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Abstract. Over the past several decades, high-resolution sediment–charcoal records have been increasingly used to
reconstruct local fire history. Data analysis methods usually involve a decomposition that detrends a charcoal series and

then applies a threshold value to isolate individual peaks, which are interpreted as fire episodes. Despite the proliferation
of these studies, methods have evolved largely in the absence of a thorough statistical framework. We describe eight
alternative decompositionmodels (four detrendingmethods usedwith two threshold-determinationmethods) and evaluate

their sensitivity to a set of known parameters integrated into simulated charcoal records. Results indicate that the
combination of a globally defined threshold with specific detrending methods can produce strongly biased results,
depending on whether or not variance in a charcoal record is stationary through time. These biases are largely eliminated
by using a locally defined threshold, which adapts to changes in variability throughout a charcoal record. Applying the

alternative decomposition methods on three previously published charcoal records largely supports our conclusions from
simulated records. We also present a minimum-count test for empirical records, which reduces the likelihood of false
positives when charcoal counts are low. We conclude by discussing how to evaluate when peak detection methods are

warranted with a given sediment–charcoal record.

Additional keywords: bias, paleoecology, sensitivity.

Introduction

High-resolution charcoal records are an increasingly common
source of fire-history information, particularly in ecosystems

where tree-ring records are short relative to average fire-return
intervals (Gavin et al. 2007). Over the past several decades,
numerous studies have used peaks in charcoal accumulation in
sediment records to estimate the timing of ‘fire episodes’, one or

more fires within the sampling resolution of the sediment record
(Whitlock and Larsen 2001). Identifying fire episodes from
charcoal records is most promising when fires: (1) are large;

(2) burn with high severity; and (3) recur with average intervals
at least five times the sampling resolution of the sediment record
(Clark 1988b; Whitlock and Larsen 2001; Higuera et al. 2005,

2007). Sediment–charcoal records are thus particularly valuable
for studying stand-replacing fire regimes in boreal and subalpine
forests, where all three of these conditions are typically met.

Interpreting fire episodes from sediment–charcoal records
would be straightforward if they were characterised by low
levels of charcoal punctuated by unambiguous peaks. In reality,
however, charcoal records are complex and non-stationary,

i.e. their mean and variance change over time (Clark et al.

1996; Clark and Patterson 1997; Long et al. 1998). Empirical
and theoretical studies (e.g. Marlon et al. 2006; Higuera et al.

2007) suggest that non-stationarity in charcoal records can arise
from at least two sets of processes: (1) changes in the fire regime,
including the rate of burning, the intensity of fires, the type of
vegetation burned, and thus charcoal production per unit time;

or (2) changes in the efficiency of charcoal delivery to the lake
centre (taphonomy) due to changing rates of slope wash or
within-lake redeposition. The latter process, known as sediment

focussing, can greatly affect the sediment accumulation rate as a
lake fills in over time (Davis et al. 1984; Giesecke and Fontana
2008) and may produce long-term trends in charcoal records

unrelated to changes in the fire regime. Recognising the impor-
tance of these processes, paleoecologists have applied a range of
statistical methods to charcoal data in order to isolate the signal

related to ‘local’ fire occurrence (e.g. within 0.5–1.0 km; Gavin
et al. 2003; Lynch et al. 2004a; Higuera et al. 2007) and
reconstruct fire history. Despite the proliferation of statistical
methods for peak identification, seemingly no study has
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discussed the assumptions underlying alternative methods and
their impacts on fire-history interpretations.

Here, we address several key issues related to peak identifica-

tion in high-resolution, macroscopic charcoal recordsA by using
simulated and empirical charcoal records. We start by discussing
some important statistical properties of macroscopic charcoal

records and then describe themotivation for statistical treatments.
We briefly review how different methods have been applied, and
then introduce a typology of methods, including their respective

assumptions and justifications. Second, we illustrate and quantify
the biases that these techniques can introduce to fire-history
interpretations by applying them to simulated charcoal records.
Third, we apply the same methods to three previously published

charcoal records to demonstrate potential biases in empirical
records, and we introduce a technique to minimise some of these
biases. Finally, we conclude with recommendations of specific

methodologies and a discussion of how analysts can evaluate the
suitability of records for peak identification rather than other
qualitative or quantitative analyses.

Temporal variability in charcoal time series

Charcoal time series can be generally characterised as ‘noisy’,
and they contain many forms of non-stationarity, including
changing short-term variability superimposed on a slowly
varying mean (Long et al. 1998; Higuera et al. 2007). Changes

in variability (i.e. heteroscedasticity) have implications for the
particular goal of data analysis. When the goal is to quantify
changes in total charcoal input, as an index of biomass burning

for example, heteroscedasticity violates the assumptions of
parametric statistics useful in this context, e.g. analysis of
variance and regression. In particular, in analysis of variance

(or in the t-test of the difference of means in the case of two
periods), heteroscedasticity increases the probability of Type I
error, falsely inferring significant differences between periods
(Underwood 1997). Similarly, in regression analysis, fitting a

trend line to charcoal data with changing variability over time
can increase the variability of the slope coefficient. Changes
in variability (besides being interesting in their own right) can

thus lead to false conclusions about the significance of long-
term trends or differences between different parts of a record. In
practice, heteroscedasticity is usually dealt with by applying a

‘variance-stabilising transformation’ (Emerson 1983) that acts
to homogenise variance across a record. As will be illustrated
below, when the goal of charcoal analysis is peak identification,

transformation can lead to the exaggeration of some peaks
and suppression of others. Consequently, the specific approach
taken (whether to transform or not) should depend on the overall
focus of an analysis. In this paper, we focus on the goal of

detecting local fires through peak detection.

Analytical methods for inferring local fire occurrence

Following the pioneering work of Clark (1988b, 1990) in which
fire events surrounding small lakes were identified from

charcoal in thin-sections of laminated sediments, similar

approaches were developed for quantifying macroscopic char-
coal abundance and subsequently adopted by a large number of
research groups (Table 1; see also Whitlock and Larsen 2001).

Most techniques quantify charcoal as either the total number
of pieces or surface area (mm2) of charcoal in a particular
size class, within volumetric subsamples taken contiguously

through sediment cores (typically at 0.5- to 1.0-cm resolution,
corresponding to ,10–25-year resolution for most lakes). The
resulting concentration of charcoal (pieces cm�3, ormm�2 cm�3)

in each level is multiplied by the estimated sediment accumula-
tion rate (cmyear�1) to obtain the charcoal accumulation rate
(CHAR, pieces cm�2 year�1 or mm�2 cm�2 year�1). Sediment
accumulation rates, and the age of each sample, are estimated by

an age–depth model based on radiometric dates, tephra layers,
and any additional sources of age information. The use of accu-
mulation rates can potentially correct for changing sediment

accumulation rates that would dilute or concentrate charcoal in a
given volume of sediment, and as mentioned above, may also be
affected by sediment focussing processes. Usually, the CHAR

series is interpolated to a constant temporal resolution to account
for unequal sampling intervals resulting from variable sediment
accumulation rates. This step is necessary to develop threshold

statistics that are not biased to a particular portion of a record, and
to standardise within- and between-site comparisons.B Hereafter,
we refer to the interpolated CHAR series as C. The analytical
choices and sources of error in the development of a charcoal

record are briefly summarised in Table 2 and discussed in detail
by Whitlock and Larsen (2001).

At this point, most C series can be characterised as

irregular time series with discrete peaks superimposed on a
slowly varying mean. Although the size of any individual
peak reflects the size, location, and charcoal production of

individual fires, the average size of peaks may change through
time, contributing to a slowly changing variance. This non-
stationaritymay arise, as discussed above, owing to variations in
charcoal production per unit time or variable taphonomic and

sedimentation processes. Without knowledge of whether non-
stationarity is due to changes in taphonomy and sedimentation
or to real changes in fire history, it is reasonable to stabilise the

variance of peak heights so as to not ‘pass over’ periods of low
charcoal. This motivates the manipulation of C to produce a
stationary series in which all local fires would theoretically

result in a similar range of peak sizes. Doing so would allow for
the application of a single global threshold value to the final
series to separate fire-related from non-fire-related peaks.

In practice, determining the size of peaks that represents local
fires involves a three-step ‘decomposition’ of theC series (Clark
et al. 1996; Long et al. 1998; Fig. 1). First, the slowly varying
mean, or ‘background’ component, Cback, is modelled through a

curve-fitting algorithm, e.g. a locally weighted regression that
is robust to outliers (e.g. Cleveland 1979). The window size for
this smoothing varies between studies but is typically between

100 and 1000 years. Background estimation may be preceded
by transformingC (e.g. logarithmically). Second, thebackground
trend is removed from the series by subtraction (C � Cback) or

AWe refer to macroscopic charcoal records as those quantifying charcoal not passing through a sieve of 125 mm or larger.
BWhen sampling intervals are not standardised within a record or between two records, then biases may be introduced when applying criteria uniformly.

Interpolation helps minimise, but not remove, this bias, as noted in the last section of this paper.
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division (C C Cback), creating a series of residuals or indices
respectively. This detrended series is frequently termed the ‘peak
component’, but in the case of indices, it is dimensionless rather

than a portion of C, as implied by ‘peak component’. Here,
we use the term ‘peak series’ and notation Cpeak to refer to the

detrended series. Third, a threshold is applied toCpeak to separate
variability related to local fire occurrence from variability
unrelated to local fire occurrence (e.g. random variability and

sedimentmixing). Peaks exceeding the threshold are the basis for
fire-event frequency and fire-event return interval calculations.

Interpolation interval:
 (a) User-specified
 (b) Defined by median sampling interval of raw record 

1. Resample raw record to a
constant time interval

3. Smooth record to define
background trend 

Smoothing algorithm (many options) and window width:
 (a) User-defined
 (b) Defined by sensitivity test 

4.  Define peak series relative to
background trend 

Detrending method:
 (a) Residuals (observed – background)
 (b) Index (observed/background) 

2. Consider transforming series
to stabilise variance 

Type of data transform:
 (a) None
 (b) Logarithm (or other, e.g. Box-Cox) 

5.  Define threshold to identify
peaks 

Threshold value:
(a) User-specified
(b) Define threshold as a percentile of a distribution fit to 
     noise-related variability
      (i) Determine noise distribution locally or globally
     (ii) Set threshold percentile 

Select P value cut-off 
6.  Screen and remove

insignificant peaks  

Analysis step User’s choices 

Fig. 1. The set of decisions required for analysing a charcoal time series with the goal of peak detection for

interpretation of fire episodes. These steps are implemented in the CharAnalysis software (http://code.google.com/p/

charanalysis/, accessed 30 November 2010).

Table 2. Decisions typically required to develop a high-resolution lake-sediment macroscopic charcoal record, summarised from Whitlock and

Larsen (2001)

The aim of the current paper is to discuss data manipulations after completing these steps of developing a charcoal record

Step Decisions Potential issues and sources of error

(1) Sediment collection Coring location Gaps in record

(2) Sediment subsampling Sediment volume per sample Volume overestimate (core shrinkage)

Sampling interval Sample volume too small, resulting in low charcoal counts

Interval too long to distinguish consecutive fire events

(3) Sediment sieving Sieve sizes Incomplete sieving

Sample spillage

(4) Charcoal quantification Count or area Misidentification

Breakage of charcoal results in inflated counts

(5) Estimation of charcoal accumulation

rate (CHAR)

Age–depth model fitting to calculate sediment

accumulation rates

Poor chronological control

(6) Interpolation of CHAR to a constant

interval

Interval size (typical value is the median

sample deposition time)

Loss of resolution in portions of the record

Fire history from sediment charcoal records Int. J. Wildland Fire 1001
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Here, we present a typology of four possible decomposition

approaches based on whether the raw or transformed C series is
used and whetherCpeak is calculated as residuals or index values
relative to Cback (see Table 3 for abbreviations). The no-

transform–residual model (NR model hereafter) is a simple
subtraction: C�Cback. The no-transform–index model (NI
model) is a ratio: C/Cback. Because background charcoal is in

the denominator, the NI model cannot be applied when back-
ground charcoal equals zero, which occurs in non-forested or
treeline ecosystems (e.g. Huber et al. 2004; Higuera et al. 2009;
Hallett and Anderson 2010). The transform–residual model (TR

model) first log-transforms C (after adding 1 to guard against
negative values) before calculating the background: log(Cþ 1) –
Cback, whereCback¼ f(log[Cþ 1]). Finally, the transform–index

model (TI model) is the ratio of the log-transformed series: log
(Cþ 1) C Cback, where Cback¼ f(log[Cþ 1]).

Nearly all studies have used the NR or the TI model in

charcoal peak analyses (Table 1), but there has been no discus-
sion of the assumptions underlying each model. The NR model
implicitly assumes that charcoal peaks from local fires are
created through additive processes. That is, charcoal introduced

from a fire is added to the total amount of background charcoal
(i.e. charcoal delivery to the core site during periods without
local fires). Background charcoal may change as redeposition

processes change (e.g. wind-mixing of littoral sediment, higher
fire frequencies), but the total amount of charcoal produced per
fire remains unchanged. Variance stabilisation is the goal of the

NI, TR and TI models, which implicitly assume that charcoal
peaks from local fires are created through multiplicative pro-
cesses; i.e. the total amount of charcoal introduced from a local

fire is some multiple of background charcoal. Similar variance-
stabilisation goals used in dendrochronology are typically based
on the NI or TR models, rather than the methods more recently
adopted for charcoal records (NR and TI models; Table 1). As

in dendrochronology (Cook and Peters 1997; Fowler 2009), the
choice of detrending model has an important impact on the
resulting detrended series.

In comparison with the little attention given to alternative
detrendingmodels, recent papers havemore carefully addressed
the task of determining threshold values for peak identification.

Comparison of peaks with known fire events (dated from
historical records or tree-rings) may help in selecting a thresh-
old, but historical records often represent only a fraction of a

charcoal record, and a wide range of thresholds may still be

appropriate (e.g. Gavin et al. 2006). Clark et al. (1996)
addressed this issue by using a sensitivity analysis to test the
number of peaks as a function of changing threshold values.

They reasoned that if Cpeak comprised a population of small
values (e.g. background charcoal) and a smaller population of
large values (local fires), then the sensitivity test should detect

the split between these populations. Gavin et al. (2006) built
on this sensitivity test by modelling Cpeak as a mixture of
two Gaussian distributions with different means, variances,
and proportional contributions to the total population. The lower

distribution is assumed to represent the majority of time during
which C is small and is affected mainly by distant fires,
redeposition, mixing and random variability (i.e. the ‘noise’

unrelated to specific fires). The upper distribution, ideally
distinct from the lower distribution, describes the variability
due to local fires and can be considered the ‘signal’ of interest.

Gavin et al. (2006) suggested that the threshold be at the upper
end of the noise distribution, and Higuera et al. (2008) further
specified that the threshold be at the 95th, 99th or 99.9th
percentile of the noise distribution. If the noise and signal

distributions are distinct, then the variance of the signal dis-
tribution (sS

2) would be much larger than that of the noise
distribution (sN

2 ). A signal-to-noise index (SNI; Higuera et al.

2009), calculated as sS
2/(sS

2þsN
2 ), approaches one when the

noise distribution is tightly defined with a narrow standard
deviation. SNI values less than ,0.5 suggest poor separation

of large peaks from the noise-attributable variation. We note
these details here because the Gaussian mixture approach
assumes that the distribution of Cpeak values is right-skewed,

and therefore variance-stabilising expressions of Cpeak (all
but the NR model) work against defining a distinct noise
distribution.

Unless variance of Cpeak does not change through time (i.e.

it is homoscedastic), selecting a threshold based on the entire
series could lead to systematic biases towards detecting small
or large peaks (depending on which size dominates the record).

Although variance-stabilisation approaches were developed
to address this issue, Higuera et al. (2008, 2009) introduced a
new approach intended to be more adaptable by applying the

Gaussian mixture model introduced by Gavin et al. (2006) to a
500-year moving window of Cpeak centred on each time step in
the series. This technique is termed a ‘local threshold’, and it

Table 3. Selected abbreviations used in the text and corresponding definitions

Abbreviation Definition

Components of a charcoal record

C Resampled charcoal in a charcoal series, expressed as pieces cm�2 year�1 or cm2 cm�2 year�1

log(Cþ 1) Natural logarithm of resampled charcoal, after one is added to guard against negative values

Cback Background charcoal, defined as a function of resampled charcoal

Cback, where Cback¼ f(log[Cþ 1]) Background charcoal, defined as a function of log-transformed, resampled charcoal

Cpeak Detrended, or ‘peak’ series of a charcoal record, after trends in background charcoal are removed

Detrending models

NR No-transform–residual: Cpeak¼C – Cback

NI No-transform–index: Cpeak¼C C Cback

TR Transform–residual: Cpeak¼ log(Cþ 1) – Cback, where Cback¼ f(log[Cþ 1])

TI Transform–index: Cpeak¼ log(Cþ 1) C Cback, where Cback¼ f(log[Cþ 1])

1002 Int. J. Wildland Fire P. E. Higuera et al.



accounts for potentially changing variance of Cpeak by selecting
a threshold based on sN

2 in a user-defined subsection of the
record. Using smaller sample sizes to compute the Gaussian

mixture distribution increases the chance of erratic model fits in
a portion of the cases. Thus, it is important to smooth the local
thresholds (typically to the same frequency as that used to

define Cback) such that they vary smoothly over time and be
cognisant of the total number of samples in each local popula-
tion (a minimum of,30 is recommended; Higuera et al. 2009).

This decomposition approach is similar to peak-detection meth-
ods in other applications (e.g. Mudelsee 2006) in that it accounts
for changes in both the central tendency and variability in a
series.

Finally, Gavin et al. (2006) introduced a test to screen peaks
detected by a threshold that may nevertheless result from
statistically insignificant changes in charcoal abundance. This

‘minimum-count test’ applies specifically to studies quantifying
charcoal through numbers, as opposed to area, and it examines
the possibility that the differences in counts between two samples

may result simply from sampling effects. If charcoal count
and volume data are available, then it is possible to assess the
minimum increase in charcoal count required to be statistically

greater than a previous sample, assuming measured counts are
Poisson-distributed around the ‘true’ (unknown) count for a
given sample volume. The probability that two sample counts,
X1 andX2, from sediment volumesV1 andV2, may originate from

the same Poisson distribution is estimated from the d statistic:

d ¼
X1 � ðX1 þ X2Þ V1

V1þV2

� ����
���� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1 þ X2Þ V1

V1þV2

� �
V2

V1þV2

� �r ð1Þ

where the significance of d is assessed from the cumulative

normal distribution (Detre and White 1970; Shiue and Bain
1982). This test does not incorporate additional errors in counts
from laboratory error (Table 2), and so significance thresholds
higher than 0.05 may be warranted. We incorporate the

minimum-count test here because the possibility of sampling-
related errors increases with the variance-stabilisation models
(NI, TR, TI) owing to the inflation of very small changes in C at

times when Cback is small (Cook and Peters 1997).

Methods

To illustrate how analytical choices affect peak identification, we

applied the methods introduced above to simulated and empirical
charcoal records. With simulated records, where the underlying
processes creating a charcoal record are known, we evaluated

the sensitivity of each of the four decomposition and the two
threshold-determination methods (global and local thresholds) to
two hypothetical scenarios (described below). We analysed the

empirical records in the same manner but also applied the mini-
mum-count test to illustrate the impacts of this technique.

Simulated records

Simulated charcoal records were generated from statistical
distributions to reflect two scenarios for the relationship
between C and Cback. In both scenarios, the rate of peak

occurrence (implicitly representing local fires) was constant,
but Cback increased half-way through the 10 000-year record. In
Scenario 1, charcoal peak heights had a constant variance that

was independent of Cback, representing the assumption that
charcoal from local fires is added to a charcoal record through
additive processes; thus variability is stationary throughout the

record. In Scenario 2, peak heights varied in direct proportion
to Cback, representing a multiplicative relationship between
charcoal from local fires and Cback; thus the charcoal series is

heteroscedastic.
Simulated records with 20-year time steps, x(i), i¼ 0, 20,

40,y, 10 000, were constructed in three steps, and we use the
notation Cb and Cp to refer to the known populations of back-

ground and peak charcoal respectively, whereas the estimated
populations are referred to with Cback and Cpeak, as introduced
above. First, background charcoal, Cb, was prescribed as con-

stant values that increased from aminimum of 50 to a maximum
of 100 pieces per 5 cm3 between 5500 and 4500 simulated years
before present (BP). Specifically, the concentration of back-

ground charcoal in any 20-year sample, x(i), was defined as:

CbðiÞ ¼ minðCbÞ þmaxðCbÞ
1þ exp½�lrxðiÞ� ð2Þ

where l¼ 45 and r¼ 0.009 and determine the location (in time)
and rate of change in Cb respectively. Second, a charcoal series
characterised by right-skewed high-frequency variation, Cp

(pieces per 5 cm3), was calculated from random numbers using
a power function, as follows:

CpðiÞ ¼ b½�log eðiÞ�c ð3Þ

where b¼ 35 and determines the location of the distribution,
c¼ 1.25 and creates a distribution slightly more skewed than a
log-normal distribution (as found in many empirical records;
Marlon et al. 2009), and e(i)EN(0; 1), a random number from a

normal distributionwithmean 0 and standard deviation 1. Third,
the background and peak series (pieces cm�3) were added,
and then multiplied by the sediment accumulation rate, sacc
(cm year�1), to obtain the final series of charcoal accumulation
rates (CHAR, pieces cm�2 year�1),C. For Scenario 1, no further
treatment was performed, and:

CðiÞ ¼ sacc½CbðiÞ þ CpðiÞ� ð4Þ

For Scenario 2, C was scaled to background charcoal, Cb, as
follows:

CðiÞ ¼ sacc
CbðiÞ

maxðCbÞCbðiÞ þ CpðiÞ
� �

ð5Þ

As a result, peak heights in Scenario 2 increased proportionally

toCb, and the structure of the variance changed through the time
series.

Empirical records

We selected three high-resolution charcoal records with differing
variability in background charcoal and peak heights. Little Lake
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(Long et al. 1998) is located in Douglas-fir forest in the Oregon
Coast Range. The 3.3-ha, 4.0m-deep lake is surrounded by a fen
and has a small inflowing stream draining a 597-ha watershed

(Marlon et al. 2006; C. Long, pers. comm., November 2009). The
11.3-m core has overall C values similar to the simulated records
(median¼ 14.4 pieces cm�2 year�1). Over its 9000-year record,

Cback varies between 0.94 and 44.04 pieces cm�2 year�1, and
vegetation was consistently dominated by Douglas-fir. Rockslide
Lake (Gavin et al. 2006) is located in subalpine forest in south-east

British Columbia. The 3.2-ha, 14.1m-deep lake is fed by an
intermittent stream within an 86-ha watershed. The 2.1-m core
has overall C values lower than those of Little Lake (median¼
0.49 pieces cm�2 year�1). Over its 5000-year record, Cback varies

between 0.06 and 1.13 pieces cm�2 year�1, and vegetation was
consistently dominated by Engelmann spruce and subalpine
fir. Finally, Ruppert Lake (Higuera et al. 2009) is located in

boreal forest of Alaska’s south-central Brooks Range. The 3-ha,
7.0 m-deep lake has an ,200-ha watershed with subdued topo-
graphy and a small inflowing stream. The 4.8-m core has the

lowest overall C values of all three records (median¼ 0.04 pieces
cm�2 year�1).Over the 14 000-year record,Cback ranges from0.00
to 0.22 pieces cm�2 year�1 with a distinct increase ,5000 years

BP, coincident with the transition from a forest-tundra to
boreal forest vegetation. Overall, five different vegetation types
dominated the landscape around Ruppert Lake during the record.

For all records, we used the published age–depth relationship

but reanalysed each series using the published resampling
intervals of 10, 10 and 15 years for Little, Rockslide andRuppert
lakes respectively. We did not use the same analysis parameters

as in the published records, because our purpose was to test
different parameters. We calculated background charcoal using
a locally weighted regression robust to outliers (lowess) in a

500-year window. The robust lowess model is less sensitive to
non-stationarity and thusmay be applied to raw and transformed
data (Cleveland 1979).

Data transformation, peak identification,
and sensitivity analysis

We applied the four different detrending models to each simu-

lated and empirical record, and we used a modified Levene’s
test of equal variance (based on sample medians; Brown and
Forsythe 1974) to test the null hypothesis of equal variance

between two portions of each record. Sample sizes for P value
calculations were adjusted to account for temporal auto-
correlation in each record followingBretherton et al. (1999). For

simulated records, we compared the periods 10 000–6000 and
4000–0 years BP.We present only the median test result for 500
realisations of the simulated series.C For empirical records, we
subjectively selected periods duringwhich background charcoal

had two qualitatively different levels and then divided this
period in half for comparison. At Little, Rockslide and Ruppert
lakes, these periods corresponded to the last 8000, 5000 and

10 000 years respectively. The test statistic, W50, is used as an
index of heteroscedasticity, and the associatedP-value is used to
assess the null hypothesis of equal variance.

We identified peaks in simulated and empirical records using a
Gaussian mixture model that models the noise distribution
within Cpeak (described earlier). In this application, the value

of the mixture model is its ability to apply uniform treatments to
all records, making specific threshold-selection parameters of
less importance. For all analyses, we used the 99th percentile of

the modelled noise distribution as the threshold value.D Thresh-
olds were defined both globally (a singlemixturemodel fit to the
entire record) or locally (fitting the mixture models to 500-year

windows centred on each sample, and then smoothing the series
of resulting threshold values).

For the simulated records, wequantified the sensitivity of peak
identification to the four detrending models with a sensitivity

ratio, s.We defined s as the number of peaks detected in the first
half of each record divided by the total number of peaks detected
in the second half of each record. If an analytical method is

insensitive to variations inCback, then swill equal one.Values of s
significantly greater or less than one indicate a systematic bias
in the set of analytical methods.We used aMonte Carlo approach

to estimate the value of s for each of the 16 analysis combinations
(2 simulation scenarios� 4 detrending models� 2 threshold-
determination techniques¼ 16). For each combination, s was

estimated by the average s from 500 simulations, and the 2.5th
and 97.5th percentiles were used to estimate 95% confidence
intervals around s. If the 95%confidence intervals overlapped one,
then the ratiowas considered no different fromone and themethod

was deemed insensitive to the variation in background charcoal.
We performed two additional analyses on the empirical

records. First, we explored the effect of the four detrending

models on the capacity of theGaussianmixturemodel to identify
a distinct noise distribution. For simplicity, we chose to use only
a globally fitted model applied to the Rockslide Lake record,

the least variable record; similar examples could be based on
subsections of other records. As a metric of how distinct peaks
were from Cback, we examined the SNI (defined earlier) of the
fittedGaussianmixturemodel. Second, to illustrate the impact of

the eight alternative decomposition methods and the minimum-
counts test, we applied eachmethod to the empirical records.We
quantified the percentage of peaks that fail to pass the minimum

count test under each decomposition method. To illustrate
how interpretations may differ, we summarised peaks (after
removing those failing to pass the minimum-count test) with

1000-year smoothed peak frequency curves (peaks per
1000 years, smoothed to 1000 years with a lowess filter).

Results

Simulated records

As designed, simulated charcoal records from Scenario 1
were homoscedastic (500-sample median W50¼ 0.45, median

P¼ 0.502), whereas records from Scenario 2 were hetero-
scedastic (W50¼ 21.87, Po0.001; Table 4, Fig. 2). For both
scenarios, the choice of decompositionmethod had amajor effect

on the variability in the resulting peak series, Cpeak (Table 4,
Fig. 2). Under Scenario 1, only the NR model resulted in a

CResults did not differ when analysing 250, 500 or 1000 realisations (each 10 000 years long), suggesting that the inherent variability was captured.
DNote that the exact threshold criterion used here has no consequence on our interpretations, because interpretations are based on relative changes across a

record. For example, analysis using the 95th percentile produced identical patterns.
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stationary series (W50¼ 0.44,P¼ 0.508; Fig. 2; Table 4). The TR
and NI models greatly inflated variance when background char-
coal was low (W50¼ 46.72, 25.62; P� 0.001), and the TI model

further inflated variance (W50¼ 98.54; Po0.001). No model
stabilised variance in records from Scenario 2 (Table 4, Fig. 2).
The NRmodel preserved heteroscedasticity in the original record

(W50¼ 21.81), the TR and NI models reduced heteroscedasticity
(W50¼ 7.12, 10.81), whereas the TI model increased hetero-
scedasticity (W50¼ 57.92). The skewness of Cpeak also varied

greatly amongmodels. For both Scenario 1 and Scenario 2, theNI
model produced the most skewed peak series (3.47 and 3.03),
followed closely by the NR model (2.59, 2.97), and then the TI
(1.21, 1.55) and TR (0.95, 1.20) models (Table 4, Fig. 2).

In simulated records, threshold type was more important
than detrending model when evaluating the sensitivity of peak
identification to changes in variance (Fig. 3). Locally defined

thresholds were insensitive to the presence of heteroscedasticity
(Scenario 2 v. Scenario 1) and detrending model (s for all
scenarios did not differ from 1). In contrast, using a globally

defined threshold produced unbiased results only under three
conditions. When C was characterised by constant variance
(Scenario 1), a globally defined threshold was unbiased when

Cpeakwas defined by residuals: median s for NR and TRmodels
was 1.00 (95%CI 0.76–1.33) and 1.17 (0.92–1.54) respectively.
Using an index to define Cpeak inflated variance when Cbackwas
low (Fig. 2), resulting in 1.86–2.55 times the number of detected

peaks: s for NI and TI models was 1.86 (1.24–3.00) and 2.55
(1.50–4.56) respectively. When variance in C increased with
Cback (Scenario 2), transformingC and using residuals produced

unbiased results, as did creating an index from the non-
transformed series: s for TR and NI models was 0.85 (0.63–
1.10) and 1.33 (0.98–1.79) respectively. Defining Cpeak as the

residuals of non-transformed C (NR model) resulted in more
peaks detected when Cback and variability was high (s¼ 0.63
(0.43–0.87)), and transforming and using an index to define
Cpeak (TImodel) resulted in nearly twice asmany peaks detected

when Cback and variability were low (s¼ 1.70 (1.15–2.63)).
Overall, analyses of simulated records illustrate the sens-

itivity of decomposition methods to changes in the mean

(Scenario 1) and changes in the mean and variance (Scenario 2)
of a series through time. Although simplified, the sensitivity of
the simulated records to the analytical method highlights biases

that can arise from similar changes in empirical records, even
when of smaller magnitude, duration or both.

Empirical records

The three empirical records differed greatly in their long-term
variability in C (Fig. 4). Little Lake had relatively low charcoal
values until,4000 years BP, when sediment accumulation rate

increased five-fold (0.07 to 0.35 cmyear�1) in parallel with C.
At Rockslide Lake, sediment accumulation rates varied
approximately two-fold (0.04 to 0.08 cmyear�1) and were lar-

gely independent ofC. At Ruppert Lake, sediment accumulation
rates varied nearly ten-fold (0.018 to 0.181 cmyear�1) and
although C followed the sediment accumulation rate during

the first few millennia, these variables were unrelated for the
majority of the record.

The raw records (C) at each site exhibited significant
heteroscedasticity (Table 4), with Little Lake exhibiting the

T
a
b
le
4
.

S
ta
ti
o
n
a
ri
ty

o
f
v
a
ri
a
n
ce

a
n
d
sk
ew

n
es
s
o
f
C
a
n
d
C
p
e
a
k
se
ri
es

fo
r
d
if
fe
re
n
t
d
ec
o
m
p
o
si
ti
o
n
m
o
d
el
s

T
h
e
m
o
d
if
ie
d
L
ev
en
e’
s
te
st
st
at
is
ti
c,
W

5
0
,
an
d
th
e
p
ro
b
ab
il
it
y
o
f
th
e
n
u
ll
h
y
p
o
th
es
is
o
f
eq
u
al
v
ar
ia
n
ce
s,
P
,
ar
e
b
as
ed

o
n
co
m
p
ar
is
o
n
s
b
et
w
ee
n
v
al
u
es

fr
o
m

1
0
0
0
0
to

6
0
0
0
an
d
4
0
0
0
to

0
y
ea
rs
B
P
in

si
m
u
la
te
d

re
co
rd
s,
an
d
eq
u
al
ly
sp
li
th
al
v
es
si
n
ce

8
0
0
0
,5
0
0
0
an
d
1
0
0
0
0
y
ea
rs
B
P
fo
r
L
it
tl
e,
R
o
ck
sl
id
e,
an
d
R
u
p
p
er
tl
ak
es
re
sp
ec
ti
v
el
y
.C

re
fe
rs
to
th
e
in
te
rp
o
la
te
d
ch
ar
co
al
se
ri
es
;s
ee

T
ab
le
1
fo
r
ab
b
re
v
ia
ti
o
n
s
o
f
th
e
sp
ec
if
ic

d
ec
o
m
p
o
si
ti
o
n
m
o
d
el
s.
B
o
ld
an
d
it
al
ic
v
al
u
es
re
sp
ec
ti
v
el
y
id
en
ti
fy
st
at
io
n
ar
y
se
ri
es
,t
h
o
se
th
at
fa
il
to
re
je
ct
th
e
n
u
ll
h
y
p
o
th
es
is
at
a
¼
0
.1
0
an
d
0
.0
5
,w

h
er
e
a
h
ig
h
er
a
is
m
o
re
co
n
se
rv
at
iv
e.
T
h
e
sk
ew

n
es
s
co
ef
fi
ci
en
t

is
a
m
ea
su
re
o
f
th
e
as
y
m
m
et
ry
o
f
th
e
en
ti
re
p
ea
k
se
ri
es
o
f
ea
ch

re
sp
ec
ti
v
e
m
o
d
el
,w

h
er
e
p
o
si
ti
v
e
v
al
u
es
in
d
ic
at
e
g
re
at
er
sp
re
ad

ab
o
v
e
th
e
m
ea
n
v
al
u
e
an
d
a
0
v
al
u
e
in
d
ic
at
es
a
sy
m
m
et
ri
c
d
is
tr
ib
u
ti
o
n
.T
h
e
ti
m
e
se
ri
es

fo
r
ea
ch

m
o
d
el
is
sh
o
w
n
in

F
ig
s
2
an
d
4
fo
r
th
e
si
m
u
la
te
d
an
d
em

p
ir
ic
al
re
co
rd
s
re
sp
ec
ti
v
el
y
.
V
al
u
es

fo
r
si
m
u
la
te
d
re
co
rd
s
re
p
re
se
n
t
th
e
m
ed
ia
n
v
al
u
e
fr
o
m

5
0
0
re
co
rd
s
co
n
st
ru
ct
ed

u
n
d
er

ea
ch

sc
en
ar
io

S
ce
n
ar
io

o
r
si
te

W
5
0
te
st
st
at
is
ti
c
fo
r
eq
u
al
it
y
o
f
v
ar
ia
n
ce
s
(P

v
al
u
e)

S
k
ew

n
es
s
co
ef
fi
ci
en
t
(2
.5
–
9
7
.5
th

p
er
ce
n
ti
le
)
[w

it
h
in
-r
o
w
ra
n
k
]

C
N
R

T
R

N
I

T
I

N
R

T
R

N
I

T
I

S
ce
n
ar
io

1
(v
ar
ia
n
ce

co
n
st
an
t)

0
.4
5
(0
.5
0
2
)

0
.4
4
(0
.5
0
8
)

4
6
.7
2
(o
0
.0
0
1
)

2
5
.6
2
(o
0
.0
0
1
)

9
8
.5
4
(o
0
.0
0
1
)

2
.5
9
(1
.9
8
–
4
.1
7
)
[1
]

0
.9
6
(0
.6
8
–
1
.2
9
)
[2
]

3
.4
7
(2
.4
0
–
6
.1
4
)
[1
]

1
.2
2
(0
.7
9
–
1
.7
4
)
[2
]

S
ce
n
ar
io

2
(v
ar
ia
n
ce

p
ro
p
o
rt
io
n
al
)

2
1
.8
7
(o
0
.0
0
1
)

2
0
.9
0
(o
0
.0
0
1
)

7
.1
2
(0
.0
0
8
)

1
0
.8
1
(0
.0
0
1
)

5
7
.9
2
(o
0
.0
0
1
)

2
.9
7
(2
.1
2
–
5
.0
5
)
[1
]

1
.2
0
(0
.8
9
–
1
.5
2
)
[2
]

3
.0
3
(2
.1
7
–
4
.9
8
)
[1
]

1
.5
5
(1
.0
1
–
2
.1
0
)
[2
]

L
it
tl
e
L
ak
e

1
5
3
.1
4
(o
0
.0
0
1
)

3
7
.7
2
(o
0
.0
0
1
)

3
.4
0
(0
.0
6
6
)

0
.0
1
(0
.9
4
2
)

6
8
.7
9
(o
0
.0
0
1
)

1
7
.7
3
[1
]

0
.2
8
[3
]

4
.1
7
[2
]

�0
.5
6
[4
]

R
o
ck
sl
id
e
L
ak
e

1
5
.2
0
(o
0
.0
0
1
)

5
.7
1
(0
.0
1
8
)

0
.4
9
(0
.4
8
3
)

6
.2
0
(0
.0
1
3
)

1
4
.7
0
(o
0
.0
0
1
)

3
.1
6
[3
]

1
.6
8
[4
]

5
.2
8
[1
]

3
.7
0
[2
]

R
u
p
p
er
t
L
ak
e

8
4
.6
2
(o
0
.0
0
1
)

5
9
.5
1
(o
0
.0
0
1
)

6
6
.5
2
(o
0
.0
0
1
)

5
.6
2
(0
.0
1
8
)

9
.1
1
(0
.0
0
3
)

4
.1
0
[3
]

3
.1
4
[4
]

6
.7
9
[1
]

6
.3
7
[2
]

Fire history from sediment charcoal records Int. J. Wildland Fire 1005



0

20

40
P

ie
ce

s 
cm

�
2  

ye
ar

�
1

P
ie

ce
s 

cm
�

2  
ye

ar
�

1

Scenario 1: peak variance constant

Period 1 | Period 2

(a) C & Cback

0

2

4
(b) log(C � 1) & Cback, f(log[C � 1])

0

20

40
(c) NR model: C � Cback

P
ie

ce
s 

cm
�

2  
ye

ar
�

1
P

ie
ce

s 
cm

�
2  

ye
ar

�
1

�1

0

1

2

(d ) TR model: log(C � 1) � Cback, f(log[C � 1])

0

2

4

6

8

R
at

io

(e) NI model: C � Cback

012345678910
0.5

1

1.5

2

2.5

R
at

io

(f ) TI model: log(C � 1)�Cback, f(log[C � 1])

Time (years BP � 1000)

0

20

40

Scenario 2: peak variance proportional

Period 1 | Period 2

0

2

4

0

20

40

�1

0

1

2

0

2

4

6

8

012345678910
0.5

1

1.5

2

2.5

Time (years BP � 1000)

Fig. 2. Simulated charcoal records reflecting alternative assumptions regarding the stability of the variance

through time. (a) Representative records from each scenario. Scenario 1 has constant variance in peak

heights superimposed on a changing mean. Scenario 2 is a heteroscedastic series in which the peak variance

changes in proportion to Cback. The thick black line in all figures is a 500-year lowess smooth used to define
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alternative methods. Abbreviations: C, interpolated charcoal series; Cback, background charcoal series;
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most, followed by Ruppert and Rockslide lakes (W50¼ 153.14,

84.62, 15.20 respectively; P� 0.001). The four detrending
models had a large effect on the variance in Cpeak (Table 4;
Fig. 4). The TR and NI models were most effective at stabilising

variance, although results differed between sites. At Rockslide
Lake, the TR model stabilised variance (500–2500 v. 2500–
0 years BP, W50¼ 0.49, P¼ 0.483); this model performed
second best at Little Lake (800–4000 v. 4000–0 years BP,

W50¼ 3.40, P¼ 0.066) and performed worst at Ruppert Lake
(10 000–5000 v. 5000–0 years BP, W50¼ 66.52, Po0.001). At
Little Lake, the NI model stabilised variance (W50¼ 0.01,

P¼ 0.942), and at Ruppert Lake, no model stabilised variance.
Although the NR and TI models reduced heteroscedasticity,
they did not stabilise variance in any record. Skewness in Cpeak

was largest when using the NR model (Little Lake, 17.73) or NI
model (Rockslide and Ruppert lakes, 5.28, 6.79 respectively).
In contrast, log-transforming C (TR and TI models) reduced
skewness, and at Little Lake, these models resulted in near-

symmetric distributions (0.28 and�0.56 respectively; Table 4).
The noise distribution fitted by the Gaussian mixture model

resulted in different SNI and skewness values, dependent on the

decomposition model (Fig. 5). As applied to the Rockslide Lake
record, the NR and NI models yielded the largest SNI (0.97 and
0.98), whereas the TR and TI models had the smallest SNI (0.81

and 0.94). Skewness, as a potential measure of the occurrence of
high values distinct from a noise distribution, was highest for the
NI model (5.28). The TRmodel, though having a moderate SNI,

was the most symmetric (skewness¼ 1.68).
As with simulated records, peak detection in empirical

records was more sensitive to alternative decomposition models

when using a global v. local threshold, and this sensitivity varied
greatly between sites (Fig. 6). At Little Lake, whereCback varied
the most throughout the record, a global threshold detected
41 peaks with the NR model but only five with the TI

model, producing drastically different trends in 1000-year mean
fire-event frequency. The TR and NI models produced an
intermediate number of peaks (23 and 30) with qualitatively

similar trends over time. In contrast to the variance at Little
Lake, peak detection with any model varied by 6% at Rockslide
Lake (33–35) and 13% at Ruppert Lake (64–72), where varia-

bility in Cback was less. At all sites, locally defined thresholds
detected more peaks and with less variability between models
than did globally defined thresholds, even after minimum-count

screening (described below). Again, differences among models
were greatest at Little Lake, where peak detection varied from
56 to 68 (21%). Peak detection varied little at Rockslide Lake,
34–36 (6%), and slightly more at Ruppert Lake, 79–88 (11%).

Differences at Little and Ruppert lakes largely reflect differ-
ences between the two residual models (NR and TR) in compar-
ison with the index models (NI and TI).

Theminimum-count screening flaggedbetween0 and14%of
the total peaks detected in any one record, with the least at Little
Lake (median¼ 2.5%), followed by Rockslide Lake (median¼
9%) and Ruppert Lake (median¼ 11%). A greater proportion of
the total peaks detected was flagged when using a local v. global
threshold (median¼ 9 v. 3%), and the variability between
detrending models differed by threshold type. When using a

global threshold, a larger percentage of total peaks was flagged
when using index models (median for NI and TI¼ 11%) v.

residual models (median for NR and TR¼ 3%). This difference

was reduced using a local threshold (10 v. 9% respectively).

Discussion

Interpreting local fire history from sediment–charcoal records
involves several analytical steps that decompose multiple sig-

nals into a series of peaks that bears interpretation (Fig. 1).
Accounting for non-stationarity in a record is a primary goal of
decomposition methods, and our analyses of simulated records
illustrate the sensitivity of alternative methods to two types

of non-stationarity: a change in the mean (Scenario 1), and a
change in the mean and variance (Scenario 2) through time. In
combination with empirical records, our results highlight some

critical methodological considerations that have been broadly
overlooked in the literature. Specifically, we emphasise the need
for careful consideration when proceeding through steps 4–6

of a decomposition method (Fig. 1): (i) defining Cpeak, or
detrending; (ii) defining a threshold to detect peaks; and, in the
case of charcoal counts; (iii) screening and removing peaks that
could result from insignificant changes in charcoal counts.

0

1

2

3

s

NR model

Scenario 1:
peak variance constant

0

1

2

3

s

TR model

0

1

2

3

s

NI model

Global Local
0

1

2

3

s

TI model

Threshold type

0

1

2

3

Scenario 2:
peak variance proportional

0

1

2

3

0

1

2

3

Global Local
0

1

2

3

Threshold type

Fig. 3. Sensitivity of peak identification to decomposition models and

threshold type. The sensitivity index, s, is the ratio of detected peaks from

period 1 to period 2 in the two simulated charcoal scenarios in Fig. 2. The

error bars indicate the 95% confidence interval from 500 realisations of the

simulated records.

Fire history from sediment charcoal records Int. J. Wildland Fire 1007



Detrending to define a peak series

An overriding conclusion from our study is that the impacts of
different detrending models are largely obviated by using a
locally defined threshold. In simulated records, peak identifi-
cation using a local threshold was robust to changes in back-

ground charcoal, peak variance and detrending model (Fig. 3).
In empirical records, these patterns largely held true, as reflected
by less between-model variability when using local v. global

thresholds. For example, the total number of peaks detected
since 5000 years BP in Ruppert Lake varied by 7 v. 30% when
applying a local v. global threshold to the different detrending

models (Fig. 6). Locally defined thresholds outperformed global
thresholds because the mixture model used to determine
thresholds constantly adapts to variability in a record. Conse-
quently, local thresholds are free from the assumption of stable

variance in peak heights, at least for time scales longer than the

window width used to define ‘local’. With no need to stabilise
variance across a record, detrending before applying a locally
defined threshold needs only to account for changes in the long-

term mean, and thus three of the four detrending models eval-
uated become obsolete. Even stabilising themean, interestingly,
may be unnecessary when using a locally defined threshold,

but no studies have attempted this to date. Our results are
consistent with analyses done by Ali et al. (2009b), who applied
the local threshold technique to three different charcoal quan-

tification metrics from individual cores (counts, area and esti-
mated volume). Although the variability between the three
metrics differed, the locally applied threshold produced similar
results in each case. Overall, these findings lend support to

the recent adoption of local thresholds for peak identification
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(Table 1) as robust to changes in variance both within and
between records.

Although local thresholds effectively eliminate the need
to stabilise variance, understanding the impacts of detrending

models when combined with global thresholds remains impor-
tant, mainly owing to the prior use of these approaches (Table 1).
Our results suggest that reanalysis of some previously published

records is justified, as has been initiated in some larger-scale
synthesis studies (Marlon et al. 2009). In particular, analyses
using a global threshold and the NR model with clearly hetero-

scedastic records or a global threshold with the TI model should
be reconsidered, given the potential for systematically biased
peak detection during periods of high or low Cback.

When applying a global threshold, it is imperative to evaluate

the presence or absence of heteroscedasticity in a record before
selecting a detrendingmodel. If a record has stable variance, then
the NRmodel is the single appropriate model because it removes

only the mean trend of a series (Fig. 2). In simulated records,
the only instance in which the global threshold was unbiased
was when the NR model was applied to homoscedastic records

(Scenario 1; Fig. 3). The closest analogy in the empirical records
is fromRockslide Lake, which had the least heteroscedasticity of
the three records evaluated (and was the shortest in length) and

consequently wasmost robust to alternative detrendingmethods.
Applying variance-stabilising models (TR, NI, TI) to homosce-
dastic records is not only unwarranted, but it can result in

severely biased peak identification (Fig. 3) by simultaneously
amplifying and suppressing peaks during periods of low and high
background charcoal accumulation rates respectively (Fig. 2).
This bias was minimised when using the TR model, and it

subsequently increased with the NI and TI models. By amplify-
ing peak sizes when Cback is low, index-based models applied
to homoscedastic records result in biased peak identification

(Figs 2, 6). This bias is most extreme when using the TI model
in combination with a global threshold, as this led to more than
twice as many peaks being detected during periods of low v. high

background charcoal in our simulations (Fig. 3).
Unfortunately, most empirical charcoal records exhibit het-

eroscedasticity at some time scale, particularly those spanning
different biomes, many millennia or both. This limits the utility

of the NR model with a global threshold. All the empirical
records in this study, for example, had non-stable variance
between the two periods of comparison (Table 4; Fig. 4). In

heteroscedastic records, both empirical and simulated records
support the TR or NI models as most appropriate for considera-
tion when using a global threshold. Although no model stabi-

lised variance in the simulated records with heteroscedasticity,
the TR and NI performed the best, and in empirical records,
these models stabilised variance across comparison periods

in some records (Table 4). When applied to heteroscedastic
records, the NR and TI models are inappropriate for the opposite
reasons. Simply detrending by residuals (NR) fails to remove
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any heteroscedasticity (Table 4), which biases peak identifica-
tion towards periods of high Cback (Fig. 3). Detrending with an

index of transformed data (TI) reverses the pattern of hetero-
scedasticity in what is essentially a ‘double whammy’ of
variance stabilisation (Figs 2, 4), biasing peak identification

towards periods of low Cback (Fig. 3). The undesirable effects of
the TI model are most apparent in the Little Lake record, where
four of the five peaks detected occurred during the period of low
background charcoal (Fig. 6). The overall low number of peaks

detected in this scenario also stands out as odd, and it highlights
the conceptual difficulty of interpreting fire history from a
symmetric peak series. If the variability above Cback does not

differ from the variability below Cback, then it is inconsistent to
interpret the former as fire-relatedwhile interpreting the latter as
noise-related. When a globally defined Gaussian mixture model

is applied to a nearly symmetric peak series (e.g. Little Lake
under the TI model, skewness¼�0.56; Table 4), selecting a
threshold at the 99th percentile cuts off 99%of the samples in the
series (895 of 900 samples in the Little Lake record; Fig. 6).

Finally, we emphasise that the impacts of different detrend-
ing models will vary between sites, depending on the mean and
variability of charcoal accumulation rates in a record. Rockslide

Lake, for example, was largely robust to alternative decomposi-
tion methods, whereas Little Lake displayed large variability
between methods (Fig. 7). Ruppert Lake was also clearly

heteroscedastic, but overall lower C and Cback values as com-
pared with Little Lake resulted in less sensitivity to alternative
detrending models (Fig. 6).

Defining a threshold

The Gaussian mixture model introduced by Gavin et al. (2006)
is promising because it provides a semi-objective, process-based

means of selecting a threshold for peak identification, which in
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turn can be applied tomultiple records. Using themixturemodel
to identify a threshold depends on three key assumptions:
(1) variation in the noise distribution, representing variability

around the long-term trend (i.e. Cback), is normally distributed;
(2) the mean and variance of this noise distribution is stationary
within the period of analysis; and (3) there are enough samples

within the period of analysis to adequately characterise the noise
distribution. The first assumption has theoretical support from
a charcoal simulation model (fig. 3 in Higuera et al. 2007),

and it is consistent with distributions of peak charcoal observed
in empirical records (e.g. Higuera et al. 2009; Fig. 5). The
mechanisms creating normally distributed variability around
the long-term trend include sediment mixing, interannual

variability in long-distance charcoal input, sampling effects, and
analytical error. Other mechanisms may produce skewed
variability, and to the extent that this is true, this is a limitation of

the Gaussian mixture model (discussed below).
The second assumption, that the properties of the noise

distribution are stable, becomes increasingly difficult to satisfy

as more samples are included in the population. The two ways to
satisfy this assumption are to define the threshold over a period
of stable mean and variance (i.e. use a locally defined threshold),

or define Cpeak with one of the two recommended variance-
stabilising methods (TR, NI). The shorter the period over which
a threshold is defined, the more difficult it becomes to satisfy
the third assumption, that the Gaussian distribution adequately

describes the empirical data. Thus, the analyst has to make a
trade-off between satisfying assumptions two and three. In
practice, one can test the third assumption with a goodness-of-

fit statistic, which quantifies the probability that the empirical
data came from the modelled Gaussian distribution (e.g. Higuera
et al. 2009). The modified Levene’s test used in the present study

can be used to test for equal variance between different periods
in a peak series. Future application of this test could be done
on shorter, overlapping intervals, although one faces reduced
statistical power as the intervals decrease, and interpreting P

values becomes difficult with multiple comparisons.
The application of the Gaussian mixture model to identify a

threshold is also aided by maximising the separation between

the noise distribution and fire-related peaks. This is a key
difference between the analytical approach taken for peak
identification compared with the analysis of long-term trends

in total charcoal (e.g. Marlon et al. 2008, 2009; Power et al.
2008). Whereas homogenising variance is desirable in the
context of the latter, this decreases separation between noise

and fire-related samples, i.e. it reduced the SNI. For example,
in the Rockslide Lake record, the SNI was highest (0.97–0.99)
using the NR and NI models, whereas it was consistently
lowered when applying variance-stabilising transformations

(0.81–0.94; Fig. 5). Skewness may also serve as a coarse index
of how separated peak values are from non-peak values. At
Little Lake, a nearly symmetric peak distribution defined by

the TI model reflected little to no separation between peak and
non-peak values. Thus, as a general rule, a minimum level of
skewness of approximately two would suggest a SNI sufficient

to aid in setting thresholds, but increased skewness beyond two
does not necessarily equate to an increased SNI. We also note
that skewness alone is not justification for peak interpretation,
particularly if it is an artefact of the detrending processes.

Interpreting small charcoal peaks

Most decompositionmethods resulted in the identification of small
peaks that failed to pass the minimum-count test at the 95% con-
fidence level (0–14% of the total peaks identified; Fig. 6). Some

peaks fail to past this test because they closely follow other large
peaks (i.e. a ‘double peak’), e.g.,1200years BP at Ruppert Lake
(Figs 4, 6). These peaks most likely represent non-significant

variations in charcoal counts due to natural or analytical variability.
More challenging for sediment-based fire-history reconstructions
are periods of low charcoal abundance. In these cases, both var-

iance-stabilising and local-threshold methods may result in
detecting small peaks, often associated with small charcoal counts
in the raw record. The smaller the charcoal peak, the more difficult
it is to infer if the peak was caused by a local fire v. a distant fire or

random variability in charcoal deposition and quantification. The
minimum-count test helps guard against falsely inferring that a
peak was caused by a local fire (Type I error). When this prob-

ability is low, e.g.o0.05, it is highly unlikely that the two samples
come from the same population. Practically, Fig. 7 illustrates
the increase in counts (as a proportion and absolute number)

required to achieve a given level of confidence (95 or 99%)
as a function of the number of charcoal pieces in the pre-peak
sample. The lower the pre-peak count, the greater the proportional

increase in charcoal required before a peak sample can be con-
sidered distinct with 95% confidence. For example, when pre-peak
counts areo10, peak counts must double before having ao5%
chance of coming from the same population. Much smaller pro-

portional increases are required when overall counts are large, e.g.
only a 20% increase is required when pre-peak samples are,100.
Thus, as a rough rule of thumb, it is highly desirable for researchers

to use sample volumes that will result in average non-peak samples
of410 pieces, and peak values of at least 20 pieces.

Even with large sample volume, in some cases the difference

between a peak and non-peak sample may be small. Interpreting
variability when charcoal counts are low highlights a limitation of
the Gaussianmixturemodel brieflymentioned above. Themixture

model assumes normally distributed noise, and thus it may fail
when counts are small, because the true noise distribution may be
positively skewed (i.e. Poisson distributions with a meano10 are
positively skewed). If so, the Gaussian mixture model would

underestimate the threshold, resulting in an increased false-positive
rate. Future effortsmodelling noise distributionswithinCpeak could
address this limitation through the use of non-Gaussian mixture

models, which may be more appropriate for the heavy-tailed
distributions that characterise C and Cpeak series (Coles 2001).
For example, the signal and noise distributions may be better

representedbymodels in the generalised extremevalue family (e.g.
Weibull, Fréchet and Gumbel distributions), and the signal dis-
tribution may be represented more appropriately by models in the
generalised Pareto family (e.g. Pareto, b and exponential distribu-

tions; Katz et al. 2005). In the ideal case, the signal distribution has
little influence on the parameters of the noise distributions, because
the noise population typically dominates the mixed distribution.

Nonetheless, improving the fit of the signal distribution would
be an improvement over currentmethods anddeserves exploration.
In the meantime, we suggest that the minimum-count test serves

well to screen out small peaks, be they detected with a threshold
from a Gaussian mixture model or otherwise.
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Recommendations and conclusions

Evenwhen applying themost rigorous analytical techniques, there
is no substitute for careful inspection of a record to assess whether
it can provide an unbiased fire history in the first place. We

highlight three key issues related to assessing the quality of mil-
lennial-scale charcoal records when independent evidence sup-
porting a particular reconstruction is lacking. First, records should

be interpreted in the context of a null hypothesis of random
variability. If a peak series lacks large values, is symmetric, or fails
to detect recent fires, then the record should be considered too

noisy for peak identification. The SNI utilised here is intended to
help evaluate this null hypothesis, and we refer readers to recent
work that has improved the application of this metric for this
purpose (Kelly et al. 2010). Records with low SNI value(s) or

symmetric peak series should either forgo peak identification
methods, or be presented with a low, medium and high range of
possible thresholds. Depending on the cause of a low SNI, these

recordsmaystill be appropriate andvaluable for interpreting trends
in biomass burning through interpretations of C, Cback or both.

Second, if a record has large variability in sediment accumu-

lation rates, practitioners must consider the possibility that chan-
ging peak frequencies result from changes in sample resolution.
Resampling a record to the median or maximum deposition time

per sample coarsens or falsely increases the resolution during
periods of high or low sediment accumulation, and thus should
create a more temporally unbiased time series. However, this
resampling may not be a simple solution if sedimentation varies

widely, because sediment mixing modifies the effect of changing
sediment accumulation rate on the effective resolution of a
sediment record. For example, mixing the top 2 cm of sediment

during a period when the deposition rate is 10 year cm�1 would
result in an effective 1-cm resolution of 20 years. In contrast, the
same 2-cm mixing depth under a sediment deposition rate of

20year cm�1 would result in an effective resolution of 40 years.
An important cause of changing sediment accumulation rate is
fluctuating within-basin sediment focussing and sediment deliv-

ery by stream flow. Such processes can change the effectiveness
of sediment delivery, including charcoal, from lakemargins to the
lake centre. This results in the widely observed positive correla-
tion between charcoal accumulation and sediment accumulation

rates (i.e. constant charcoal concentration despite changing sedi-
ment accumulation rates) and a heteroscedastic charcoal record
(e.g. Fig. 4). In contrast, if charcoal were delivered entirely

through airfall, increased sediment accumulation rates would
dilute charcoal concentrations, and the charcoal record would
not be heteroscedastic. Therefore, we strongly warn against

interpreting fire frequency changes in records with a several-fold
change in sediment accumulation rate (along with no evidence
that charcoal concentrations are diluted by changing sedimenta-
tion) and when inferred fire frequency closely tracks sediment

accumulation rates. Although there may be a non-causal relation-
ship between sediment accumulation and fire frequency (e.g. via
erosion or climate), this link must be explained with independent

evidence if fire history is to be interpreted. A viable alternative
in these cases is to interpret only high-resolution segments with
constant sediment accumulation rates.

Finally, segments of records with low overall counts must be
interpreted with caution. The use of the minimum-count test

presented here can help guide interpretation in these cases, as can
independent evidence of fire (e.g. pollen or macrofossils of fire-
dependent taxa). Although charcoal records have successfully

detected fires in non-forested ecosystems (e.g. savannah and
tundra: Duffin et al. 2008; Higuera et al., in press), at some point
along a fire-intensity spectrum, fires will not produce enough

charcoal to create an identifiable peak in a record (Higuera et al.
2005; Duffin et al. 2008). This may be the case even with ample
sample volume. Likewise, as local fire frequency decreases,

so too does the frequency of large charcoal peaks; this makes it
more difficult to separate the signal of local fires from the noise
of long-distance transport and within-lake redeposition.

Following the work of Clark (1988a, 1988c) in detecting

fires from charcoal in laminated lake sediments, high-resolution
charcoal records have proliferated in the absence of a thorough
statistical framework for interpretation. This study is a first

attempt to provide such a framework. We conclude from
discussion above that applying a local threshold, in conjunction
with the minimum-count test, is likely to provide the best

interpretation of fire history from high-resolution macroscopic
charcoal records. In most cases, the simplest detrending model
(NR) is appropriate in this context, but there may be scenarios

where the TR or NI variance-stabilisation methods are justified.
We emphasise the need for careful consideration when select-
ing, applying, and interpreting variance-stabilising methods,
and we encourage practitioners to evaluate the sensitivity of

these choices on fire-history interpretations. Despite the chal-
lenges of inferring fire history from sediment charcoal records,
significant progress has been made to improve the rigor of

analysis and interpretations. In combination with the growing
database of high-resolution charcoal records worldwide, char-
coal records should continue to contribute uniquely to our

understanding of fire regimes, the controls and ecological
impacts of fire, and the role of fire in the Earth system.
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