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T«� G�Ù�¹ÊÄ�ù National Park (La Gomera, Canary Islands, 

Spain) was declared a World Heritage Site by the United 

Nations Educational, Science, and Cultural Organization in 1986. 

Th e park provides the best example of the “laurisilva,” a humid, 

subtropical, evergreen forest that, during the Tertiary, covered 

southern Europe and North Africa but then disappeared from 

these areas during the last ice age. Today laurisilva is a relic forest 

present mostly in the Macaronesian archipelagos. On La Gomera 

Island, evergreen forests grow on particular highly evolved soils of 

volcanic origin, unique in the Canary Islands (Jiménez Mendoza 

et al., 1990). Th e presence of this evergreen forest on the central 

plateau of La Gomera contrasts sharply with the arid ecosystems 

at lower elevations on the island. Traditionally, such ecosystem 

diff erences have been attributed to the humid Mediterranean 

climatic conditions prevailing in the area and to the mitigation 

of drought periods by the incidence of wind-driven fogs (Santana 

Pérez, 1990). Recent work has raised questions, however, about 

the relative importance of fog as a source of water to the forest 

soil (Ritter et al., 2008).

Th e description and modeling of forest evapotranspiration, 

rainfall, and fog interception and the subsequent dripping from 

the canopy are essential to understanding the hydrologic func-

tioning of the forest. Such water fl uxes ultimately convey water 

to the soil surface. In this context, several researchers have studied 

throughfall and patterns of soil water content spatial distribu-

tion in soils under forest cover (Mallants et al., 1996; Schaap et 

al., 1997; Bruckner et al., 1999; Schume et al., 2003). Finding 

a direct relation between throughfall and soil water content pat-

terns may not be straightforward (Raat et al., 2002), however, 

because of the complex hydraulic processes taking place at the 

soil–plant–atmosphere interface. Typically, topsoil moisture is 

sensitive to small water contributions from dripping fog or short 

rain showers, which can cause sharp changes in the soil water 

content of the A horizon (e.g., Raat et al., 2002). Th is may be 

particularly true in the studied watershed, where the existence of 

a highly organic hydrophobic O horizon (Regalado and Ritter, 

2006) could lead to rapid bypass fl ow of water to deeper wettable 

horizons through soil cracks, biopores (made by soil fauna), or 

roots (Wallis and Horne, 1992).

Long-term monitoring and analysis of topsoil water content 

time series can lead to improved understanding of the tempo-

ral dynamics of the evergreen forest hydrology. Th e intrinsic 
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Research oriented toward understanding the hydrologic funcƟ oning of the relict “laurisilva” evergreen forests is scarce. 
This study focused on the analysis of temporal changes in soil water status under such humid subtropical stands and 
explored to what extent hydrologic fl uxes may explain topsoil water dynamics. Hydrologic fl uxes (potenƟ al evapotrans-
piraƟ on, canopy fog water dripping, and rainwater below the canopy) were computed for a 2-yr period using in situ 
micrometeorological measurements in the Garajonay NaƟ onal Park cloud forest (Canary Islands). Time domain refl ecto-
metry (TDR) data were used to characterize soil water status at 0.15- and 0.30-m depths in plots located at 1145, 1185, 
1230, and 1270 m above sea level. The resulƟ ng eight daily TDR data sets were studied with dynamic factor analysis. The 
variability in the soil water status Ɵ me series was simplifi ed and successfully described (coeffi  cient of effi  ciency = 0.717) 
with a single temporal trend dynamic factor model (DFM), represenƟ ng unexplained variability common to all plots 
and monitoring depths. Comparison of DFMs with and without explanatory variables (i.e., hydrologic fl uxes) indicates 
that unexplained variability in the observed data was parƟ ally reduced by the informaƟ on provided by the hydrologic 
fl uxes. The rainfall contribuƟ on to the soil surface, and to a lesser extent forest potenƟ al evapotranspiraƟ on, were 
necessary variables for describing temporal changes in topsoil water status; however, dripping fog water was found 
to be a negligible contributor. Dynamic factor analysis proved to be useful for studying the variability in mulƟ variate 
hydrologic Ɵ me series without the need of a priori detailed informaƟ on about the underlying mechanisms governing 
soil water dynamics.
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variability of hydrologic processes makes it diffi  cult, however, to 

identify to what extent diff erent hydrologic fl uxes contribute to 

the observed temporal variation in soil water content. Standard 

analyses that are limited to visual inspection and comparative 

statistics of multivariate time series may not be suffi  cient for sub-

stantive evaluation of such data. In contrast, physically based 

models of water and solute transport may be useful exploratory 

tools to understand the complexity of these hydrologic pro-

cesses (Philip, 1991). Th e use of such models is not an easy task, 

however, since they contain parameters and processes that must 

be identifi ed for each specifi c scenario. Hence, the success of 

physically based models depends strongly on the identifi cation 

of parameters and the reliability of the input variables. In this 

context, complementary exploratory techniques are desirable for 

coping with the lack of information about parameters and pro-

cesses, as well as the uncertainties associated with the estimation 

or measurement of parameters and input variables.

A novel approach for studying multivariate time series is 

dynamic factor analysis (DFA), originally developed for economic 

time series interpretation (Geweke, 1977). Classical time series 

techniques usually require long stationary and regularly spaced 

temporal data sets. Time series are usually nonstationary, however, 

and missing values are not infrequent, especially under unat-

tended fi eld monitoring conditions. Although nonstationarity 

may be overcome by detrending, trends may hold fundamental 

information necessary to explain the temporal dynamics of the 

investigated variables. Dynamic factor analysis is a dimensional-

ity reduction statistical technique that can handle nonstationary, 

short time series. Furthermore, it allows identifi cation of common 

trends between multivariate time series and their relation with 

selected potential explanatory variables (Zuur et al., 2003b). 

Unlike other statistical dimension reduction techniques, such as 

factor and redundancy analysis, DFA takes into account the time 

component. Th us, underlying hidden eff ects driving the temporal 

variation in the observed data may be detected. Such driving 

eff ects may be described by 

common trends (represent-

ing unexplained variability) 

or explanatory variables 

consisting of other observed 

time series (Zuur et al., 

2003a). Dynamic factor 

analysis has been success-

fully applied in hydrology 

to identify common trends 

in groundwater levels 

(Márkus et al., 1999; Ritter 

and Muñoz-Carpena, 2006) 

and interactions between 

hydrologic variables and 

groundwater quality trends 

(Muñoz-Carpena et al., 

2005; Ritter et al., 2007). 

Hence, DFA has been 

shown to be an effective 

tool for analyzing time-

dependent hydrologic data 

sets, for providing infor-

mation about common 

trends and interactions in such hydrologic time series, and for 

determining if the time series are aff ected by the selected explana-

tory variables. One interesting feature of DFA is that it does not 

require a priori information about the underlying mechanisms 

governing the hydrologic processes.

Th e study presented here focused on the analysis of temporal 

changes in soil water status under a humid, subtropical, evergreen 

forest cover. In this context, we explored to what extent hydro-

logic fl uxes (potential evapotranspiration, fog water, and rainfall 

dripping) might explain the topsoil water dynamics observed in 

a representative forest watershed in the Garajonay National Park. 

A sequential three-step exploratory procedure was performed 

using daily topsoil water status and micrometeorologic variables 

monitored during a 2-yr period: (i) visual inspection of soil water 

status and explanatory hydrologic-fl ux variable time series; (ii) 

application of DFA to identify common trends that represent 

unexplained variability in the soil water status; and (iii) inclusion 

of explanatory hydrologic-fl ux variables in the DFA to assess their 

infl uence on the temporal variation in the soil water status.

Materials and Methods

Experimental Site
Th e study was performed in a 43.7-ha watershed located 

at 1145 to 1270 m above sea level in the Garajonay National 

Park (Canary Islands, Spain) (Fig. 1). Th e evergreen forest veg-

etation in the watershed is mainly composed of broadleaf tree 

species (10–20 m high) of the Laureaceae family. On crests and 

upper slopes, shrubby 7- to 12-m-high wax myrtle tree heath 

(Myrica faya Ait.–Erica arborea L.) stands are frequent (Golubic, 

2001). Th e watershed is northeast oriented and subject to the 

predominant trade winds. Th e infl uence of frequent fog results in 

high relative humidity (>95%) (Ritter et al., 2008). Variations in 

mean annual temperature measured within the watershed at dif-

ferent plots during the 2-yr period were small (13 ± 5°C standard 

F®¦. 1. (a) LocaƟ on of the experimental watershed within the NaƟ onal Park in La Gomera (Canary Islands), 
and (b) distribuƟ on of plots (designated as E1, E2, E3, and E4) and subtropical evergreen forest types within 
the watershed. Plot elevaƟ ons are given in meters above sea level (m.a.s.l.).
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deviation) and mean annual precipitation was moderate (635 

and 1088 mm for the fi rst and second years, respectively). In 

general, soils in the national park are acidic and highly organic 

Andosols (Melanudands, Fulvudands, and Hapludands). Th ese 

have developed over a complex geologic material composed of 

basaltic lava fl ows and successive deposits of volcanic ash. Under 

this humid climate, weathering of the parent material yields 

allophane-like noncrystalline minerals that, with incorporation 

of vegetation litter, produces thick, dark, humus-rich epipe-

dons and Al– and Fe–humus complexes (Rodríguez Rodríguez 

et al., 2006). Th e soils within the watershed are classifi ed (Soil 

Survey Staff , 1999) as Aluandic Andosols (Fulvudands). Th eir 

andic character is responsible for particular physicochemical 

and hydraulic properties, such as high permeability, low bulk 

density, and large microporosity and water retention capacity 

(Warkentin and Maeda, 1980). Four plots located at diff erent 

sites within the watershed were used in this study (Fig. 1b). Each 

plot was selected based on its distinct elevation and vegetation 

type. Geographic information about these plots, together with 

topsoil texture, organic matter content, and pH, are shown in 

Table 1 and Fig. 1.

Soil Water Status Measurements
Time domain refl ectometry probes with two 0.16-m rods 

(Trime-EZ, Imko GmbH, Ettlingen, Germany), were inserted 

horizontally at 0.15- and 0.30-m soil depths at each of the four 

plots. Th e TDR measurements were collected for 2 yr (February 

2003–January 2005) using a 3-min sampling frequency and aver-

aged every 15 min with a fi eld datalogger (Combilog, UP GmbH, 

Cottbus, Germany). Th e TDR technique is based on the transit 

time taken by an electromagnetic wave pulse traveling forward 

and backward along a transmission line (TDR rods) inserted in 

a sample (soil) material. It thus depends on the dielectric prop-

erties of the water–air–soil matrix composite. In the case of the 

Imko TDR, the pulse traveling time is obtained from voltage level 

comparisons at diff erent times, and a normalized time (pseudo-

transit time, tp) is defi ned. A logarithmic relationship between 

the dielectric constant of a material (ε) and tp has been proposed 

by Regalado et al. (2006):

( ) p pln 0.00478   0.34928, 100 900t tε = + < <  [1]

Th e saturation degree of a soil may be referred to in terms of its 

dielectric constant, obtained from Eq. [1], instead of the soil 

volumetric water content since this avoids the need for a soil-

specifi c calibration and thus possible errors as a consequence 

of soil variability. In our case, we used the square root of the 

dielectric constant, √ε, or the refractive index, as an indication 

of the soil water status. If required, √ε may be related to the soil 

volumetric water content via an approximated form of Topp’s 

equation (Ferré et al., 1996).

Measurements of Hydrologic Fluxes
Hydrologic fl uxes were computed to explore their eff ect 

on the topsoil water dynamics. Th ese were the forest potential 

evapotranspiration (ETp), the rainfall contribution computed as 

throughfall plus canopy dripping of intercepted rainfall (pP + 

DP), and fog drip (DF). Th e methods applied to calculate these 

variables are described below. Wet canopy potential evaporation 

was computed to calculate canopy dripping as a consequence of 

fog and intercepted rainfall. In addition, tree transpiration was 

measured with a sap fl ow system for validating the calculated 

ETp time series.

Wet Canopy PotenƟ al EvaporaƟ on

Wet canopy potential evaporation (Ep) was computed from 

micrometeorological data collected from February 2003 to 

January 2005 with a 3-min sampling frequency and averaged 

every 15 min. Micrometeorological instruments were installed 

on top of a 15-m scaff olded tower in the highest elevation plot 

(E4, 1270 m above sea level) to measure the wind speed (m s−1) 

and direction (°), air temperature (°C), relative humidity (%), and 

solar radiation (W m−2). Micrometeorological instrumentation 

was further described by Ritter et al. (2008). Wet canopy poten-

tial evaporation was computed to calculate canopy dripping as a 

consequence of fog and rainfall. Th e Penman–Monteith approach 

(Allen et al., 1998) was used to estimate Ep at 15-min intervals:

( ) ( )
( )

n s a a
p

R G e e r
E

− Δ+ρκ −
=

λ Δ+ γ
 [2]

where Rn represents the net radiation for the vegetation cover (W 

m−2); G is the soil heat fl ux (W m−2), which was approximated 

during daylight and nighttime periods as 10 and 50% of Rn, 

respectively (Allen et al., 1998); Δ is the slope of the saturation 

vapor pressure curve at ambient 

temperature (Pa K−1); ρ is the air 

density (kg m−3); κ is the heat 

capacity of the air (J kg−1K−1); es 

and ea are the saturated and actual 

vapor pressures (Pa), respectively; 

ra is the aerodynamic resistance 

(s m−1); λ is the latent heat of 

vaporization (J kg−1); and γ is the 

psychrometric constant (Pa K−1). 

Th e reduction of available energy in 

Eq. [2] due to heat storage in the 

canopy was considered negligible. 

The aerodynamic resistance was 

computed after Th om (1975) and 

Th om and Oliver (1977):

T��½� 1. InformaƟ on on the plots selected within the watershed. Soil properƟ es correspond to the 
A horizon.

Plot ElevaƟ on EasƟ ng† Northing† Monitoring depth SOM‡ pH Texture§

masl¶ —————————— m ———————————— g kg−1

E1 1145 278,206 3,114,124 0.15 275 ± 44# 4.5 ± 0.1 scl
0.30 186 ± 81 4.5 ± 0.0 scl

E2 1185 278,177 3,113,873 0.15 294 ± 74 4.6 ± 0.0 scl
0.30 206 ± 50 4.5 ± 0.2 scl

E3 1230 278,371 3,113,719 0.15 318 ± 168 4.8 ± 0.1 scl
0.30 230 ± 43 5.0 ± 0.4 sl

E4 1270 278,088 3,113,496 0.15 132 ± 30 5.1 ± 0.2 sl
0.30 116 ± 08 5.4 ± 0.3 sl

† UTM coordinates corresponding to the 28R zone.
‡ Soil organic maƩ er content.
§ USDA classifi caƟ on: scl, sandy clay loam; sl, sandy loam.
¶ m above sea level.
# Mean ± SD.
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( ) ( )om ov
a

4.72 ln ln

1 0.536

u e

z

z d z z d z
r

u

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦=
+

 [3]

where zu and ze are the height at which the wind speed (uz in m 

s−1) and relative humidity were measured, respectively. Th e zero 

plane displacement was assumed d = 2h/3 with h (m) being the 

average height of the canopy. Th e vapor roughness length was 

estimated from zov = 0.1zom, with the momentum roughness 

length of the forest zom = 0.123h (Th om, 1971; Brutsaert, 1975). 

Net radiation was computed from the solar radiation data as the 

diff erence between the incoming net shortwave and the net out-

going longwave radiation (Allen et al., 1998). An albedo of 0.14 

(Aschan, 1998) was chosen, which is close to the value of 0.11 

proposed by Matthews (1984) for evergreen subtropical forests.

Forest PotenƟ al EvapotranspiraƟ on

Th e forest potential evapotranspiration (ETp) at Plot E4 was 

calculated at 15-min intervals using a form of Eq. [2] where the 

psychrometric constant (γ) was replaced by a modifi ed psychro-

metric constant (γ*) that is dependent on the relation between 

the canopy surface resistance (rc, s m
−1) and aerodynamic resis-

tance, ra, such that γ* = γ(1 + rc/ra) (Allen et al., 1998). Th e rc 

was considered to vary with the stomata response to environmen-

tal factors. According to Jarvis (1976) and Stewart (1988), the 

leaf stomata resistance (rs_min ≤ rs ≤ rs_max) may be estimated as 

the product of the minimum resistance, rs_min (i.e., the inverse of 

the maximum conductance corresponding to optimal conditions), 

times various stress functions, which vary with global radiation, 

Rg, leaf temperature, Tl, and relative humidity. Lhomme et al. 

(1998) showed that the eff ect of a vapor pressure defi cit on sto-

mata conductance was indirect. Th us taking into account the fi rst 

two variables, Rg and Tl only, rc may be computed as

( ) ( )s_min 1 1s
c 1 g 2 l

act actLAI LAI

rr
r R T− −= = Ψ Ψ  [4]

where LAIact is the active leaf area index, computed from the 

leaf area index (LAI) = 4.2 (Golubic, 2001), reduced by a shelter 

factor of 1.25 (Dingman, 2002), such that LAIact = 3.36. Th e 

Ψi (i = 1, 2) are functions accounting for the eff ects of global 

radiation and leaf temperature on stomata conductance. Stomata 

conductance was measured in the laboratory with a portable pho-

tosynthesis system (LCpro, ADC BioScientifi c Ltd., Hoddesdon, 

UK) in small potted plants of diff erent laurisilva species. Th e 

measured rs_min was 137 s m−1. Th e following dependence of the 

stomata conductance with global radiation at optimum tempera-

ture was obtained (r2 = 0.994):

( )

( )

0.60

g
1 g

2
g

1 g

2
g

77.35
1.02 1 exp

400.37

>77.35 W m

0

77.35 W m

R
R

R

R

R

−

−

⎡ ⎤⎛ ⎞− ⎟⎜⎢ ⎥⎟Ψ = − −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

Ψ =

≤

 [5]

For the temperature dependence of conductance, a Pearson type 

function was fi tted to conductance vs. leaf surface temperature 

data pairs at saturating light conditions (r2 = 0.771):

( ) ( )
0.512

2 l l0.95 1 0.76 22.17T T
−⎡ ⎤Ψ = + −⎢ ⎥⎣ ⎦

 [6]

For the sake of simplicity, Tl (°C) was assumed equal to ambient 

temperature, although a complex dependence is expected (ADC 

BioScientifi c Ltd., 2004).

Forest-ground evaporation was assumed negligible because of 

the mulching eff ect of the 5-cm leaf litter layer covering the soil 

surface and the solar radiation attenuation due to the relatively 

dense canopy (Aschan et al., 1994).

Tree Sap Flow Rate

Sap flow was measured on trees located in the highest 

elevation plot (E4, 1270 m above sea level) with Granier’s heat 

dissipation technique (Granier, 1985) for a selected period (April 

2003–October 2003). Th e sap fl ow system (SFS-2, UP GmbH, 

Cottbus, Germany) consists of two cylindrical needle-like probes 

(20-mm length and 2-mm diameter), which are inserted in the 

trunk. Th e upper probe is continuously heated with a resistor, 

whereas the lower probe is unheated; the resulting temperature 

diff erence, ΔT, is measured with a thermocouple (see Regalado 

and Ritter [2007] for further details).

An empirical relation between sap fl ux density, q (kg m−2 

s−1), and ΔT may be derived from Granier (1985):

1.231
max

max0.119 1 ,
T

q T T
T

⎛ ⎞Δ ⎟⎜= − Δ ≥Δ⎟⎜ ⎟⎜⎝ ⎠Δ
 [7]

Th e tree sap fl ow rate, QSF (kg s−1), was obtained from the inte-

gration of Eq. [7] in the trunk radial direction, r (m), within the 

conducting sapwood radial interval (rh, rx):

( )x

h
SF 2 d

r

I
r

Q rq r r= π∫  [8]

where qI(r) is the sap fl ux density at the radial depth I, and rh and 

rx are the radii at the heartwood and the cambium, respectively. 

We derived polynomial expressions for qI(r) from radial patterns 

of sap fl ow distribution reported by Jiménez et al. (2000) in laurel 

forest tree species.

Rainfall ContribuƟ on to the Soil Surface

Rainfall water may reach the soil surface as both throughfall 

precipitation, pP (mm), and canopy dripping, DP (mm), which 

is a consequence of the water intercepted by the vegetation. Th e 

interception process was described with the Rutter et al. (1971) 

approach, whereby the interception losses were computed from 

a water balance at both the stand and stem levels. Th is model 

considers that water stored in the canopy changes with time 

according to the following continuity equation:

S
I E D

t

Δ
= − −

Δ
 [9]

where ΔS/Δt is the rate of change in stored water (mm min−1), I 
is the interception rate by the canopy (mm min−1), E is the wet 

canopy evaporation rate (mm min−1), and D is the dripping rate 

(mm min−1). Th e term I is given by
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( )t1
P

I p p
t

= − −
Δ

 [10]

where P is the precipitation (mm) measured with a Rain-O-

Matic Professional spoon tipping rain gauge (Pronamic Bekhøi 

International Trading Engineering Co. Ltd., Silkeborg, Denmark) 

placed above the canopy; pt (m m−1) is the precipitation fraction 

that is diverted toward the stems (stemfl ow); and p (m m−1) is 

the throughfall or rainfall fraction that passes through the stand 

and reaches the ground without being intercepted. In this study, 

we used pt = 0.0164 m m−1 computed from the values for Erica 
arborea L., Myrica faya Ait., and Laurus azorica (Seub.) Franco 

obtained by Aboal et al. (1999) in the Agua García evergreen 

forests (Tenerife, Canary Islands). Th e value p = 0.0805 m m−1 

was computed from van Dijk and Bruijnzeel (2001), taking LAI = 

4.2 and an extinction coeffi  cient equal to 0.6. Th is value is similar 

to the value of p = 0.092 m m−1 obtained by Aboal (1998) in the 

Agua García evergreen forests.

According to Eq. [9], a fraction of the intercepted water 

is lost by evaporation. Following Rutter et al. (1971), the wet 

canopy evaporation rate is proportional to the volume stored in 

the canopy:

p max
max

,
S

E E S S
S

= ≤  [11]

where Smax (mm) is the maximum canopy storage capacity. When 

water intercepted by the canopy exceeds Smax, it drips according 

to the following exponential function:

( )s maxexpD D b I t S⎡ ⎤= Δ −⎣ ⎦  [12]

where Ds (mm min−1) and b (unitless) are empirical parameters. 

Gash and Morton (1978) have suggested that Ds and b may be 

taken from Rutter et al. (1971). Nevertheless, it is advisable to 

make a correction to take into account an appropriate LAI or Smax 

(Rutter et al., 1975; Aboal, 1998). Consequently, the following 

values were used in this study: Ds = 2.31 × 10−3 mm min−1 and b 

= 4.281. Th e maximum canopy storage capacity of the forest was 

computed following the method proposed by Leyton et al. (1967). 

Th eir method uses only rainfall events (preceded by 24 h with no 

rain) when precipitation is suffi  cient to saturate the canopy (e.g., 

P > 2 mm). For these events, rainfall measured above the stand 

was plotted against water collected by eight gauges placed below 

the canopy. A line with slope (1 − pt) is fi tted such that the y axis 

intercept corresponds to Smax. Th e application of the Leyton et al. 

(1967)  method was performed using 12-h accumulated rainfall 

events rendering Smax = 1.215 mm.

Analogous to the equations at the stand level described above, 

the water balance at the stems was computed by applying Eq. [9] 

with the following assumptions, where the t subscripts refer to 

stem-related variables: the water reaching the stems is given by It = 

ptP; the dripping rate was assumed to be instantaneous (i.e., Dt = 

St − St_max, St > St_max), where the stem maximum storage capac-

ity (St_max = 0.08 mm) was taken from Aboal (1998). Th ereby, 

the amount of intercepted rainfall dripping onto the soil surface 

was computed as DP = (D + Dt)Δt. Finally, the evaporation rate, 

Et, is similar to Eq. [11], and the potential evaporation rate, Ept, 

was assumed to be 10% of Ep.

Dripping Fog Water

Similarly, dripping from the canopy and stems as a con-

sequence of fog water intercepted by the vegetation, DF, was 

computed as described above for those periods where fog pre-

cipitation occurred and no rainfall was observed. Hence, Eq. [10] 

simplifi es to I = F, where F (mm min−1) is the fog water collected 

by the canopy. Th e F value was estimated by combining the fog-

catcher measurements made on top of the micrometeorological 

instrument tower and a physically based impaction model (Ritter 

et al., 2008).

Dynamic Factor Analysis
Th e soil water status time series obtained with TDR were 

investigated using DFA. Dynamic factor analysis is a parameter 

optimization technique, and therefore it may be useful for fi nd-

ing interactions between time-series response and explanatory 

variables that are diff erent in nature or are not related in a straight-

forward manner (Zuur et al., 2003a). Th is means that a detailed 

description about how the soil water status (response time series) 

and the hydrologic fl uxes (explanatory variables) interact is not 

required when using DFA to evaluate how the latter infl uence 

the soil water dynamics. Compared with physically based simula-

tion models, this DFA feature is relevant for the study presented 

here. In this context, we used DFA to simultaneously examine 

the soil water status measured at diff erent locations that might 

be aff ected by diff erent vegetation types, soil surface conditions, 

and diff erences in soil hydraulic properties. In addition, taking 

into account that uncertainty associated with soil-specifi c calibra-

tions may introduce errors in the data, DFA allowed us to relate 

the aboveground hydrologic fl uxes and the soil water dynamics 

expressed in terms of the refractive index (√ε), instead of using 

volumetric moisture derived from TDR laboratory calibrations.

The Dynamic Factor Model

Dynamic factor analysis is based on the structural time series 

models (Harvey, 1989). A DFM serves as a description of the 

time-dependent series of measured data of N response variables 

such that (Lütkepohl, 1991; Zuur et al., 2003a)

N time series = linear combination of M common trends 

+ level parameter + K explanatory variables + noise [13]

Keeping the number of M common trends as small as possible is 

desirable because it eases interpretation of the fi tted trends. Th e 

inclusion of K explanatory variables, when readily available, is 

also advisable. Th e multilinear model in Eq. [13] may be written 

in mathematical form as

( ) ( ), ,
1 1

( ) ( )
M K

n m n m n k n k n
m k

t t v t t
= =

= γ +μ + β + ε∑ ∑s α  [14]

( ) ( ) ( )m 1m mt t t= − +α α η  [15]

where sn(t) is the size N (1 ≤ n ≤ N) vector containing the values 

of the response variables at time t. In this study, N represents 

the eight temporal time series of topsoil TDR data (i.e., the soil 

refractive index, √ε, for the 0.15- and 0.30-m depths at the four 

plots); αm(t) is a length M (1 ≤ m ≤ M) vector containing the 
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common unknown trends at time t; γm,n are the factor loadings 

or weighting coeffi  cients for each αm(t) trend; the constant-level 

parameter μn shifts each linear combination of common trends 

up or down; βk,n represents the fi tted regression parameters for 

the kth (for 1 ≤ k ≤ K) explanatory variable vk(t); K corresponds 

here to the number of hydrologic fl uxes considered in the DFA; 

εn(t) and ηm(t) are (independent) Gaussian distributed noise with 

zero mean and unknown diagonal covariance matrix. Parameters 

γm,n and μn in Eq. [14–15] were searched with the expectation 

maximization algorithm (Dempster et al., 1977; Shumway and 

Stoff er, 1982; Wu et al., 1996). Th e αm(t) trends were modeled 

as a random walk (Harvey, 1989) and were estimated using the 

Kalman fi lter/smoothing algorithm and the expectation maxi-

mization method, while the regression parameters associated 

with the explanatory variables (βk,n) were modeled as in linear 

regression (Zuur and Pierce, 2004). Dynamic factor analysis was 

implemented using the Brodgar Version 2.5.6 statistical package 

(Highland Statistics Ltd., Newburgh, UK). Further details about 

DFA may be found in Zuur et al. (2003a,b, 2007).

Th e size of the weighting factors accompanying both trends 

and explanatory variables (γm,n and βk,n, respectively) permitted 

us to identify relevant soil water status time trends and responsible 

hydrologic components. In other words, the results from the DFA 

may be interpreted in terms of the canonical correlation coeffi  cients 

ρm,n, the regression parameters βk,n, and the match between mod-

eled and observed sn(t) values. Th e performance of the DFM was 

quantifi ed with both the coeffi  cient of effi  ciency (−∞ ≤ Ceff  ≤ 1, 

Nash and Sutcliff e, 1970) and Akaike’s information criterion 

(AIC; Akaike, 1974). For two diff erent DFMs, the DFM with 

the largest Ceff  and smallest AIC is preferred. Additionally, cross-

correlation between the sn(t) response variables and the αm(t) 
common trends was quantifi ed by means of the ρm,n canonical 

correlation coeffi  cients, such that a ρm,n close to unity indicates 

that the corresponding common trend is highly associated with 

the response variable. In the following, we will refer to correlation 

between sn(t) and αm(t) as being minor when |ρm,n| < 0.30, low 

when 0.30 ≤ |ρm,n| < 0.50, moderate when 0.50 ≤ |ρm,n| ≤ 0.75, and 

high when |ρm,n| > 0.75. Finally, the weights of the kth explanatory 

variable vk on each sn(t) are given by the regression parameters, βk,n. 

Th e magnitude of the βk,n and their associated standard errors 

were used to assess with a t-test whether response and explanatory 

variables were signifi cantly related (t value > 2).

Th e DFA was performed sequentially, such that the number 

of M common trends was varied until a minimum AIC was 

achieved (Zuur et al., 2003b). Once a minimum M was identifi ed, 

diff erent combinations of explanatory variables were incorporated 

in the analysis until a satisfactory combination of common trends 

and explanatory variables was found. By including explanatory 

variables into the DFM, one may expect to reduce the unex-

plained variability and improve the description of the topsoil 

water time variability.

Seasonality in the Time Series

Before the analysis, one may look for seasonality in the TDR 

time series (expressed as the soil refractive index, √ε). Removal 

of the data seasonal component is convenient (Zuur and Pierce, 

2004). Seasonality may be identifi ed as periodic patterns either 

in the mean and/or the variance of √ε monthly values. Among 

diff erent methods for deseasonalizing, a simple one is seasonal 

standardization (Salas, 1993), whereby the monthly mean ( ,n js ) 

and standard deviation (σn,j) components are removed from the 

original data set such that

( ), , , ,*n j n j n j n js s s= − σ  [16]

where sn,j is the sn TDR data subset corresponding to the jth 

month, and sn,j* is the corresponding deseasonalized time series.

Explanatory Variables in the Dynamic Factor Model

To assess the relative eff ect of the hydrologic fl uxes on the 

temporal variation in soil water status (expressed as √ε), the fl uxes 

can be included in the DFA as explanatory variables. It may be 

noticed that while actual TDR data at time t, sn(t), are related to 

previous values, sn(t − 1), this is not the case for the hydrologic 

fl uxes, where, for instance, precipitation measured at time t does 

not contain information about antecedent (t − 1) rainfall events. 

To incorporate such a “memory feature” into the explanatory 

variables, one may introduce the hydrologic fl uxes into the DFM 

as cumulative time series. Th is approach may, however, result in 

multicollinearity between the explanatory variables, which would 

bias the DFA. Th e severity of such a multicollinearity may be 

detected by computing the corresponding variance infl ation fac-

tors (VIFs) for each explanatory variable (Zuur et al., 2007). On 

the other hand, on a water budget basis, input and output fl uxes 

across the soil surface are responsible for changes in the soil water 

status. Th us, alternatively, the analysis of the sn time series may 

be conducted using daily increments instead of actual √ε values. 

Multicollinearity may also arise between diff erent explanatory 

variables measured at nearby locations, as is probably the case for 

the selected hydrologic fl uxes measured at diff erent plots within 

the watershed. Using explanatory variables measured at the four 

plots would thus provide redundant information for the DFA due 

to multicollinearity. Th erefore, only those explanatory variables 

measured at Plot E4 were used in the DFA: forest potential evapo-

transpiration (ETp), rainfall contribution to the soil surface (pP + 

DP), and intercepted fog water dripping from the canopy (DF). 

While (pP + DP) and DF are considered soil surface water inputs, 

ETp is related to tree water uptake from the root zone and it 

represents a soil water output. As was done with the response √ε 
time series, the seasonal component observed in the explanatory 

variables was removed by seasonal standardization. Additionally, 

those explanatory variables exhibiting no seasonality were normal-

ized to facilitate interpretation and comparison of the regression 

parameters (Zuur et al., 2003b; Zuur and Pierce, 2004) resulting 

from the DFA.

Results and Discussion

Visual Exploratory Analysis 
of Experimental Time Series

Figure 2 shows the 2-yr observed daily variation for the three 

hydrologic fl uxes determined for Plot E4 and the soil refractive 

index measured at the four plots. Visual inspection of the eight √ε 
time series (Fig. 2d) suggests the existence of common trends in 

√ε, but diff erences between plots and depths are also observed. It is 

noted that for Plots E1, E2, and E4, √ε time series at 0.15 and 0.30 

m exhibit similar dynamics. In contrast, at Plot E3, a relative 
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lack of √ε change is observed at the 

0.30-m depth from October 2003 

through June 2004; however, √ε 
shows marked changes at Plot E3 in 

the upper monitoring depth. Th e √ε 
dynamics at E1 are smoother than 

those observed at the other three 

plots. Th e reasons for the diff erences 

observed among plots and depths 

are not clear, but may be related to 

soil heterogeneity, diff erences in soil 

surface conditions, preferential fl ow, 

the infl uence of vegetation type, etc. 

In general, soil water dynamics at the 

four plots and at both monitoring 

depths (0.15 and 0.30 m) exhibited 

higher √ε values during October 

to June (the rainy period), which 

decreased progressively to lower √ε 
during July to September (the dry 

period). Soil wetting and drying at 

the 0.15-m depth were markedly 

reflected in the 0.15-m soil depth 

data, with sharp √ε changes during 

precipitation events. Th e amount of 

rainfall reaching the soil surface (i.e., 

the sum of throughfall and inter-

cepted rainfall dripping from the 

canopy) followed a cyclic pattern of 

wet (October–June) and dry months 

(July–September) (Fig. 2a). In con-

trast, the amount of intercepted fog 

water dripping from the canopy (DF) 

was more evenly distributed during 

the measurement period (Fig. 2b). 

Potential evapotranspiration (ETp) 

was generally greatest during the 

dry period and least during the rainy 

period (Fig. 2c). Penman–Monteith 

ETp was compared with the tree sap 

fl ow rate (QSF) to assess whether the 

ETp and tree transpiration trends were 

consistent. Figure 3 illustrates the evo-

lution of ETp and QSF for a selected 

tree from April until October 2003, and 

shows good agreement in the temporal 

patterns exhibited by the two variables, 

with a cross-correlation coeffi  cient of 

0.87. The corresponding patterns in 

ETp and QSF indicated that plant water 

uptake was never limited, possibly due 

to root water availability and uptake 

at depths below 0.30 m. Water uptake 

from greater depths is supported by a soil 

survey of the watershed (Th issen, 2001) 

that documented abundant roots down 

to a depth of 1.15 m. Yearly totals for 

pP + DP, DF, and ETp at Plot E4 were 

F®¦. 2. EvoluƟ on of observed daily hydrologic fl uxes at Plot E4: (a) rainfall contribuƟ on to the soil 
surface as the sum of throughfall (pP) and canopy drip (DP); (b) intercepted fog water dripping 
from the canopy (DF); and (c) potenƟ al evapotranspiraƟ on (ETp); (d) evoluƟ on of measured daily 
soil water content (expressed as the soil refracƟ ve index, √ε) determined by Ɵ me domain refl ec-
tometry (TDR) at 0.15- and 0.30-m depths in the four plots within the watershed. Plot elevaƟ ons 
are given in meters above sea level (m.a.s.l.).

F®¦. 3. EvoluƟ on of daily potenƟ al evapotranspiraƟ on (ETp) and tree sap fl ow rate (QSF) for a 
selected period (April 2003–October 2003) at Plot E4.
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451, 227, and 629 mm (February 2003–January 2004) and 886, 

166, and 568 mm (February 2004–January 2005), respectively. 

In conclusion, soil water status exhibits physically reasonable 

responses, which may be qualitatively explained by the observed 

hydrologic fl uxes. Following the visual exploratory analysis, DFA 

was used to gain insight into the relative contribution of the 

hydrologic fl uxes to the dynamics of the soil water time series.

Dynamic Factor Analysis

Response and Explanatory Variables

As discussed above, seasonality was observed in the ETp and 

eight √ε temporal series, such that seasonal standardization was 

conducted before the DFA to remove the seasonal component. 

Th e deseasonalized time series for these two variables are denoted 

here as √ε* and ETp*, respectively. In contrast, pP + DP and DF 

did not exhibit a clear periodic pattern, but they were normalized 

to facilitate the interpretation of the DFA results. Normalization 

of pP + DP and DF was accomplished by subtracting their respec-

tive mean and dividing by their standard deviation. Th e resulting 

transformed time series, denoted here as (pP + DP)* and DF*, 

are thus zero centered, have unit variance, and are unitless. From 

a hydrologic point of view, the soil-water-status response vari-

able may be related to the explanatory hydrologic-fl ux variables 

using two diff erent approaches: (i) by relating instantaneous √ε* 

to cumulative daily total values of the hydrologic fl uxes or (ii) 

by relating daily changes in √ε* (defi ned as Δ√ε*) to discrete 

daily total values of the hydrologic fl uxes (see above). Th e former 

approach was abandoned after verifying the existence of multicol-

linearity among the explanatory variables expressed as cumulative 

daily totals (VIFs > 5). In contrast, evidence of multicollinearity 

was greatly reduced for the latter approach (VIFs < 1.2). Th us, 

the DFA reported here was ultimately done using sn = Δ√ε* and 

discrete daily total hydrologic fl ux values. Figure 4 illustrates the 

eff ect of applying the √ε* and Δ√ε* transformations to the Plot 

E4, 0.15-m-depth response variable.

Common Trends in Soil Water Status

Th e DFA is based on modeling the observed Δ√ε* response 

time series in terms of several components. Various DFMs were 

formulated, diff ering in the number of common trends and 

explanatory variables used (Table 2). Evaluation of the Ceff  and 

AIC statistics indicates fi rst that, when no explanatory variables 

(K = 0) are considered, the DFM that best described the eight 

response time series with a minimal number of common trends 

is that defi ned by one common trend (M = 1, AIC = 5869, 

Ceff  = 0.717). Th e inclusion of additional trends in the DFMs 

resulted in slightly higher Ceff , but also higher AICs (Table 2). 

Hence, the variation observed in the soil refractive index at the 

two monitoring depths in the four plots may be described by 

a single trend shown in Fig. 5a. Th is trend illustrates the vari-

ability, which is common to all time series. It may be viewed 

as a “black box” accounting for the soil properties and physical 

processes (soil surface water inputs and outputs, water fl ow in 

the entire soil profi le, etc.) involved in the soil water dynamics. 

Th us, the common trend may be interpreted solely as unexplained 

variability. Although yet unexplained, the DFA suggests that the 

contribution and interactions of these eff ects are common to all 

response time series regardless of the depth and monitoring loca-

tion within the watershed. To what extent each response time 

series is infl uenced by this common trend is quantifi ed by the 

canonical correlation coeffi  cients (ρ1,n) shown in the right panel 

in Fig. 5a. Th e common trend exhibited high positive correla-

tions (ρ1,n > 0.8) with all response time series for Plots E2, E3, 

and E4 and moderate correlations with those Δ√ε* for Plot E1. 

F®¦. 4. Examples of Ɵ me series of the (a) untransformed soil 
refracƟ ve index (√ε), (b) the deseasonalized √ε (√ε*), and (c) 
daily changes in √ε* (Δ√ε*) for Plot E4 at the 0.15-m depth. The 
dynamic factor analyses for this study were done using Δ√ε* trans-
formed values and discrete daily total hydrologic fl ux values.

T��½� 2. SelecƟ on of dynamic factor models (DFM) based on per-
formance coeffi  cients (Akaike’s informaƟ on criterion [AIC] and the 
coeffi  enct of effi  ciency [Ceff ]). Italicized numbers indicate the best 
DFM for each type, with and without explanatory variables.

Explanatory variables† Common trends AIC‡ Ceff §
None 1 5869 0.717
None 2 5932 0.800
None 3 5954 0.799
ETp*, (pP + DP)* 1 5702 0.719
ETp*, DF* 1 5842 0.719
ETp* 1 5852 0.718
(pP + DP)* 1 5711 0.718
ETp*, (pP + DP)*, DF* 1 5691 0.720

ETp*, (pP + DP)*, DF* 2 5745 0.800

† ETp*, seasonally standardized potenƟ al evapotranspiraƟ on; (pP + DP)*, 
standardized rainfall contribuƟ on to the soil surface as the sum 
of throughfall and canopy drip; DF*, standardized intercepted fog 
water dripping from the canopy.

‡ The lowest number represents the best model.
§ Computed with the combined set of predicted vs. observed values for 

the eight daily change in the deseasonalized soil refracƟ ve index 
(Δ√ε*) Ɵ me series.
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Additionally, Fig. 5b illustrates the DFA results after including 

an additional trend. Th e fi rst common trend was important for 

explaining all response time series (ρ1,n > 0.65), and the second 

one complements the description of these, especially of Plots E2 

and E3 at 15-cm depth, which showed moderate correlations (ρ1,n 

< 0.75) with the fi rst trend. Performing the DFA with a second 

trend increases the degrees of freedom of the DFM and thereby 

improves its goodness of fi t (Ceff  of 0.717 vs. 0.800), but the 

penalty for inclusion of the additional parameters is an increase in 

the AIC (5869 vs. 5932) (Table 2). Th is DFM with two common 

trends may be viewed as a way to split the unexplained variability; 

however, the simpler M = 1 DFM model was preferred.

RelaƟ ve ContribuƟ on of Hydrologic Fluxes

In an attempt to reduce the unidentifi ed variability by the 

one-common-trend DFM selected above, explanatory variables 

were introduced into the analysis. Th e DFMs that were evalu-

ated using diff erent combinations of explanatory variables and 

common trends are given in Table 2. Th e three explanatory 

variables used were the ETp*, (pP + DP)*, and DF* time series 

that correspond with the original time series shown in Fig. 2a to 

2c. Disaggregating the water output and inputs across the soil 

surface into the three separate terms [ETp*, (pP + DP)*, and 

DF*] permitted evaluation of the individual contribution of each 

explanatory variable to the soil water status temporal dynamics.

Th e number of common trends and performance coeffi  cients 

for these explanatory-variable models are given in Table 2. Based 

on the diff erent Ceff  and AICs obtained, the best DFM (AIC = 

5691, Ceff  = 0.720) included one common trend and the three 

explanatory variables [ETp*, (pP + DP)*, and DF*]. By intro-

ducing explanatory variables into the DFM, one may expect a 

reduction in the importance of the common trend (lower ρ1,n) or 

an improvement in the goodness of fi t. Th e left panel in Fig. 6a 

illustrates this common trend, while the corresponding canonical 

correlation coeffi  cients (ρ1,n) are shown in the right panel. Th e 

trend is similar to that obtained when the explanatory variables 

F®¦. 5. Com-
mon trends 
and associ-
ated canonical 
correlaƟ on coef-
fi cients (ρm,n) 
for the dynamic 
factor model 
without explan-
atory variables 
(K = 0) and (a) 
one common 
trend and (b) 
two common 
trends. The 
E#_## notaƟ on 
represents the 
plot number 
and measure-
ment depth 
idenƟ fi er (e.g., 
E1_15 cor-
responds to 
Plot E1 at the 
0.15-m depth). 
Dashed lines in 
the right panels 
delimit minor 
(|ρm,n| < 0.30), 
low (0.30 ≤ 
|ρm,n| < 0.50), 
moderate (0.50 
≤ |ρm,n| ≤ 0.75), 
and high (|ρm,n| 
> 0.75) correla-
Ɵ on bounds.
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were not included in the DFA (Fig. 5a), but the lower magnitude 

of ρ1,n indicates that the infl uence of this common trend on each 

of the eight response time series decreased when hydrologic fl ux 

information was included in the DFM (cf. Fig. 5a and 6a). In 

addition, the DFM that included the three hydrologic explana-

tory variables (K = 3) yielded a Ceff  (0.720) that was similar to 

that for the K = 0 DFM (0.717). Th erefore the common trend in 

Fig. 5a, which represents the total variability observed in the soil 

refractive index time series, can be split into the contribution of 

the hydrologic fl uxes plus the remaining unexplained variability 

represented by the common trend in Fig. 6a. In others words, by 

including the hydrologic explanatory variables into the DFM, we 

have managed to reduce the unexplained variability described by 

Fig. 5a. Th is conclusion is not constrained to considering one 

single trend (M = 1) but is also valid for M = 2 (cf. Fig. 5b and 

6b, Table 2). Hence, both the fi rst and second trends in Fig. 5b 

contain information already described by the hydrologic fl uxes.

Th e DFA provides regression coeffi  cients (βk,n) for each 

explanatory hydrologic variable. Since the explanatory variables 

were standardized, the corresponding βk,n quantify their rela-

tive importance within the DFM (Zuur et al., 2003b). Figure 

7 shows the regression coeffi  cients used for modeling Δ√ε* at 

both monitoring depths and at the four plots. Both ETp* and (pP 

+ DP)* were found to have a signifi cant (t value > 2) infl uence 

on the eight response time series. According to Fig. 7a and 7b, 

the regression coeffi  cients β(pP+DP)*,n are in general higher than 

βETp*,n, indicating that the contribution of rainfall to the tempo-

ral dynamics of √ε within the watershed is larger than the eff ect 

of potential evapotranspiration. Regarding the particular infl u-

ence of these hydrologic variables on the individual Δ√ε* time 

series for each plot, the higher β(pP+DP)*,n values corresponding 

to 0.15 m suggest that (pP + DP)* is relatively more impor-

tant for describing Δ√ε* at the upper monitoring depth at Plots 

E2, E3, and E4 than it is at Plot E1 (Fig. 7b). In contrast, the 

βETp*,n values indicate no consistent infl uence of ETp* on soil 

water status within or among depths and plot locations (Fig. 7a). 

Th is is not surprising, since the approach followed in this analysis 

(limited by the available information) does not consider that plant 

F®¦. 6. Com-
mon trends 
and associ-
ated canonical 
correlaƟ on coef-
fi cients (ρm,n) 
for the dynamic 
factor model 
with three 
explanatory 
variables (K 
= 3) and (a) 
one common 
trend and (b) 
two common 
trends. The 
E#_## notaƟ on 
represents the 
plot number 
and measure-
ment depth 
idenƟ fi er (e.g., 
E1_15 cor-
responds to 
Plot E1 at the 
0.15-m depth). 
Dashed lines 
in the right 
panels delimit 
minor (|ρm,n| 
< 0.30), low 
(0.30 ≤ |ρm,n| < 
0.50), moderate 
(0.50 ≤ |ρm,n| ≤ 
0.75), and high 
(|ρm,n| > 0.75) 
correlaƟ on 
bounds.
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water uptake may be satisfi ed by deeper soil moisture and root 

uptake below the upper 0.30-m depth that was monitored in this 

study. Finally, the low and nonsignifi cant regression coeffi  cients 

βDF*,n indicate a negligible eff ect of intercepted fog water on the 

response time series (Fig. 7c). Such a small contribution of fog 

drip from the canopy is in agreement with results of Ritter et al. 

(2008), who studied the importance of the water supplied by 

wind-driven fogs in the same forest watershed using aboveground 

meteorological data and a physically based impaction model. Th is 

is not to say that fog is not relevant, since its presence may limit 

tree transpiration by reducing global radiation, vapor-pressure 

defi cit, and air temperature (Burgess and Dawson, 2004; Ritter 

et al., 2009).

Th e factor loadings γ1,n for each plot and depth are shown 

in Fig. 7. Th e magnitude and sign of γ1,n determine how the 

common trend (Fig. 6a) is related to the original time series 

within the best (M = 1, K = 3) DFM. Both the γ1,n and βk,n 

are weighing coeffi  cients within the DFM (see Eq. [14]) and, 

because the time series were standardized, they may be compared. 

Compared with the regression coeffi  cients discussed above (Fig. 

7a–7c), the higher γ1,n values for all plots and monitoring depths 

(Fig. 7d) indicate that the weight of the common trend within the 

DFM is important. We may thus conclude that the information 

accounted by the hydrologic fl uxes included in the DFM repre-

sents only part of the total unexplained variability (common trend 

in Fig. 5a) in the observed soil water dynamics. Th is means that 

part of the information contained in this common trend remains 

unexplained and the three selected hydrologic fl uxes alone do not 

completely describe the changes in soil water status.

In addition to the above discussion based on the interpreta-

tion of the DFA results, the performance of the DFM may also 

be evaluated by extrapolating the best (M = 1, K = 3) DFM to 

the original data set (Fig. 2d). To extrapolate the selected DFM to 

the original data set, Ceff  were computed from the measured and 

fi tted response √ε time series, instead of Δ√ε*. For this purpose, 

the fi tted Δ√ε* values obtained with the best DFM were back-

transformed to √ε* values and then again to √ε (see Fig. 4). In 

general, the Ceff  for the eight original soil water status time series 

ranged from 0.818 to 0.924 and indicated that the selected DFM 

successfully predicted the observed temporal variability in topsoil 

water status within the forest watershed. It is noted that the back-

transformation implies an improvement in the goodness of fi t for 

the untransformed data series relative to that reported for the best 

(M = 1, K = 3) DFM that used the Δ√ε* data series (Ceff  = 0.717). 

Th is result stresses the importance of the seasonal component in 

the temporal dynamics of the soil refractive index.

Conclusions
Detailed hydrologic, multivariate, time-dependent data sets 

of soil water status (expressed in terms of the TDR soil refractive 

index) in the topsoil of a forest watershed were studied using DFA. 

First, the analysis served to successfully identify a single trend 

common to all observed time series monitored at two depths and 

at four locations within the watershed. Th e resulting DFM, based 

on such a common trend, described satisfactorily each of these 

temporal data sets. Th is trend represents the unexplained variabil-

ity common to each of the eight time series and it may be viewed 

as a black box that accounts for all the factors and processes 

involved in the soil water dynamics (e.g., soil properties, physical 

and biological processes, etc.). Second, the inclusion of selected 

hydrologic fl uxes (forest potential evapotranspiration, rainfall, and 

fog drip) as explanatory variables in the DFA resulted in lower 

F®¦. 7. Regression coef-
fi cients (in absolute value) 
and common-trend factor 
loadings for the dynamic 
factor model (DFM) selected 
as the best daily change 
in the deseasonalized soil 
refracƟ ve index (Δ√ε*) Ɵ me 
series model for each fi eld 
plot (E1–E4) and depth (0.15 
and 0.30 m). Shown are 
regression coeffi  cients for 
(a) deseasonalized potenƟ al 
evapotranspiraƟ on, ETp*; 
(b) standardized through-
fall plus canopy drip, (pP + 
DP)*; and (c) standardized 
intercepted fog-water drip, 
DF*; as well as (d) the factor 
loadings (γ1,n).
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canonical correlation coeffi  cients and, therefore, a reduction in 

the unexplained variability in the observed data. Evaluation of 

the DFM regression coeffi  cients showed that the rainfall contri-

bution to the soil surface (throughfall plus canopy dripping) and, 

to a lesser extent, forest potential evapotranspiration were the 

predominant variables that described temporal changes in the soil 

water status. Compared with the  rainfall contribution, regression 

coeffi  cients for intercepted fog water dripping from the canopy 

were one order of magnitude lower, and indicated a negligible 

direct eff ect of fog water on the soil water dynamics. Nonetheless, 

fog may have an indirect eff ect on soil water depletion because its 

presence can lower the evaporative demand and, in turn, reduce 

evapotranspiration. It was demonstrated that using DFA, the 

complex variability in multivariate hydrologic time series could 

be simplifi ed by a regression method without the need of a priori 

detailed information about site-specifi c characteristics such as soil 

properties, vegetation cover, etc. Finally, DFA may be considered 

a useful scaling technique, whereby a (single) common trend, 

together with spatially dependent regression parameters, allowed 

us to reproduce time series sampled at diff erent locations within 

the watershed.
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