spp. coverage, which we denote t, is shown in Figure 3.

We assume that Regions A and B are defined by a threshold t*

on the Typha spp. coverage and that locations with t < t* lie in

Region A. We refer to these two models as the non-stationary

distance and non-stationary Typha spp. models.

Each of these non-stationary covariance models has ten

parameters. Seven of the parameters describe the LMCR, two

parameters describe the scaling of the variance in the different

regions for each survey and one parameter describes the extent

of Region B. These parameters may be fitted by REML but

minimization of the negative log residual likelihood function

(Equation 5) is computationally demanding due to the highly

nonlinear relationships between the parameters and the negative

log residual likelihood function and due to the constraints on the

parameters which ensure that Q is positive definite. Here we

apply a stochastic minimization algorithm called simulated

annealing (Pardo-Igúzquiza, 1997). However the complexity

of the problem means that this does not always converge to

the global minimum and therefore we apply the algorithm ten

times and use the best solution.

We may also expect the mean value of TP to be different

within the two regions. It is not possible to fit a model for which

the fixed effects vary with t* or d* by REML unless t* or d* is

known. Otherwise the projection of the data S would vary

with parameters that are being fitted. Thus we only fit d* and

t* for models which are stationary in the mean. We then

assume the same values for models which are non-stationary

in the mean. It seems unrealistic for the mean TP to jump

abruptly at the boundary between Regions A and B so when

the mean is non-stationary we assume that it is stationary in

Region A, that the mean at the boundary between Regions A

and B is equal to the mean within Region A and that the mean

increases linearly within Region B with decreasing distance to

a canal. Specifically each row of the non-stationary design

matrix M for the distance model is equal to

½1 0 dA 0� if i ¼ 1 and d< d�;
½1 0 0 0� if i ¼ 1 and d � d�;
½0 1 0 dA� if i ¼ 2 and d< d�;
½0 1 0 0� if i ¼ 2 and d � d�;

ð17Þ

where i ¼ 1 if the observation was made in 1991 and i ¼ 2 if

the observation was made in 2003 and dA is the shortest dis-

tance from the observation to a site in Region A. The design

Table 1 Log likelihood tests for models with subregions determined by

distance to boundary

Comparison d. of f.a D Dcrit (P ¼ 0.01)b

M1 v M2 2 13.56 9.21

M4 v M5 2 0.10 9.21

M2 v M5 simc 29.83 10.43

ad. of f.: number of degrees of freedom.
bDcrit (P ¼ 0.01): the critical value of D at P ¼ 0.01 level.
csim: critical value of D has been determined by simulation.

Table 2 Log likelihood tests for models with subregions determined by

Typha spp. proportion

Comparison d. of f.a D Dcrit (P ¼ 0.01)b

M1 v M2 2 2.29 9.21

M4 v M5 2 11.19 9.21

M2 v M5 simc 37.54 9.80

ad. of f.: number of degrees of freedom.
bDcrit (P ¼ 0.01): the critical value of D at P ¼ 0.01 level.
csim: critical value of D has been determined by simulation.

Figure 3 Interpolated map of Typha spp. coverage within WCA-1 in

2003.
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matrix for the Typha spp. model is identical with the threshold

d* replaced by t*. Each of these design matrices can be parti-

tioned into M ¼ [M0 M1] where M0 is the stationary mean

model, i.e. the first two columns of M. Projection S corre-

sponds to fixed effects matrix M and projection S0 corresponds

to fixed effects matrix M0.

Thus for each approach we have designed a linear mixed

model with non-stationary mean and variance. We refer to this

model as M1 and we estimate its parameters by minimizing the

likelihood function lRðaF;M; SzÞ. Here aF denotes that the

threshold parameter (d* or t*) in a is fixed since it cannot be

estimated for a non-stationary mean. The fixed value of the

threshold parameter is that fitted to a model that is stationary

in the mean and non-stationary in the variance (M2 below). In

the interests of parsimony we wish to confirm that non-

stationary in both the mean and variance is required. There-

fore we compare M1 with M2, a model where the mean is

stationary but the variance is non-stationary. This model is fit-

ted by minimizing lRða;M0; S0zÞ. This comparison is achieved

using the likelihood ratio statistic defined in Equation (21)

which requires us to fit model M3 with likelihood function

lRðaF;M0; SzÞ. Furthermore, we compare model M2 with

a model that is stationary in both the mean and the variance

which we denote by M5 and fit by minimizing lRða0;M0; S0zÞ.

Table 3 Fitted linear mixed model parameters for log(TP) using the distance approach

Model M1 M2 M3 M4 M5 M6

c0
1,1/(log(mg kg–1))2 0.22 0.28 0.20 0.08 0.09 0.08

c1
1,1/(log(mg kg–1))2 0.14 0.25 0.12 0.02 0.09 0.09

c0
2,2/(log(mg kg–1))2 0.09 0.15 0.09 0.06 0.05 0.05

c1
2,2/(log(mg kg–1))2 0.08 0.26 0.07 0.04 0.15 0.15

c0
1,2/(log(mg kg–1))2 0.01 0.03 0.02 0.05 0.00 0.01

c1
1,2/(log(mg kg–1))2 0.09 0.24 0.08 0.024 0.12 0.11

a /m 5 535 5 535 5 535 5 535 5 535 5 535

r1 0.43 0.37 0.45 1.00 1.00 1.00

r2 0.70 0.50 0.71 1.00 1.00 1.00

lR 23.39 26.97 13.41 42.79 56.81 56.71
�u 0.99 0.99 1.01 0.98
~u 0.39 0.34 0.33 0.29
~u95�a 0.32 0.33 0.33 0.33
~u95þb 0.62 0.63 0.62 0.63

a~u95� : lower boundary of 95% confidence interval of ~u.
b~u95þ : upper boundary of 95% confidence interval of ~u.

Table 4 Fitted linear mixed model parameters for log(TP) using the Typha spp. approach

Model M1 M2 M3 M4 M5 M6

c0
1,1/(log(mgkg–1))2 0.13 0.15 0.13 0.09 0.09 0.08

c1
1,1/(log(mgkg–1))2 0.69 0.83 0.61 0.04 0.09 0.04

c0
2,2/(log(mgkg–1))2 0.11 0.12 0.10 0.07 0.05 0.06

c1
2,2/(log(mgkg–1))2 0.16 0.29 0.15 0.09 0.16 0.09

c0
1,2/(log(mgkg–1))2 0.01 �0.02 0.00 0.07 0.00 0.00

c1
1,2/(log(mgkg–1))2 0.25 0.39 0.23 0.06 0.12 0.06

a /m 3 852 5 535 3 701 5 535 5 534 5 534

r1 0.27 0.27 0.28 1.00 1.00 1.00

r2 0.68 0.60 0.69 1.00 1.00 1.00

lR 35.60 19.27 16.98 62.62 56.81 45.62
�u 1.01 1.01 1.01 0.98
~u 0.36 0.40 0.27 0.29
~u95�a 0.31 0.32 0.30 0.30
~u95þb 0.60 0.65 0.60 0.62

a~u95� : lower boundary of 95% confidence interval of ~u.
b~u95þ : upper boundary of 95% confidence interval of ~u.
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This comparison is made using the likelihood ratio statistic

defined in Equation (18). However since a0 is not nested in a

we calculate the critical value of this statistic via a Monte Carlo

approach. Finally we compare a model with non-stationary

mean and stationary variance — denoted M4 and fitted by min-

imizing lRða0;M; SzÞ — with M5. This comparison is made

using the likelihood ratio statistic defined in Equation (21)

which requires that M6 with likelihood function lRða0;M0; SzÞ
is fitted. Additional comparisons between models are not possi-

ble due to the pattern of nesting between models. However

these tests are sufficient to determine whether the data are best

described by models with non-stationary mean and/or non-

stationary variance. For each comparison we test the null

hypothesis — that the data are best described by the simpler

model — at the P ¼ 0.01 level.

Optimization of future surveys

We assume that the primary aim of the next survey of TP in

WCA-1 will be to predict the change in TP since 2003. We opti-

mize a 100 observation survey for this purpose by SSA. The

objective function is the mean prediction variance of the change

in TP (Equation 14). To apply the SSA algorithm we require

a model of the spatial and temporal variation of TP. We select

the model which our likelihood ratio tests showed to be most

appropriate for modelling the 1991 and 2003 surveys. We have

fitted themodel parameters for 2003.Theparameters for a future

survey are unknown, therefore we assume that they are equal to

the 2003 parameters. We select the two cross-variogram para-

meters such that the cross-correlation between this future survey

and 2003 is the same as that between the 2003 and 1991 surveys.

The location of observations in the optimized scheme defined

above may be heavily influenced by the location of points in the

2003 survey. Therefore we also optimized a static survey. This-

survey is optimized in the same manner except WCA-1 is sam-

pled at the same locations for each survey.

Results

The critical values of d and t which determined the extent of

Regions A and B for the distance and Typha spp. approaches

were d* ¼ 1103 m and t* ¼ 23.7%. These values were deter-

mined from fitting M2. The likelihood ratio tests show that for

both the distance (Table 1) and Typha spp. (Table 2)

approaches, the non-stationary variance and stationary mean

model (M2) describes the data better than the stationary vari-

ance model (M5). Furthermore the tests suggest that the best

model for the distance approach is the non-stationary vari-

ance, non-stationary mean model (M1) whereas the non-

stationary variance, stationary mean (M2) is best for the Typha

spp. approach. Therefore we use these models to predict TP

status and change.

The details of the fitted models are shown in Tables 3 and 4.

The M2 model for the Typha spp. approach achieves a lower

negative log residual likelihood than for the distance

approach. The M1 models for each approach can not be com-

pared because they have different fixed effects and hence

undergo different projections. For each model �u is close to 1.0.

However the ~u value for the stationary model (M5) lies outside

the 95% confidence limits which were calculated by a Monte-

Carlo method. The ~u values for all four models that have non-

stationary variance (M1 and M2 for both distance and Typha

spp. approaches) lie inside the 95% confidence limits. The

model which is stationary in the variance and non-stationary

in the mean (M4) lies outside the 95% confidence interval for

the distance approach and marginally inside the 95% confi-

dence interval for the Typha spp. approach.

In the maps of TP predictions shown in Figures 4–6 the

log(TP) predictions have been back transformed to the median

Figure 4 Predictions based upon a second-order stationary model of

variation (M5) of TP /mgkg–1 and prediction variance (s2) /

(log(mgkg–1))2 of log(TP) across WCA-1. (a) and (b): predictions and

prediction variances from 1991. (c) and (d): predictions and pre-

diction variances from 2003. (e) and (f): predictions and prediction

variances for change between the two surveys.
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predictions in mg kg–1. The prediction variances have not been

back transformed since no unbiased back transform exists.

The prediction maps from the stationary model (Figure 4)

show large TP values adjacent to the western boundary of

WCA-1 and, to a lesser extent, adjacent to the north east and

south east boundaries. The predictions smoothly decrease

towards the interior of the region. The predictions for the non-

stationary variance models (Figures 5–6) show a sharper

decrease in TP values away from the boundaries. The pre-

diction variances for the stationary model are relatively small

adjacent to the western boundary since this area is more

intensely sampled than other parts of WCA-1. This pattern of

prediction variances is unrealistic because TP is more variable

within this part of WCA-1. The non-stationary models have

relatively large prediction variances on this boundary. For the

1991 predictions with the distance approach (Figure 5) the

area of larger prediction variances is a strip around the bound-

ary of WCA-1 whereas the area of larger prediction variances

is more irregular for the Typha spp. approach (Figure 6). We

suggest that this is a more appropriate pattern of uncertainty

since the variation of TP is not uniform at all points on the

edge of WCA-1 but is largest down-stream from the pumps

which transfer water from the bounding canals.

The map of change predicted from the stationary model

(Figure 4e) is positive across WCA-1 and the spatial pattern is

similar to thepatternofTPvariation in2003.This similarity isdue

to themagnitude of the spatially correlated variance in 1991 being

less than that in 2003. Thismeans that the predictedmap for 1991

is relatively flat and the variations in it are dwarfed by those from

2003 when we calculate the change. The map of change in TP

predicted from the non-stationary Typha spp. model (Figure 6e)

shows a different pattern. Generally TP does increase across the

region but the increases are relatively small adjacent to the west-

ern canal. This area had the largest increase on the stationary

model. The largest increase in the non-stationary model occurs

at the edge of the Typha spp. incursion suggesting that there is

an invading front of P entering the interior region. There is an

area to the south of WCA-1 where TP decreases but we suspect

this is an artefact due to the area not being sampled in 1991. We

note that the largest prediction variances occur in this area. The

pattern of change adjacent to the western canal is patchy. This

may again be an artefact due to the large variance within this

area meaning that a larger sampling intensity is required.

We optimized the sample schemes for the M2 model of

the Typha spp. approach. The left plot in Figure 7 shows the

optimized scheme for a future survey designed to predict the

change since the 2003 survey. The sampling is more intense in

the regions where Typha spp. is dominant and there is some

distortion caused by a preference to sample close to the 2003

sampling locations. The right hand plot shows the optimized

static survey. Our predictions of change based on the M2

Typha spp. model suggested that there was an invasive front

of P and the position of the front was correlated with the

edge of the Typha spp. incursion. Therefore in this optimiza-

tion we decreased the Typha spp. threshold to 10% to ensure

that the region in danger of shifting to Typha spp. was

intensely sampled. In this plot observation sites are dispersed

throughout WCA-1 but the sampling is more intense within

the Typha spp. region. Thus by employing this sample scheme

we expect the artefacts within the map of change in TP to be

reduced.

Conclusions

This case study illustrates how recent developments in geosta-

tistics based upon linearmixedmodels may be extended tomon-

itor non-stationary soil properties over two-dimensional study

Figure 5 Predictions based upon a distance

model which is non-stationary in the mean and

variance (M1) of TP /mgkg–1 and prediction

variance (s2) /(log(mgkg–1))2 of log(TP) across

WCA-1 in 1991.
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regions. Specifically, the non-stationary model proposed by

Lark (in press) has been extended to model spatial variation of

multivariate rather than univariate soil properties over two-

dimensions rather than one-dimension. Furthermore the SSA

algorithm for the optimization of sample schemes suggested

by van Groenigen et al. (1999) may also be extended to this

non-stationary and multivariate framework. The non-stationary

models of spatial variation are expressed as linear mixed

models and the parameters are fitted by REML. Had the

models been fitted by the conventional method of moments

it would not have been possible to fully account for the com-

plex spatial covariance between observations. The method of

moments fits models to point estimates of the variogram by

some form of weighted least squares. It is not clear how suit-

able weights could be selected for the complex behaviour

described here.

Figure 6 Predictions based upon a Typha spp.

model which is non-stationary in the mean but

stationary in the variance (M2) of variation of

TP /mg kg–1 and prediction variance (s2) /

(log(mg kg–1))2 of log(TP) across WCA-1. (a)

and (b): predictions and prediction variances

from 1991. (c) and (d): predictions and pre-

diction variances from 2003. (e) and (f): pre-

dictions and prediction variances for change

between the two surveys.
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The second-order stationary model of spatial variation is

shown to be unsuitable to monitor TP inWCA-1 since it cannot

account for larger variances inTP content close to canals bound-

ing WCA-1 than are observed in the interior of WCA-1. The

areas of large variance cause the prediction variance to increase

throughout WCA-1. Thus the prediction variances in the inte-

rior of WCA-1 are too large and the prediction variances adja-

cent to the boundary are too small. This leads to the median of u

being less than the lower bound of the 95% confidence limit.

Anon-stationarymodel basedupondistance fromabounding

canal leads to large prediction variances in a distinct strip adja-

cent to the boundary of the region. This is an over-simplification

because the variance of TP varies around the boundary of

WCA-1. The behaviour is more realistically accounted for if

we divide the region into two sub-regions based upon the current

Typha spp. coverage at each site. The non-stationary variance

model based upon Typha spp. coverage achieves a smaller neg-

ative log-likelihood than the corresponding model based upon

distance from the boundary. Modified likelihood ratio tests

demonstrate that this non-stationary model of spatial variation

represents the TP data better than stationary models. Further-

more, when non-stationary models are applied the median of u

lies inside the 95% confidence limit. The predicted map of

change in TP concentrations exhibits an invading front of P

moving into the interior of the region. This is in contrast to the

stationary model where the spatial pattern of the predicted

change is similar to the pattern of TP variation seen in 2003.

The Typha spp. coverage provides auxiliary information of

the spatial extent of TP enrichment. At present the informa-

tion regarding Typha spp. coverage is interpolated from obser-

vations made in 2003. This is not entirely satisfactory since the

Typha spp. coverage varies with time and the varying pre-

diction variance of the interpolated map is not accounted for.

However the situation can be improved in future phases of the

monitoring survey if the Typha spp. coverage is re-surveyed

using an optimized sampling scheme. Also it may be possible

to use alternative exhaustive sources of auxiliary information

of TP enrichment such as satellite images or to consider the

sites at which P enters WCA-1 and the direction of water flow

from these sites. In theory more detail may be included in our

non-stationary model of TP. For example the extent of the

two sub-regions could vary between the different surveys.

However there may be practical difficulties in fitting these

more complicated models to a dataset of less than 400 obser-

vations. Such problems will be reduced if the sample scheme is

optimized for the specific model being fitted in the manner

described in this paper.
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Appendix

Selecting the covariance model

A likelihood ratio test may be applied to determine whether a particular

covariance model better describes the data than a nested covariance

model. The full vector of covariance parameters can be partitioned into

two sub-vectors, i.e. a ¼ ½a0 a1�. Thus the nested covariance model

has parameter vector a0 whereas the full model has additional covari-

ance parameters a1. The standard likelihood ratio test explores

whether the full covariance model describes the data better than the

sub-model. If a0 is nested in a then

D ¼ �2flRðâ;M; SzÞ � lRðâ0;M; SzÞg; ð18Þ

will be asymptotically distributed as w2 with q degrees of freedom where

q is the difference between the number of parameters in a and a0. This

gives a standard likelihood ratio test for the null hypothesis that all

elements in a1 are zero.

Lark (in press) compared his non-stationary model with a stationary

model.However the parameter describing the boundarybetween the two

regions in the non-stationary model could take any value in the station-

ary model and the two models were not truly nested. Therefore he mod-

ified the standard likelihood ratio test. One approach was to obtain an

empirical distribution of D under the null hypothesis by Monte Carlo

simulation and compare this distribution with the value of D from real

data. Thus he simulated multiple realizations of the stationary model

at the sites of the observations by Cholesky factorization (Deutsch &

Journel, 1998), fitted both the stationary and non-stationary models to

the simulated data and calculated D for each realization.

Selecting the fixed effects

The conventional likelihood ratio test is not valid for comparing nested

design matrices for models estimated by REML because the data

undergo different projections for each design matrix and thus the resid-

ual likelihoods are not comparable. Welham & Thompson (1997) sug-

gest a solution to this problembased upon a single projection of the data.

They describe two such tests. Each assumes that the model contains two

sets of fixed effects which partition the design matrix M ¼ [M0 M1] and

parameters b ¼ ½b0 b1�. The full fixed effect model is E½z� ¼Mb and

the submodel is E½z� ¼M0b0. If we were fitting these models by

REML the full model would use projection S whereas the sub-model

would use projection S0. The test used here fits both b and b0 using

projection S.

Using projection S the residual log likelihood of the submodel is

lRða0;M0; SzÞ ¼ cðMÞ � 1

2
logjVj � 1

2
logjMTV�1Mj

� 1

2
ðz �M0b̂0Þ

T
V�1ðz �M0b̂0Þ;

ð19Þ

with

b̂0 ¼ ðMT
0 V�1M0Þ

�1
MT

0 V�1z; ð20Þ

and Welham & Thompson’s (1997) residual likelihood test statistic is

D ¼ �2 flRðâ0;M0; SzÞ � lRðâ;M;SzÞg: ð21Þ

This gives a standard likelihood ratio test for the null hypothesis that

all elements in b1 are zero. Under the null hypothesis and for large

data sets, D is approximately distributed as a chi-square distribution

with q degrees of freedom where q is the number of fixed effect param-

eters in b1. We decide whether the X1 fixed effects should be included

in the model by comparing D with a chi-squared distribution to test

the null hypothesis that all entries of b1 are zero.
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