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Remote sensing, in combination with multivariate geostatistical methods, has the potential to improve the
prediction of soil properties at landscape scales. In the Everglades region, and particularly in Water
Conservation Area 2A (WCA-2A), phosphorus enrichment has drawn a lot of attention and has led to an
extensive documentation of different aspects of the degradation of the system. This study presents a hybrid
geospatial modeling approach to predict soil total phosphorus (TP) using remotely-sensed data and ancillary
landscape properties as supporting variables. Two remote sensors, Landsat 7 Enhanced Thematic Mapper
(ETM)+ and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were used to
investigate relationships between spectral data and indices and soil TP. A variation of a vegetation index
(Normalized Difference Vegetation Index – NDVI green) was found to be the most effective in predicting floc
TP values, due to its capacity to capture small variations in chlorophyll a that are associated to TP levels in
periphyton, especially in aquatic/non-impacted areas. On the other hand, NDVI, a more traditionally used
vegetation index, was still a good indicator of TP variability, particularly in the soil surface layer, due to its
stronger relationship with impacted areas dominated by cattail (Typha domingensis Pers.).
Findings from this study indicate that: a) remote sensing can play an important role in optimizing monitoring
of environmental variables, particularly below-ground properties of floc and soils; b) because of limitations
about the numbers and frequency of soil samples that can be taken, the combination of remote sensing and
geostatistics could represent a non-invasive and cost-effective method to monitor soil nutrient status in
complex wetland systems, and c) variations of traditional remote sensing indices such as NDVI can be used to
better capture the spatial variability associated with soil and periphyton TP.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Wetlands are highly complex ecosystems consisting of mixtures
of open water, ridges and sloughs, macrophytes, hammocks/trees,
periphyton, flocculent material/detritus, and soils. Some of these
ecosystem components can be directly captured (e.g., vegetation,
water) or derived with the assistance of remote sensing data. Other
properties (e.g., soils) that are not directly sensed can be inferred via
statistical relationships combining above-ground and submerged
components. Such inferential models that relate remote sensing
data to site-specific soil observations in subtropical wetland have been
presented by Rivero et al. (2007a) and Grunwald et al. (2007a).
Foundation, 18001 Old Cutler
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Unlike other aquatic ecosystems, wetlands represent a challenge
because they require integrating our knowledge about remote sensing
applications for both terrestrial and aquatic ecosystems. There is a
need to revise and adapt spectral indices and methods that have been
developed for specific aquatic or terrestrial ecosystem components
to better capture and understand the diversity and variability of the
various communities and features present in wetlands. Larger wet-
lands such as the Greater Everglades (Noe et al., 2001) and Pantanal
(Junka and Nunes de Cunhab, 2005) have been impacted by
anthropogenic nutrient influx that altered their structure, functions,
and resilience. Characterization of soil nutrient status in thesewetland
ecosystems is needed to design and implement management systems
that reverse ecological degradation.

Multispectral scanners, such as Landsat, Satellite Pour l'Observa-
tion de la Terre (SPOT), and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), have been used in the mapping of
wetlands, and wetland change detection analysis with considerable
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accuracy. Ozesmi and Bauer (2002) provided a general review of
remote sensing applications in wetlands, while other authors have
focused on specific applications in the USA (Ackleson & Klemas, 1987;
Sader et al., 1995; Sahagian &Melack, 1996; Baban,1997; Lo &Watson,
1998; Townsend & Walsh, 2001), South America (Gleiser et al., 1997;
Mertes et al., 1993), Africa (Pope et al., 1992; Haack, 1996; Munyati,
2000), and Australia (Johnston & Barson, 1993, Harvey & Hill, 2001).
Although the most widely use of remote sensing has been on
vegetation classification and land cover mapping, other uses have
been monitoring of biomass changes and stress on wetland vegeta-
tion. Many studies have evaluated the ability of remote sensing to
quantify biophysical measures such as leaf area index (LAI), the
fraction of absorbed photosynthetically active radiation (FAPAR) and
biomass (Numata et al., 2003). However, not much research has been
presented in correlating remotely-sensed spectral responses with
biogeochemical properties of soils (Grunwald et al., 2007a).

Wetland soils provide a memory of natural and anthropogenic
stresses including fire, hurricanes and tropical storms, point and non-
point source pollution and hydrologic change. Soils are a highly
variable, dynamic component of the environment and sustainability of
soil resources is essential for ecosystem function (Ustin et al., 2004).
Thus, understanding the spatial distribution and variability of soil
biogeochemical properties, including soil total phosphorus (TP) and
their relationship with other ecological properties, is essential for
ecosystem assessment, restoration and management.

The objective of this study was to evaluate the use of spectral
signatures and indices from two remote sensors (ASTER, and Landsat
7 Enhanced Thematic Mapper, ETM+) to improve predictions of TP
in soils using inferential models in a subtropical wetland. We focused
on floc, the top layer of unconsolidated organic matter, and the sur-
face soil, composed by the 10 cm of consolidated surface peat. We
hypothesize that vegetation and water indices derived from ASTER
and Landsat ETM+ are capable of capturing subtle changes in chlo-
rophyll a and carotenoids in the terrestrial and aquatic vegetation
and will produce the best quantitative functional relationships with
floc and soil surface TP. The specific hypotheses were: a) areas with
high TP concentrations have increased Normalized Difference Vegeta-
tion Index (NDVI), showing as a consequence of higher absorbance
by chlorophyll in the visible bands from the dominant cattail (Typha
domingensis Pers.) vegetation, and b) non-impacted areas with low TP
concentrations have low reflectance in the infrared (IR) band and
high reflectance in the green band, driven by the chlorophyll a and
carotenoids content in sawgrass (Cladium jamaicense Crantz) and
periphyton.

2. Remote sensing spectra and vegetation indices

Remote sensing can be used to measure biophysical vegetation
properties (e.g., chlorophyll content) and productivity in both vege-
tation and in the assemblage of algae and microorganisms (periph-
yton) that is present in the aquatic portion of the system. Since
vegetation and periphyton are sensitive to soil nutrient enrichment
inference models have value to estimate the magnitude and distribu-
tion of nutrient enrichment in soils across both impacted and non-
impacted areas (Rivero et al., 2007b). Indirect, statistical relationships
may exist between spectral signatures and below-ground properties
(e.g., soil TP at 0–10 or 10–20 cm depth) in wetlands. These empirical
models can be used as cheap and cost-effectivemeasurements derived
by remote sensing in order to improve predictions from costly, labor-
intensive and typically sparsely measured soil properties (Grunwald,
2006).

Griffith (2002) provided an extensive review of a variety of
remote sensing imagery that can be used for assessing aquatic
ecosystems and water quality. He also evaluated the potential of
NDVI and NDVI-derived metrics for watershed monitoring and water
quality assessment as well as its sensitivity to biophysical character-
istics of vegetation such as leaf area, net primary productivity, levels
of photosynthetic activity, and vegetation phenology. The NDVI and
vegetation phenological metrics (VPM) may serve as early-warning
signals of stress to aquatic ecosystems (Munn, 1988; Kelly & Harwell,
1990).

A recent study found strong correlations between above-ground
properties detectable with remote sensing (e.g., NDVI, water band
index) and other ecosystem properties related to soil and water, such
as ecosystem microbial respiration (Boelman et al., 2003). Narrow
spectral bands can measure many individual absorption features
of interest to ecologists, such as pigment composition and content
(Gitelson & Merzlyak, 1997), canopy water content (Peñuelas et al.,
1997), canopy dry litter or wood (Asner et al., 1998) and other
properties of foliar chemistry (Curran, 1989; Martin & Aber, 1997). The
use of vegetation indices assists in identifying relationships with some
of these properties. These indices also surpass the limitations of single
wavebands, minimizing external or environmental factors such as
lighting conditions, view and solar angles, and background reflection,
and thus tend to correlate better with chlorophyll content (Carter
et al., 1996).

The NDVI has been probably the most widely studied of these
indices. Developed by Rouse et al. (1973) it has been adopted and
applied as a proxy in ecological applications, as reviewed by Boelman
et al. (2003). The NDVI uses the characteristic “red edge” feature of
plant spectra as an indicator of plant vigor. However, some vegetation
indices that combine near-infrared (NIR) and red bands minimize
background interference, but are less sensitive to chlorophyll con-
centration, while others that combine NIR and another visible band
are more sensitive to chlorophyll concentration (Daughtry et al.,
2000).

The green edge, centered around 520 nm (Horler et al., 1983) has
been found to be very similar to that of the red edge that is based on
the spectral region at the limit of the red and near-infrared wave-
lengths (680–780 nm) characterized by a sharp rise in the plant
reflectance (Filela & Peñuelas, 1994; Horler et al., 1983). Gitelson and
Merzlyak (1997) pointed out that the green edge is primarily det-
ermined by a mix of carotenoids, chlorophylls a and b, while the red
edge is primarily driven by chlorophyll a. The green band tends to be
sensitive to changes in chlorophyll especially in areas with low con-
centration of nutrients suggesting their potential use in non-impacted
areas of the Everglades.

Arst (2003) used Hyperion hyperspectral imagery of the Baltic Sea
to observe seasonal differences in spectral reflectance related to sea-
sonal blooms of cyanobacteria. Reflectance peaks occurred in the
green and the IR bands, the latter one coincidingwith the last stages of
cyanobacteria blooms. Pigments in cyanobacteria are correlated with
the following wavelengths: phycocyanin (approximately 595 nm
excitation wavelength, and 650 nm, measured wavelength), and
phycoerythrin (approximately 530 nm excitation wavelength, and
570 nm measured wavelength) (Matt Previte, YSI – Endeco – Sontek
regional manager, personal communication – www.ysi.com, www.
sontek.com).

Seasonal differences have been documented in the Everglades
by Craighead (1971) and Rutchey and Vilchek (1994, 1999). Rutchey
and Vilchek (1994) used SPOT imagery to produce a classification
map of vegetation (10 classes) inWater Conservation Area-2A (WCA-
2A). They pointed out that classification inaccuracies are due to
ambiguous spectral characteristics of periphyton mixed into the
vegetation matrix. The microfloral colonies tend to rise to the surface
in the late summer and frequently form large floating masses of
variable density on the water surface and around the stems of
wetland macrophytes (Rutchey & Vilchek, 1994). Based on these
results and on a personal communication with one of the authors
(Rutchey, personal communication, July 2006), the optimal time to
conduct remote sensing analysis in Everglades wetlands is early
spring.

http://www.ysi.com
http://www.sontek.com
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3. Study area: Water Conservation Area-2A

3.1. General description

Water Conservation Area-2A (43,281 ha) is a subtropical freshwater
marsh located within the Greater Everglades, Florida. This naturally
oligotrophic system has been impacted by nutrient inputs from the
Everglades Agricultural Area (EAA) through a complex system of levees
and canals since the beginning of the 20th century (McCormick et al.,
2001). Soil and vegetative patterns in WCA-2A are influenced by wet
and dry periods, nutrient influx, invasive species,fire, and other stresses.
Table 1 provides an overview of vegetation types and coverage within
the study area derived from a vegetation/land cover GIS dataset (Florida
Fish and Wildlife Conservation Commission, 2003).

Soils in the area are Histosols and encompass the Everglades and
Loxahatchee peat formations that make up the ridge and slough
system in the Everglades (Davis, 1994; Gleason et al., 1974). Elevation
ranges from 2.0 to 3.6 m above mean sea level (Wu et al., 1997)
generating slow sheet flow running approximately north–east to
south–west. Surface hydrology is controlled by a system of levees and
water control structures along the perimeter of WCA-2A. The major
surface water inflow points are the pump station and water control
structures located in the northern perimeter of the area.
3.2. Impacted vs. non-impacted areas in Water Conservation Area-2A

The biogeochemistry of soils, water and vegetation in the
Everglades, and particularly in WCA-2A, has been greatly affected by
nutrient influx from the EAA leading into two general levels of
impacts, as defined by several authors: impacted, and non-impacted
(DeBusk et al., 2001; Newman et al., 1996; Noe et al., 2001).

Major ecological changes induced by P influx have been associated
with the expansion of cattail, in WCA-2A particularly in areas close to
water control inflows. The typical C. jamaicense Crantz communities
have converted to Typha/Cladium mixes (Jensen et al., 1995). Soil TP
and vegetation associated with these levels of disturbance have been
documented extensively. Newman et al. (1996) found significantly
higher mean soil TP concentrations in nutrient-enriched areas domi-
nated by cattail when compared to non-impacted areas. Historic
soil TP threshold values in impacted areas have been reported as
450 mg kg−1 (Grunwald et al., 2004), 500 mg kg−1 (DeBusk et al.,
2001), and 650 mg kg−1 (Wuet al.,1997). Typical soil TP concentrations
in non-impacted areas of the Everglades range from 200 mg kg−1

to 500 mg kg−1 (Koch & Reddy, 1992; Craft & Richardson, 1998; Orem
et al., 2002). The distance of P enriched areas from water control
structures and the extension of cattail-dominant areas have been
estimated between 5 and 7 km in the northern portion ofWCA-2A (Noe
et al., 2001). Higher levels of soil TP and a widespread shift in plant
communities and ecotypes have been documented by Davis (1991) and
(Newman et al., 1996, 1998). Encroachment of homogeneous mono-
typic cattail stands in the northern section of the Everglades, including
WCA-2A, and a loss of ecotopic features (ridges and sloughs) in the
southern part are indicators of change.
Table 1
Vegetation/land cover units in WCA-2Awith area and percentage, from the Florida Fish
and Wildlife Conservation Commission (2003).

Vegetation/land cover Area (ha) %

Sawgrass marsh 26,445 61.1
Freshwater marsh and wet prairie 7012 16.2
Cattail marsh 6838 15.8
Shrub swamp 1731 4.0
Open water 1082 2.5
Hardwood swamp 173 0.4

Total WCA-2A 43,281 100.0
Interior non-impacted waters across much of the Everglades are
low in P and relatively high in dissolved minerals. These areas are
dominated by a periphyton assemblage of microbial mat communities
of microorganisms that grow on submerged surfaces, and are formed
by complex assemblages of mainly cyanobacteria, diatoms and
eukaryotic algae (McCormick & O'Dell, 1996; McCormick et al.,
1996). Periphyton plays an important role in removing dissolved
inorganic P (DIP) from the water column in wetland and littoral
habitats because of their high affinity for P and rapid response to
inputs (Scinto & Reddy, 2003). Periphytonmats store large amounts of
P and contribute to the maintenance of low TP availability in the
marsh (McCormick et al., 1998).

The types of algae comprising periphyton in WCA-2A are driven by
nutrient gradients across the system. McCormick et al. (1999)
documented replacement of endemic periphyton communities by
algal species typical of more eutrophic waters. Periphyton is dominated
by green filamentous algae in impacted areas near the canal, containing
higher chlorophyll a and bacteriochlorophyll levels than the periphyton
in non-impacted areas. Periphyton ismore calcareous anddominated by
diatoms (fucoxanthin) in non-impacted areas. A close relationship
betweenperiphyton P andwater columnP along themarsh gradient has
been demonstrated by McCormick et al. (1998).

3.3. Wetland components in Water Conservation Area-2A

Wetland components that were linked to spectral data in this
study included a) floc and soils, b) periphyton, c) vegetation
(macrophytes and tree islands), and d) open water.

3.3.1. Floc and soils
We distinguished between flocculent detritus or unconsolidated

sediment (called floc) and soil (or peat). The floc layer is formed of
unconsolidated organic matter that overlies a fibrous peat layer in
many areas of the Everglades, and is variously called muck or
unconsolidated peat (DeBusk et al., 2001), or the upper loose detrital
layer (Gaiser et al., 2005). According to DeBusk et al. (2001)within the
minimally impacted sawgrass marsh of WCA-2A, this floc layer is
composed of living and dead periphyton material, while in the highly
nutrient-enriched cattail areas, near the S-10 inflows, the floc
apparently originates from decaying macrophytes as well as algae
and bacteria. In contrast, soil is defined as a consolidated surface layer
or peat (DeBusk et al., 2001).

The distinction between floc and periphyton has been used in
various wetland studies in the Everglades (Gaiser et al., 2005; Noe
et al., 2001; DeBusk et al., 2001). Soil is one of the last ecosystem
components among others (water, periphyton, and macrophytes) to
show changes in P-enrichment and the most difficult component to
detect changes due to its high variability (Noe et al., 2001; Grunwald
et al., 2005, 2007b). Soils respond slowly to elevated P levels, in
contrast to floc and periphyton that assimilate P rapidly and stimulate
other significant biotic alterations. This is consistent with findings that
soils become enriched after input levels exceed the capacity of the
biota to sequester P from the water column or detritus (Qualls &
Richardson, 2000; Gaiser et al., 2005). While microbes and algae
control the short-term uptake of P in most wetlands, soil and peat
accretion determine long-term storage (Noe et al., 2001).

3.3.2. Periphyton
The periphyton community is an assemblage of algae, bacteria,

fungi and microfauna that occurs at the soil surface attached to
macrophytes, and at the water surface (Noe et al., 2001; Gaiser et al.,
2005). Themost common Everglades periphyton occurs in association
with eastern purple bladderwort (Utricularia purpurea), a submerged
aquatic macrophyte common inwet prairie and slough habitats. Three
forms of periphyton can be distinguished: a) metaphyton, floating
mats, which are either free-floating or associated with floating



Fig. 1. a). Periphyton in a soil core sample; b). Submerged periphyton overlying floc and
soil in the Everglades. c). Overview of floating periphyton mat during wet season
(August 2003) in WCA-3A, Everglades (Photos: Todd Osborne, Wetland Biogeochem-
istry Laboratory, University of Florida).
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macrophytes; b) epiphyton, attached to the submerged stems of both
living and dead macrophytes; and c) epipelon, benthic periphyton,
overlying the peat soil, associated with sediment microbial commu-
nities (McCormick et al., 1998; Newman et al., 2004)., Metaphyton and
epipelon are the dominant forms of periphyton in WCA-2A.

Periphyton mats tend to be highly calcareous in the Everglades,
(calcite contributes 30–70% to dry mass in non-nutrient-enriched
settings) and contain an assemblage of oligotrophic benthic algae
dominated by blue-green algae and diatoms (Gaiser et al., 2005). These
calcareous mats have been replaced by non-mat forming
algal communities dominated by chlorophytes (Gaiser et al., 2005).
Phosphorus (P) enrichment has been attributed as the cause of the loss
of calcareous (calcium-precipitating) periphyton mats dominated by
blue-green algae and diatoms to periphyton assemblages dominated by
filamentous green algae (McCormick & O'Dell, 1996; McCormick and
Stevenson, 1998; Newman et al., 2004). Although the periphyton is a
category that is typically not consideredwhenmapping vegetation/land
cover in wetlands, it is usually associated with the wet prairies/marsh.
Fig.1 shows three images from soil and periphyton in the Everglades: a)
a soil sample location in the Everglades, during spring season, that
provides anexample of submerged andbenthic periphyton, b) a soil core
that includes a layer of periphyton at the top, in green andwhitish color
(indicating also the presence of a shallow calcareous mat overlying the
core and limiting the light penetration to deeper water depths during
the summer season), and c) an extensive periphyton mat, covering part
of WCA-3A during the summer season, where these mats are more
common and produced the described effect.

3.3.3. Vegetation: macrophytes and shrub/hardwood swamp
communities in tree islands

The general distribution of vegetation communities in WCA-2A is
as follows: macrophyte communities including U. purpurea, Eleocharis
cellulosa, Panicum hemitomon and Sagittaria lancifolia dominate the
sloughs; sawgrass (C. jamaicense Crantz) tends to dominate the
ridges; and cattail (T. domingensis Pers.) dominates the nutrient-
enriched areas near canals and water control structures. Tree islands
are another distinctive vegetated feature of the Everglades wetland
landscape, dominated by shrubs and hardwood swamp species. Tree
islands are areas of slightly higher elevation than the surrounding
freshwater marsh where non-wetland plants have been able to col-
onize. They contrast with the generally low, treeless vegetation
(macrophytes) of the surrounding slough and marsh leading to a
distinctive and rich ecologic habitat for vegetative and wildlife
species. The importance of tree islands in relation with P and other
major nutrients (carbon and nitrogen) is based on the fact that about
6 to 10 times higher P concentrations have been found in them (Orem
et al., 2002). The geochemical characteristics of these areas are
distinctly different from those in the surrounding slough/marsh.
According to Orem et al. (2002) tree islands are net local sinks for
nutrients and they are to some extent responsible for maintaining low
nutrient levels in the remainder of the Everglades.

3.3.4. Open water
Open water, occupies only a small portion (1047 ha – 2.47%) of

WCA-2A, based on measurements from the 2003 land cover / vege-
tation map (Florida Fish and Wildlife Conservation Commission,
2003). The areal coverage of openwater is higher in other areas of the
Everglades such as the Shark River Slough or the overdrained portion
of WCA-3A south.

4. Methods

4.1. Soil data and field data collection

Soil sampling data for WCA-2A were collected in 2003 at 111 sites
between 05/17 and 05/30/2003, based on a random stratified sam-
pling design. Samples were collected and analyzed by the University
of Florida Wetland Biogeochemistry Laboratory. Each sampling site
was located using a global positioning system (GPS) (Garmin



Table 2
Summary of remote sensing indices algorithms related to vegetation and periphyton.

Index or band ratio Authors Algorithms

NDVI Rouse et al. (1973) (R860−R660) /(R860+R660)
NDVI green Gitelson et al. (1996); Tucker

(1979); Daughtry et al. (2000)
(R860−R550) /(R860+R550)

NDWI Gao (1996) (R860−R1240/R860+R1240)
WI Peñuelas et al. (1993) (R900 /R970)

List of acronyms:
NDVI: Normalized Difference Vegetation Index.
NDWI: Normalized Difference Water Index.
WI: Water Index.
NIR: Near-infrared band.
SWIR: Short-wave infrared band.
R refers to reflectance centered at a specific wavelength, shown in subscripts. Table 3

Summary of 32 parameters evaluated for the prediction model for floc and surface
soil TP.

Category Parameter Description Spectral range
or algorithm

Source

ASTER AST B1 ASTER Band 1 (green) 0.52–0.60 mm
Spectral
bands

AST B2 ASTER Band 2 (red) 0.63–0.69 mm

AST B3 ASTER Band 3 (NIR)a 0.78–0.86 mm
AST B4 ASTER Band 4 (SWIR)b 1.60 – 1.70 mm
AST B5 ASTER Band 5 (SWIR)b 2.145–2.185 mm
AST B6 ASTER Band 6 (SWIR)b 2.185–2.225 mm
AST B7 ASTER Band 7 (SWIR)b 2.235–2.285 mm
AST B8 ASTER Band 8 (SWIR)b 2.295–2.365 mm
AST B9 ASTER Band 9 (SWIR)b 2.350–2.430 mm

ASTER AST NDVI ASTER NDVIc (Bnd 3−Bnd 2)/
(Bnd 3+Bnd 2)

Rouse et al.
(1973)

Indices
and PCA

AST NDVI g ASTER NDVI green (Bnd 3−Bnd 1)/
(Bnd 3+Bnd 1)

Tucker (1979)

AST NDWI ASTER NDWId (Bnd 3−Bnd 4)/
(Bnd 3+Bnd 4)

Gao (1996)

AST PCA1 ASTER PCA1e

AST PCA2 ASTER PCA2e

AST PCA3 ASTER PCA3e

Landsat
ETM +

ETM B1 Landsat ETM+
Band 1 (blue)

0.45–0.51 mm

Spectral
bands

ETM B2 Landsat ETM+
Band 2 (green)

0.52–0.60 mm

ETM B3 Landsat ETM+
Band 3 (red)

0.63–0.69 mm

ETM B4 Landsat ETM+
Band 4 (NIR)

0.75–0.90 mm

ETM B5 Landsat ETM+
Band 5 (SWIR)

1.55–1.75 mm

ETM B6 Landsat ETM+
Band 7 (SWIR)

2.09–2.35 mm

Landsat
ETM +

ETM NDVI Landsat ETM+
NDVIc

(Bnd 4−Bnd 3)/
(Bnd 4+Bnd 3)

Rouse et al.
(1973)

Indices
and PCA

ETMNDVI g Landsat ETM+
NDVI green

(Bnd 4−Bnd 2)/
(Bnd 4+Bnd 2)

Tucker (1979)

ETM NDWI Landsat ETM+
NDWId

(Bnd 4−Bnd 5)/
(Bnd 4+Bnd 5)

Gao (1996)

ETM PCA1 Landsat ETM+ PCA1e

ETM PCA2 Landsat ETM+ PCA2e

ETM PCA3 Landsat ETM+ PCA3e

X UTM Xcoordinate (UTM)
Y UTM Y coordinate (UTM)
Dist TI Distance to tree islands Tree islands

extracted
from FWC

FWCf

DistWCS Distance to water
control structures

SFWMDg

FWC hab Vegetation/land
cover

FWC ++

Each parameter includes category, parameter name, description and spectral range,
algorithm and source (when applicable) for WCA-2A.

a NIR: Near-infrared.
b SWIR: Short-wave infrared.
c NDVI: Normalized difference vegetation index.
d NDWI: Normalized difference water index.
e PCA: Principal component analysis.
f FWC: Florida Fish and Wildlife Conservation Commission.
g SFWMD: South Florida Water Management District.
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International, Inc., Olathe, KS, USA) mounted to a helicopter and
labeled with their respective X and Y coordinates in Albers Equal Area
Conic map projection. The GPS systemwas equipped with a real-time
Wide Area Augmentation System to ensure a positional accuracy of
b3 m to locate the sites. Total phosphorus was determined using an
ignition method (Anderson, 1976) followed by the determination of
dissolved reactive phosphorus by an automated colorimetric proce-
dure (U.S. Environmental Protection Agency, 1993, Method 365.1).
Details of the sampling design, field protocol and laboratory analysis
can be found in Rivero et al. (2007b).

4.2. Remote sensing imagery

Two satellite images were selected for the study. The dates of these
images are representative of the wet and the dry season: Landsat
ETM+, (February 2003, end of dry season) and ASTER (September
2003, end of wet season).

Soil samples were collected in WCA-2A during May 2003, which
was constrained by accessibility (water depth) and climatic condi-
tions.We aimed to select satellite imagery as close to the soil sampling
campaign as possible. However, the selection of the satellite imagery
was limited by the following: (i) images needed to be cloud-free
(difficult to achieve during Florida's wet season) to avoid complica-
tions with derivation of spectral indices; and (ii) images needed to
delineate and distinguish the properties (such as chlorophyll content,
periphyton) that were needed to build inferential models with floc/
soil TP; thus, climatic/hydrologic and phenological considerations
were considered as well.

4.2.1. Landsat 7 Enhanced Thematic Mapper (ETM)+
A Landsat 7 ETM+ scene (path: 15/ row: 42, date 02/13/03), was

used for this study. Landsat ETM+ covers an area of 185×185 km, and
includes sevenmultispectral bands with 30 m spatial resolution for all
bands except band 6, which is a thermal infrared (TIR) bandwith 60 m
spatial resolution, and an additional 15 m panchromatic band. A list of
the visible bands is presented in Table 3. This image was obtained and
pre-processed by the Florida Fish and Wildlife Conservation Commis-
sion (2003).

4.2.2. Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)

An ASTER image from 01/09/2002 was obtained from the US
Geological Survey (USGS) – Land Process Distributed Active Archive
Center, established as part of the National Aeronautics and Space
Administration (NASA) Earth Observing System (EOS) Data and
Information System (DIS). The ASTER L1B product (registered
radiance at the sensor) contains radiometrically calibrated and geo-
metrically co-registered data for all the channels acquired previously
through the telemetry streams of the 3 different telescopes in Level-
1A. (Technical Description for ASTER data from: http://lpdaac.usgs.
gov).
The ASTER sensor covers an area of 60×60 km and wide spectral
region with 14 bands from visible to thermal infrared. For the analysis
the 3 visible and near-infrared radiometer (VNIR) bands with a spatial
resolution of 15 m, and the 6 short-wave infrared radiometer (SWIR)
bands with a spatial resolution of 30 m were used. The spectral reso-
lution of these images is shown in Table 3.

4.3. Image data processing

The ASTER data was downloaded in HDF-EOS (Hierarchical Data
Format) that is the standard data format for all NASA Earth products.
The image was imported into ERDAS Imagine Version 9.0 (Leica

http://lpdaac.usgs.gov
http://lpdaac.usgs.gov


Fig, 2. NDVI and NDVI green maps from ASTER (01/09/2002) and Landsat ETM + (02/13/03) remote sensing data. Highest values are shown in lighter colors and lowest values in
darker colors.
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Fig. 3. Landsat ETM+ NDVI green showing a detail of impacted (3a) and non-impacted areas (3b) of WCA-2A.
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Geosystems, Atlanta, USA), which allowed conversion from HDF for-
mat files. In order to use the first 9 bands for the initial exploration of
the bands spectra, the first 3 VNIR bands and the 6 SWIR bands were
stacked and SWIR bands (30 m resolution) resampled into the 15 m
resolution of the VNIR bands. The ASTER image was geometrically
rectified, using USGS digital orthophoto quadrangles (DOQQ) with a
total of 35 ground control points that were selected from both the
image and the DOQQs. The root mean square error (RMSE) was
0.5 pixel (7.5 m). The Landsat ETM+ image was rectified by FFWCC.
Both images were reprojected to a Universal Transverse Mercator
(UTM) projection (Zone 17; Datum: NAD 83).

The following spectral indices were derived from Landsat ETM+
and ASTER images: (i) NDVI, (ii) Green Normalized Difference Vege-
tation Index (NDVI green), and (iii) Normalized Difference Water
Index (NDWI). A summary of formula to derive indices is given in
Table 2.

Brightness values and spectral indices from Landsat ETM+ and
ASTER imagery, respectively, were extracted for each sampling point
with the Spatial Analyst extension using ArcGIS 9.1 (Environmental
Systems Research Institute – ESRI, Redlands, CA). A principal com-
ponent analysis (PCA) was performed with both, the 9 stacked ASTER
bands and the 6 Landsat ETM+ bands, and the first 3 components for
each sensor were incorporated into the analysis.

4.4. Digital ancillary spatial data

Additional ancillary data included a vegetation/land cover map
from FFWCC (2003) and USGS DOQQ that were used for geometric
correction and also for visual comparison of vegetation units. A GIS
layer of water control structures (South Florida Water Management
District, 2005) was used to document the nutrient influx points into
WCA-2A. A tree island layer was produced by reclassification of the
vegetation/land cover raster dataset from FFWCC.

The Euclidean distance for each pixel in the study area to tree
islands and water control structures was calculated using ArcGIS 9.1
Spatial Analyst (ESRI, Redlands, CA) using the Distance/Straight line
function. The ArcGIS software was also used to integrate, analyze and
display data from different sources and software outputs.
4.5. GIS and statistical analysis

A matrix with 32 parameters, compiled for each of the 111 sam-
pling points, was derived using: a) the remote sensing from ASTER
visible and infrared bands (bands 1 to 9), Landsat ETM+7 visible and
infrared bands (bands 1 to 6) and indices extracted from these, and
b) the values extracted from the GIS layers, including vegetation/land
cover, distance to canals, distance to tree islands, and X and Y coor-
dinates. Values for each raster were extracted using the Values to
Points function in ArcGIS 9.1 (Environmental Systems Research
Institute, Redlands, CA). A brief description of each of these param-
eters is presented in Table 3.

To normalize positively skewed soil sampling data a log transforma-
tion was used. The correlation and statistical analysis was conducted
with the SPSS statistical package (SPSS v. 14.0 Lead Technologies).
Scatterplots were generated for graphical interpretation relating



Table 4
Pearson correlation coefficients (r) between floc and surface soil total phosphorus (TP)
in mg kg−1 and other variables in WCA-2A, Everglades.

Variable Log floc TP Log surface soil TP

X UTM 0.196(⁎) 0.194(⁎)
Y UTM 0.449(⁎⁎) 0.397(⁎⁎)
X ALBERS 0.183 0.182
Y ALBERS 0.455(⁎⁎) 0.404(⁎⁎)
ETM NDVI green 0.822(⁎⁎) 0.678(⁎⁎)
ETM NDVI 0.725(⁎⁎) 0.679(⁎⁎)
AST NDVI 0.681(⁎⁎) 0.625(⁎⁎)
AST NDVI green −0.681(⁎⁎) −0.622(⁎⁎)
Distance to tree islands 0.451(⁎⁎) 0.347(⁎⁎)
Distance to control structures −0.736(⁎⁎) −0.603(⁎⁎)
ETM B1 −0.470(⁎⁎) −0.258(⁎⁎)
ETM B2 −0.343(⁎⁎) −0.151
ETM B3 −0.315(⁎⁎) −0.251(⁎⁎)
ETM B4 0.580(⁎⁎) 0.575(⁎⁎)
ETM B5 0.484(⁎⁎) 0.280(⁎⁎)
ETM B6 0.281(⁎⁎) 0.095
AST B1 −0.093 0.014
AST B2 0.003 0.026
AST B3 0.487(⁎⁎) 0.507(⁎⁎)
AST B4 0.504(⁎⁎) 0.350(⁎⁎)
AST B5 0.394(⁎⁎) 0.267(⁎⁎)
AST B6 0.374(⁎⁎) 0.227(⁎)
AST B7 0.316(⁎⁎) 0.218(⁎)
AST B8 0.254(⁎⁎) 0.124
AST B9 0.256(⁎⁎) 0.099
AST PCA1 0.365(⁎⁎) 0.299(⁎⁎)
AST PCA2 0.487(⁎⁎) 0.290(⁎⁎)
AST PCA3 0.524(⁎⁎) 0.538(⁎⁎)
ETM PCA1 0.277(⁎⁎) 0.199(⁎)
ETM PCA2 −0.505(⁎⁎) −0.277(⁎⁎)
ETM PCA3 0.565(⁎⁎) 0.587(⁎⁎)

⁎ Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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spectral data and indices to TP in floc and topsoil using land cover/
vegetation data as complimentary strata.

We used (i) stepwise linear multivariate regression (SLMR), (ii)
non-linear regression (NLR), and (iii) multiple regression to model
the relationship between floc and surface soil TP, respectively, and
the selected variables showing the highest correlations. The inde-
pendent variables included spectral data from Landsat ETM+ and
ASTER, spectral indices, and ancillary geospatial landscape prop-
erties; these were related to dependent variables of TP floc and soil,
respectively. The Pearson correlation coefficient (r), coefficient of
determination (R2) and adjusted R2 were used to evaluate different
models.

5. Results

5.1. Maps of remote sensing indices for ASTER and Landsat 7 ETM+
imagery

The NDVI and NDVI green maps for the ASTER and Landsat ETM+
imagery are shown in Fig. 2. The maps show a gradation from black to
white, where lighter colors correspond to the higher NDVI and NDVI
green values (above 0), and the darker colors correspond to the lowest
(close and under 0) NDVI and NDVI green values, respectively.
Although the fourmaps look very similar at first sight, it is evident that
the Landsat ETM+ images provided more pronounced differentiation
of distinct landscape features such as tree island heads and tails. These
are the smallest features with the lightest gray color in the map,
located in the central and western portion of the area. They are
followed by a light gray color representing areas near canals that are
dominated by cattail and cattail/sawgrass mix. The darker areas in the
west and central portion correspond to the un-impacted areas
dominated by sawgrass and slough communities, with a very small
proportion of open water areas. The white and light gray colors are
indicative of higher NDVI green values (above 0), associated with
impacted areas dominated by cattail, and also with other dense
vegetated areas such as tree islands. The NDVI index has a similar
response to that of NDVI, with higher reflectance in the NIR band and
higher absorbance in the green band. This is due to the chlorophyll a
content and its implications in the absorbance/reflectance with NDVI
green reaching its highest values. Such high NDVI green values are
found in areas of dense vegetation dominated by tree island heads and
tails (white, values as high as 0.44 in the NDVI green map), and also
dense stands of cattail, near canal inflows (white to light gray), where
higher TP values were found.

Areas in darker gray, located in the center and west of the area
coincide with sawgrass with NDVI green values near 0. Those dark
gray to black areas indicate sloughs, with submerged and floating
periphyton and very limited extensions of open water. NDVI green
values are lower than 0 because of the high reflectance in the green
band as a consequence of the chlorophyll a and carotenoids content in
the periphyton, and the high absorbance in the IR caused by the
overlying periphyton. Both NDVI green and soil TP reach their lower
values in these un-impacted areas.

Fig. 3 shows details of a Landsat ETM+ NDVI green image, with a
gradation from dark blues for most impacted areas to green, in
transition and intermediate areas (including tree islands) and from
there to browns to non-impacted areas. The mean TP values were
1108 mg kg−1 (floc) and 667 mg kg−1 (surface soil) for areas
classified as cattail marsh and 1007 mg kg−1 (floc) and 688 mg kg−1

(surface soil) for areas classified as hardwood swamp corresponding
to tree islands (Rivero et al., 2007b). These elevated TP areas showed
also the highest mean NDVI green values.

Correlations between floc and soil TP, spectral data and indices,
PCA scores and ancillary environmental variables are shown in Table 4.
The strongest correlation between floc and soil TP was found with
NDVI and NDVI green for both Landsat ETM+ and ASTER remote
sensing data. In general, the correlation coefficients were higher for
floc TP than for surface soil TP. These results were expected since floc
is the closest layer to the surface and may show stronger relationships
to above-ground features when compared to deeper soil layers. The
highest correlation coefficient with floc TP, significant at the 0.01
confidence level, was for Landsat ETM+, both NDVI green (0.82) and
NDVI (0.73). Conversely, ASTER showed the same correlation coef-
ficient (0.68) between floc TP and NDVI and NDVI green, respectively.
For surface soil TP, correlations were not only lower than for floc, but
also different, being higher in both cases for NDVI than for NDVI green.
The highest correlation values between soil surface TP and Landsat
ETM+ were obtained for both NDVI and NDVI green (0.68), while
correlations with ASTERwere very similar, with NDVI (0.63) and NDVI
green (0.62).

Differences in correlations between images and indices were more
pronounced for floc TP, than for surface soil TP suggesting a higher
variability in TP concentrations within the floc. This is supported by
the large range in floc TP with 1671 mg kg−1 when compared to soil
TP with 1546 mg kg−1. Standard deviations for floc TP (381 mg kg−1)
and soil TP (316 mg kg−1) were comparable.

Negative correlations between the distance to water control struc-
tures of −0.74 with floc TP and −0.60 with soil surface TP, re-
spectively, were found indicating the presence of a P-enrichment
gradient in WCA-2A that has been documented by numerous authors
(Newman et al., 1998; Reddy et al., 1998; DeBusk et al., 2001). This
distance gradient extends of about 7 km from the water inflows into
the marsh interior. The y coordinate showed significant correlations
of 0.46 with floc TP and 0.40 with soil surface TP. This may be a
response to hydrological flow patterns in the north–south direction,
also associated with slight variations in elevation.
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Our aim was to identify quantitative relationships between floc
and soil TP, spectral data and derivatives, and ancillary environmental
data. Rather than trying to perform a classification, the scatterplots
served as an exploratory tool. Fig. 4 shows scatterplots of Landsat
ETM+ and ASTER brightness values extracted for each sampling
location. Spectral values of red vs. NIR and green vs. NIR were sym-
bolized with the vegetation/land cover classes. The scatterplots that
included the green band (band 1 for ASTER and band 2 for Landsat
ETM+) were more concentrated or less dispersed along the center
line, than the ones including the red band (band 2 for ASTER and 3 for
Landsat ETM+). Scatterplots of different band combinations have
been used in the past to graph the location of particular land cover
units in feature space. For example, a plot of red versus NIR feature
space of measurement vectors for a variety of land cover types within
WCA-2A was shown by Jensen et al. (1995), based on historical
remote sensed data (MSS 1973, 1976, 1982, and SPOT 1987, 1991). Six
vegetation/land cover classes were described by Jensen et al. (1995)
based on the location of each unit in feature space, relating them to
the red and NIR feature space plot. Cattail reflected more NIR radiant
flux while absorbing similar amounts of red radiant flux than the
other vegetation and land cover types (sawgrass and cattail/sawgrass
mixture. The lowest values, located near the origin in the plot
(approximately 30 NIR, 30 red), corresponded to the slough/water
type, in response to the higher absorbance of this land cover in both
bands. Dense brushes, corresponding to tree island heads and tails,
absorbed higher amounts of red radiant flux and reflected more NIR
radiant flux than the previous communities.
Fig. 4. Scatter plots of ASTER band 1 (green) and band 3 (NIR) – top left; band 2 (red) and ban
band 3 (red) and band 4 (NIR) – bottom right; symbolized with FWC vegetation/land cove
Similar to Jensen et al. (1995), our results show an overlapping
spectral response of some land cover/vegetation units, especially
those in the aquatic portion (sawgrass/slough/water). This result was
expected since it has been documented that limitations exist to
accurately map vegetation in wetland areas (Rutchey and Vilchek,
1994).

A different set of scatterplots was graphed to evaluate relationships
of floc TP and surface soil TP with four vegetation indices that showed
high correlations: ASTER NDVI and NDVI green and Landsat ETM+
NDVI and NDVI green (Figs. 5 and 6). These plots suggest that
relationships exist between floc/soil data and spectral indices. There is
a clear trend with the floc NDVI green data that is consistent with the
0.82 correlation coefficient.

The highest R2 values were obtained by using the NDVI and NDVI
green as independent variables to predict the dependent variables floc
TP and soil TP, respectively. Results indicated that Landsat ETM+
derived indices had slightly better R2 when compared to ASTER
derived indices to predict floc and soil TP. The R2 ranged between 0.68
and 0.51 to predict log floc TP and between 0.45 and 0.38 to predict
soil TP (Table 5).

A summary of the linear, quadratic and multiple regression equa-
tions for both soil layers (floc and soil surface) is presented in Tables 6
and 7, and results from the linear (stepwise) regression analysis and
non-linear (quadratic) model are shown in Fig. 7. The results indicate
that Landsat ETM+ performed better than ASTER in predicting floc
and soil TP concentrations. Although Landsat ETM+ has lower spatial
resolution (30 m) than ASTER (15 m) the former was able to better
d 3 (NIR) – top right, Landsat ETM+ band 2 (green) and band 4 (NIR) – bottom left, and
r class extracted for each sampling point in WCA-2A.



Fig. 5. Scatter plots of floc TP data against ASTER and Landsat ETM+ values for NDVI and NDVI green with symbol indicating FWC vegetation/land cover class extracted for each
sampling point in WCA-2A.
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capture some of the nutrient heterogeneity in soils, including
tree island and ridge/slough dynamics, and soil TP gradients across
WCA-2A.

6. Discussion

Our findings suggest that remote sensing indices are capable of
capturing subtle changes in the mix of chlorophyll a and carotenoids
in vegetation and the aquatic portion of WCA-2A, and perform the
best in quantifying relationships with floc and soil surface TP. Landsat
ETM+ NDVI green was the best predictor for floc TP, and Landsat
ETM+ NDVI was the best predictor for soil surface TP in WCA-2A.
Our results are consistent with those by Gaiser et al. (2005) showing
strong relationships in TP concentrations between floc and periph-
yton and moderately strong at the soil surface level. This can be
explained by P-enrichment trends that are relatively fast in floc but
slower in soils. Phosphorus enrichment modifies the structure and
function of the Everglades ecosystem due to increases in the con-
centration of P in most components (water, periphyton, soil, and
macrophytes). It also alters biogeochemical processes, eliminates
calcareous periphyton mats, deoxygenates soils, accelerates rates of
soil accretion and nutrient storage, and stimulates major shifts in
plant and animal species composition (Noe et al., 2001; Gaiser et al.,
2005; Rutchey and Vilchek, 1994; Reddy et al. 1998).

Soils become enriched after P inputs exceed the capacity of the
biota to sequester available P from water column or detritus. The
strong relationship between TP content and macrophytes, and par-
ticularly with cattail may elude why NDVI acts as a good predictor for
surface soil TP. This interpretation can be supported by the high
correlations and strong functional relationships between these two
variables. In contrast, the variability of the aquatic component was
better captured by the NDVI green index and showed stronger asso-
ciation to periphyton/floc TP.

Quental (2001) investigated remote sensing detection of stress in
plants caused by deficit in nutrients. He also pointed out that physio-
logical effects of stress are due to a decrease in leaf chlorophyll con-
centration and increase of the carotenoids to chlorophyll ratio. In the
case of WCA-2A, this would be characteristic of non-impacted areas
located far from the canals that have been historically P-limited,
dominated by sawgrass and periphyton. In contrast, impacted areas, in
proximity of canals that serve as entry points of nutrients into WCA-
2A, are composed mainly of cattail and cattail mix with higher leaf
chlorophyll content and lower carotenoids, which are expected to
show the opposite effect.

There are several reasons that may explain the difference in the
results from both sensors. First, the sampling events were conducted
in May 2003, closer to the time of the Landsat ETM+ acquisition,
indicating a better approximation of the sensor temporal resolution to
the dates of the sampling event. Second, the Landsat ETM+ imagewas
from the end of spring season (February) and this may provide a
better representation of seasonal taxonomic variations in periphyton
spatial distribution and location inwater/soil. Third, during the spring
season periphyton tends to be submerged while during the wet
season (September) periphyton covers a good portion of the study



Fig. 6. Scatter plots of surface soil TP against ASTER and Landsat ETM+ values for NDVI and NDVI green with symbols indicating FWC vegetation/land cover class extracted for each
sampling point in WCA-2A.

Table 5
Summary of correlation coefficients (r) and coefficients of determination (R2) for log-
transformed floc and surface soil TP, and NDVI and NDVI green values for each remote
sensor (ASTER and Landsat ETM+) in WCA-2A, Everglades.

r R2

Log floc TP – Landsat ETM+ and ASTER remote sensing indices
Log floc TP – ETM NDVI green 0.83 0.68
Log floc TP – ETM NDVI 0.77 0.59
Log floc TP – ASTER NDVI 0.75 0.56
Log floc TP – ASTER NDVI green 0.72 0.51

Log surface TP – Landsat ETM+ and ASTER remote sensing indices
Log surf. TP – ETM NDVI green 0.67 0.45
Log surf. TP – ETM NDVI 0.68 0.46
Log surf. TP – ASTER NDVI 0.63 0.39
Log surf. TP – ASTER NDVI green 0.62 0.38
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area with floating mats (Figs. 1b and 2). Therefore, differences
between Landsat ETM+ and ASTER images may be also indicative of
seasonal variations in periphyton, between the summer season and
the spring seasons, as documented by McCormick et al. (1996).

NDVI green proved to be the best remote sensing index to predict
floc TP in WCA-2A for various reasons. First, there are spatial and
seasonal effects of nutrient enrichment associated with various char-
acteristics of periphyton, including biomass, taxonomic composition
and TP storage, which have been documented by McCormick et al.
(1998). Spatial changes that have been reported by several authors
(McCormick et al., 1998; Gaiser et al., 2005) are those associated with
the alteration of the diatom community (one of the periphyton algal
communities), the collapse of the calcareous periphyton mat (blue-
green algae), and its replacement by a non-mat forming algal com-
munity dominated by chlorophytes (green algae). The mix of
photosynthetical algal pigments (chlorophylls, carotenoids, and phy-
cobilins) is different for each of these algal communities, and these
pigments also play different roles in the system. Chlorophylls are
responsible for the production of oxygen, while the primary function
of almost all carotenoids is photoprotection (i.e., absorbance of high
energy on short wavelengths including ultraviolet (UV) and blue
regions of the electromagnetic spectrum). These pigments all have
in common a maximum reflectance peak in the green band, and a
maximum absorbance peak in the blue and the red bands (Richard-
son, 1996).

The light absorbance properties of water also play a role in the
reflectance spectra. Richardson (1996) demonstrated that the overall
signature of multiple carotenoids, chlorophyll a, and phycocyanin
differ only in the amount of water overlying the algal community. The
top spectrum, that is the one acquired by measuring light reflected
from a benthic algal community, when it had been removed from the
aquatic system (i.e., no overlying water) is the most pronounced,
particularly in the IR (above 700 nm). This is due to reemission of light
from chlorophyll a and it is the red edge that provides the basis for the
NDVI applied widely in terrestrial ecosystems. If only 20 cm of water
overly the algal community (middle spectrum), this red emission is
strongly attenuated, and it is almost completely absorbed by 2 m of



Table 6
Regression model parameters for prediction of log-transformed floc total phosphorus (TP) in mg kg−1 in WCA-2A, Everglades.

Model r R2 Adjusted R2 Std. error of estimate Regression equation Significance

Lineara 0.83 0.68 0.67 0.119 1.842+1.952 (Landsat ETM+ NDVI green) 0.00
Quadratica 0.84 0.71 0.70 0.114 0.713+6.236 `(Landsat ETM+ NDVI green)−3.954

(Landsat ETM+ NDVI green)2
0.00

Multipleb 0.87 0.75 0.75 0.105 4.237+1.277 (Landsat ETM+NDVIgreen)−0.0000267
(Distance to Water Control Structures) − 0.00000706
(Y coordinate)

0.01

a Predictor: Landsat ETM+ NDVI green.
b Predictors: Landsat ETM+ NDVI green, Distance to Water Control Structures, and Y coordinate (Albers Equal Area Conic map projection).

Table 7
Regression model parameters for prediction of log-transformed soil surface total phosphorus (TP) in mg kg−1 in WCA-2A, Everglades.

Model r R2 Adjusted R2 Std. error of estimate Regression equation Significance

Linear Landsata 0.68 0.46 0.46 0.167 1.905+1.457 (Landsat ETM+ NDVI) 0.00
Linear Asterb 0.63 0.39 0.39 0.177 2.572+1.440 (ASTER NDVI) 0.00
Quadratic Landsata 0.71 0.50 0.48 0.162 2.816+1.486 (Landsat ETM+ NDVI)−2.203 (Landsat ETM+ _NDVI) 0.00
Multiplec 0.72 0.51 0.50 0.167 2.852+1.064 (Landsat ETM+ NDVI)−0.000015 (distance to water control structures) 0.00

a Predictor: Landsat ETM+ NDVI.
b Predictor: ASTER NDVI.
c Predictors: Landsat ETM+ NDVI, and Distance to Water Control Structure.

Fig. 7. Comparison between linear and quadratic regression model to predict floc TP
with Landsat ETM+ NDVI green in WCA-2A.

2400 R.G. Rivero et al. / Remote Sensing of Environment 113 (2009) 2389–2402
overlying water (bottom spectrum). However, the overall signatures,
which include the green reflectance peak near 550 nm and the
phycocyanin absorption feature at 620 nm, are still discernible under
2 m of water (Richardson, 1996).

7. Conclusions

We conclude that the results obtained with the Landsat ETM+
NDVI green and its capability to capture the spatial variability of floc
TP, are associated with variations in periphyton depth (metaphyton,
floatingmats, and benthic/epipelon periphyton). Variablewater depth
is captured by the water penetration capabilities of the green band,
while the red band is absorbed.

The data derived from ASTER and Landsat ETM+ satellite imagery
as secondary variables provided exhaustive coverage to delineate
vegetation and periphyton properties that were correlated with floc
and soil TP. ASTER data has a higher spatial resolution (15 m) in
comparison with Landsat ETM+ (30 m). The spatial resolution of
ASTER represents an improvement to represent small features of this
landscape such as tree islands, and account for differences in the
ridge/slough areas. But in this study the higher spatial resolution
image (15 m) did not improve the strength of relationships between
spectral and floc and soil TP. This may be explained by the smoothing
effect of the coarser image that provided an aggregated response
within each 30 m pixels.

The relationships between spectral indices and floc as well as soil
TP were stronger when compared to spectral data from different
sensors. Spectral data showed stronger relationships when compared
to ancillary environmental data such as distance to control structure
or tree islands. These results support the hypothesis that spectral data
provide an inference mechanism on below-ground properties such as
soil TP. This suggests that exhaustive spectral datasets can be
incorporated into geostatistical/hybrid models to improve the
prediction of site-specific floc and/or soil TP.

We conclude that remote sensing, and particularly NDVI green and
NDVI, can be used as indirect indicators to infer on soil nutrient status
in this particular wetland area. These methods need to be further
tested in other wetland areas across the Everglades or in other similar
tropical and subtropical wetlands. If the same relationships found in
this study can be replicated in similar landscape settings more generic
remote sensing applications that pertain to wetlands could be
developed.
Remote sensing images allow repeated monitoring covering large
wetland areas that are more cost-effective than labor-intensive and
costly soil sampling and laboratory analyses. Even if predictive capa-
bilities based on spectral data are limited they improve our under-
standing of difficult to observe, buried features (e.g., floc and soil TP).
To monitor the soil nutrient status in WCA-2A and other subtropical
wetlands that are impacted by nutrient influx is important to assess
long-term impacts, their resilience and functions, and recovery or
degradation of the ecosystem. Functional relationship between chlo-
rophyll content in the aquatic and vegetated portions of this wetland
with soil nutrients should be explored with more detail across nu-
trient gradients. Spectral techniques and inferential modeling are
non-invasive and cost-effective methods to monitor soil nutrient
status in complex wetland systems. Remote sensing-based measures
have potential to support ongoing restoration efforts in the Everglades
outlined in the Comprehensive Everglades Restoration Plan. In addi-
tion, spectral inferential modeling has a potential to be applied not
only to other wetland areas in the Everglades but also to other bio-
geochemical properties.

To explicitly incorporate seasonal variability in TP predictionmodels
would allow accounting for phenological and taxonomic variations in
vegetation, periphyton, and other components of the system. Although
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cost and accessibility limits the possibility of conducting field sampling
during certain times of the year, comparisons with the same sensor
during different seasons could address some of the limitations of this
research, as well as comparison between sensors during the same
sampling event. Multi-temporal pattern analysis of images could
provide sequences of biophysical ecosystem responses. However, such
analysis would need to be complimented by soil monitoring which is
costly and labor-intensive in wetlands such as WCA-2A.
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