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AÝ ó� ��ò�Ä�� in our understanding of soil water 

repellency (WR) dynamics, new questions arise as a con-

sequence of more WR data becoming available. In this respect, 

results have accumulated in the past that indicate that soil WR 

depends on the gravimetric soil water content, θg, in a nonlin-

ear fashion, i.e., soils are wettable close to fi eld capacity and as 

θg diminishes, they become increasingly repellent up to a local 

or global WR maximum near the wilting point; from this peak 

onward, WR decreases monotonically or rises again near the oven-

dry state (King, 1981; Wallis et al., 1990; de Jonge et al., 1999, 

2007; Goebel et al., 2004; Regalado and Ritter, 2005; Kawamoto 

et al., 2007). Even though diff erent degrees of WR have been 

often referred to as being more the rule than the exception in soils, 

there is not yet a model that fully describes such WR variation 

with soil moisture. Th ere has been, however, a recent attempt to 

partially describe quantitatively such WR–θg behavior (Bachmann 

et al., 2007), but description has been generally merely qualitative, 

although some useful curve shape WR parameters have been pro-

posed by Regalado and Ritter (2005). Th e idea of a WR model is 

appealing, if one takes into account that soil WR is involved in 

many important hydrologic processes, from land erosion to soil 

permeability, preferential fl ow, and soil water evaporation, and 

that therefore quantifi cation and parameterization of the WR–θg 

phenomena would be very useful. For instance, once a WR model 

is available, we would be able to compare in quantitative terms 

WR–θg responses from diff erent soils or make predictions of the 

WR status at unmeasured θg values within the soil moisture range 

from saturation to oven dryness. Th e reason why there exists 

no quantitative description of the variation of WR with θg in 

soils may possibly stem from the fact that the mechanisms lead-

ing to WR are not yet fully understood (Roberts and Carbon, 

1971; Wallis et al., 1990; Doerr and Th omas, 2000; Doerr et 

al., 2002; Goebel et al., 2004). Additionally, if WR–θg measure-

ments from diff erent soil samples are plotted together, because 

of data dispersion, it is diffi  cult to ascertain by visual inspection 

whether any WR patterns are shared by all samples (apart from 

the qualitative description already provided above) or whether a 

single curve may be able to describe the whole WR–θg data set. 

Th is is somehow connected to the classical problem of scaling in 

soil science and hydrology, whereby a scattered data set coalesces 

into a representative average reference curve derived for diff erent 

soil types or spatial locations based on scaling considerations. 

Some illustrative examples are those of the scaled unsaturated 

hydraulic conductivity and water retention curves (Warrick et 

al., 1977; Russo and Bresler, 1980). 
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The contact angle (α) varies nonlinearly with the soil water content (θg) in water-repellent soils; however, a quanƟ taƟ ve 
descripƟ on of such a θg dependence of α is sƟ ll lacking. Using a dimensionality reducƟ on technique such as dynamic 
factor analysis (DFA), we managed to idenƟ fy two common paƩ erns within a scaƩ ered data set of α vs. θg measure-
ments performed with the molarity of an ethanol droplet test in 16 soil samples. These two common paƩ erns, derived 
from the DFA, provided the basis for calibraƟ ng a proposed empirical, three-parameter, linear model that described 
saƟ sfactorily (R2 > 0.89) an addiƟ onal α–θg data set used for model validaƟ on, from 40 soil samples with organic mat-
ter contents spanning from 110 to 650 g kg−1. This off ered both scaling and a fl exible quanƟ taƟ ve descripƟ on of the soil 
water content dependence of water repellency.
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Diff erent tools have been developed for scaling soil-related 

properties, and these are of two basic types: empirical meth-

ods and dimensional analysis (Pachepsky et al., 2003). Some 

drawbacks of these methods are that in some instances scaling 

parameters are subjectively chosen by trial and error (Regalado, 

2005); they presume a more or less relaxed physical (self-) similar-

ity of the system (Miller and Miller, 1956; Pachepsky et al., 2000), 

or the functional form of the scaling laws must be known in 

advance or be derived ad hoc (Warrick, 1990). Th ere exist other 

scaling techniques such as DFA (Zuur et al., 2003). Dynamic 

factor analysis is a dimensionality reduction statistical technique 

that can handle nonstationary, regularly spaced short series, 

with or without missing values, that has been classically applied 

to detect common trends in time-dependent series, originally 

from economics (Geweke, 1977) and more recently in hydrol-

ogy (Muñoz-Carpena et al., 2005; Ritter and Muñoz-Carpena, 

2006; Ritter et al., 2007), but whose potential as a dimensionality 

reduction tool for scaling time-independent problems has been 

overlooked. Advantages of the DFA are that it does not require 

a priori information about the underlying scaling laws, and that 

explanatory variables consisting of other observed series may be 

incorporated into the analysis as auxiliary variables to assist the 

description of the observed variability. In this study, we made 

use of DFA to show that this technique is useful as a scaling tool 

of a selected scattered WR–θg data set, providing clues about a 

fl exible empirical model to describe WR in soils.

Materials and Methods

Soil Water Repellency CharacterizaƟ on

Fifty-six soil samples were selected from the top organic 

layer of a forested watershed in the Garajonay National Park, La 

Gomera (28°6′ N, 17°8′ W), Canary Islands, Spain, which was 

previously described in Regalado and Ritter (2005). Soil samples 

were fi rst hand sieved (<2 mm) at fi eld moisture and wetted until 

fully saturated in the lab. Th en the molarity of an ethanol droplet 

(MED) test (Roy and McGill, 2002) was performed in desorption 

steps as described in Regalado and Ritter (2005), rendering 56 

sets of α (°) vs. θg (kg kg−1) data pairs. Following Regalado and 

Ritter (2005), we defi ned the following α–θg curve shape param-

eters: S (° kg kg−1) is the trapezoidal integrated area enclosed 

between the α–θg curve and the α = 90° line; θg-max (kg kg−1) is 

the soil water content at which α is maximum (αmax), and θg-min 

(kg kg−1) is the wetted soil state at which WR is triggered; fi nally, 

the contact angle in the oven-dried soil is referred as α105°C (°).

Dynamic Factor Analysis

Sets of α–θg data pairs were analyzed using DFA (Zuur et 

al., 2003). Th e DFA was performed with n = 16 out of the 56 

sets of α vs. θg data pairs, with θg as the independent variable 

and α as the dependent one. Notice that the inverse problem 

would lead to a nonunique defi nition of the series. Since DFA 

can handle time series with missing values, gaps in the α–θg data 

were treated as unmeasured values, such that all the α(θg) series 

were to have the same θg length. Dynamic factor analysis was 

originally designed for identifying underlying common patterns 

or latent unexplained eff ects in series of measured data of N 

response variables (in our case the 16 α–θg series), such that the 

following multiple linear model may be proposed (Lütkepohl, 

1991; Zuur et al., 2003):

N response series = linear combination of M common patterns 

        + level parameter + noise [1]

When readily available, explanatory auxiliary variables may be 

also included in Eq. [1], although these were not considered in 

our case. Mathematically, Eq. [1] may be written in terms of the 

following dynamic factor model  (DFM):

( ) ( ) ( )g , g g
1

M

n m n m n n
m

t
=

θ = γ θ +μ + ε θ∑α  [2]

( ) ( ) ( )1
g g g
i i i

m m nt t −θ = θ +η θ  [3]

where αn(θg) (n = 1, 2, …, N = 16) is the vector that contains the 

series of measured contact angle values at each ith soil water con-

tent θg; tm(θg) is an M (<N) length vector gathering the common 

unknown patterns, such that DFA aims to explain most of the 

variability with the minimum possible M; the weighting factors 

γm,n are referred to as factor loadings, and depending on their 

size one may identify what patterns are mainly responsible for 

each of the αn(θg) response series; the constant-level parameters 

μn shift up and down each linear combination of common pat-

terns; and εn(θg) and ηm(θg) are (independent) Gaussian noise 

distributions with zero mean and unknown (diagonal) covari-

ance matrix. Parameters in the DFM Eq. [2–3] were optimized 

with the expectation maximization (EM) algorithm (Dempster 

et al., 1977; Shumway and Stoff er, 1982; Wu et al., 1996). Th e 

tm(θg) patterns were modeled as a random walk (Harvey, 1989) 

and were estimated using the Kalman fi lter–smoothing algo-

rithm and the EM algorithm (Zuur and Pierce, 2004). Since 

DFA is readily implemented in the Brodgar version 2.5.6 pack-

age (Highland Statistics Ltd., Newburgh, UK; www.brodgar.com, 

verifi ed 21 Nov. 2008), that software was used in this study. A 

more detailed description of DFA techniques may be found in 

Zuur et al. (2007).

Th e best DFM was selected in terms of the coeffi  cient of effi  -

ciency, Ceff  (Nash and Sutcliff e, 1970), and Akaike’s information 

criterion (AIC), an index that penalizes overparameterization in 

a better fi tting model, such that usually the preferred model is 

that with the smallest AIC (Akaike, 1974). Additionally, cross-

correlation between αn(θg) and tm(θg) was quantifi ed by means 

of the so-called canonical correlation coeffi  cients, ρm,n, such that 

a ρm,n close to unity implies that a specifi ed mth common pattern 

is strongly associated with a particular αn(θg) (n = 1, 2, …, 16). 

Furthermore, when |ρm,n| < 0.30, αn(θg) and tm(θg) correlation 

may be considered negligible, while when 0.30 ≤ |ρm,n| < 0.50 

correlation is considered to be low, moderate if 0.50 ≤ |ρm,n| ≤ 

0.75, and high if |ρm,n| > 0.75.

Results and Discussion

Exploratory Analysis of the Water Repellency Curves

Figure 1 depicts the 16 α–θg data sets obtained with the 

MED test and used in the DFA. Some samples almost recovered 

their wettability under oven-dried conditions, i.e., α105°C ? 90°, 

while others remained repellent when dried; WR was triggered in 
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a wide range of soil water contents, such that some soil samples 

initiated their repellency earlier than others. Th is all translates 

into the large data dispersion observed in Fig. 1, and consequently 

this is refl ected in the WR curve shape parameters, such that S 

ranged from 7 to 30° kg kg−1, θg-max varied from 0.36 to 1.20 

kg kg−1 and αmax spanned 108 to 118°, the minimum θg-min 

observed was 0.73 kg kg−1 while maximum θg-min was 1.83 kg 

kg−1, and α105°C extended from 90 to 111°.

Scaling and Dynamic Factor Analysis

Th e dimensionality reduction of the α–θg data shown in Fig. 

1 was performed with DFA by identifying common patterns in 

sequential steps. Table 1 summarizes the AIC and Ceff  values 

obtained as the number of common patterns was incremented, 

such that the best DFM, i.e., the lowest AIC, was the one with 

M = 3, although a slight improvement was obtained in terms of 

the Ceff  for M = 4. No further model enhancement was achieved 

beyond M = 4. Although the preferred 

DFM is the one with M = 3, the M = 2 

model has the advantage of being simpler 

and the goodness of fi t is still acceptable 

and this will be explored below. Figures 

2 and 3 show the common patterns and 

canonical correlation coeffi  cients for M 

= 2 and M = 3, respectively. Figure 2a 

and 2c depict two similar patterns but 

mirror images and slightly displaced with 

respect to the θg axis. Th is is also the case 

for M = 3, but a third pattern appears 

more random at intermediate θg values 

where most of the structure of the other 

two trends appears (Fig. 3a, 3c, and 3e); 

it is in this intermediate moisture region 

where soil WR is more relevant (Fig. 1). 

With respect to the canonical correla-

tion coeffi  cients, in general both trends 

are associated with WR for almost all 

samples when M = 2, i.e., |ρm,n| > 0.3; 

the fi rst pattern may be strongly associ-

ated with Samples 3 and 6 through 16; 

by contrast, the second pattern is highly 

correlated, i.e. |ρ1,n|>0.75, with Samples 

1 through 5, 14, and 16 (Fig. 2b and 

2d). In the case of M = 3, ρ1,n and |ρ2,n| 

are also >0.3 for all samples, exhibiting 

moderate to high correlation with the fi rst two in most cases (Fig. 

3b and 3d); however, the third pattern appears less relevant for 

some samples, with |ρ3,n| being >0.3 for Samples 6 through 13 

and 15; the canonical correlation coeffi  cient ρ3,2 = 0, thus this last 

pattern is not necessary to explain the WR behavior of Sample 

2 (Fig. 3f ). It is also noticeable that |ρ1,n| and ρ3,n were linearly 

correlated with the area enclosed between the α–θg curve and the 

line α = 90° (R2 > 0.85), such that as S increased, the fi rst and 

third patterns became less relevant. Th us we may conclude that 

soil WR of a wide variety of α–θg curve shapes may be described 

with two common underlying latent eff ects only, and that a third 

pattern may be necessary for the soil water regime close to satura-

tion where WR may be less apparent.

A Soil Water Repellency Empirical Model

Based on the above DFA, we derived an empirical model of 

soil WR to describe the θg dependence of α. Th is was done in two 

steps. First, Patterns 1 (P1) and 2 (P2) derived from the DFA (Fig. 

2a and 2c) were modeled by nonlinear fi tting, to provide a math-

ematical description of the discrete P1 and P2 series rendered by 

the Brodgar software. Th e objective of this study was to develop a 

F®¦. 1. VariaƟ on of contact angle with the soil water content for the 16 
soil samples used in the dynamic factor analysis and model calibraƟ on.

T��½� 1. SelecƟ on of dynamic factor models based on perfor-
mance coeffi  cients (Akaike’s informaƟ on criterion, AIC, and the 
coeffi  cient of effi  ciency, Ceff ).

No. of paƩ erns (M) AIC† Ceff  

1 1298 0.772
2 1205 0.929
3 1121 0.972
4 1122 0.976

† The lowest number represents the best model.

F®¦. 2. (a, c) Common paƩ erns and (b, d) canonical correlaƟ on coeffi  cients (ρm,n) for the 
dynamic factor model with the number of common paƩ erns M = 2.
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model that describes the α–θg curve. Th ereby it is useful to have 

an analytical description of the DFA patterns in terms of θg. Th is 

explains why, in the following, we used a smoothed version of the 

DFA patterns and not the DFA patterns themselves, such that

2 3 4 5
g g g g g

2 3 4 5
g g g g g1

+ θ + θ + θ + θ + θ
=
+ θ + θ + θ + θ + θm
a c e g i k

P
b d f h j

 [4]

was found to fi t satisfactorily (R2 ≥ 0.97) both common patterns 

(Table 2). Given the nonlinear behavior of WR vs. soil water con-

tent, the fi tting of a highly parameterized rational polynomial to 

both patterns is somehow justifi ed. Th e main issue here, however, 

is that DFA permits the identifi cation of common patterns that 

are not quantifi able by visual inspection, and that fi tting of these 

patterns is done only once during model calibration (with an N = 

16 subsample). Next, and according to the DFM Eq. [2], a mul-

tiple linear model was developed and fi tting parameters optimized 

for 40 additional α–θg data sets used as validation of the model. 

Model Eq. [2] (without the noise term) was thus selected as the 

basis for a general empirical WR model such that

( ) ( ) ( )g 1, 1 g 2, 2 g 3,n n n nP Pθ = θ + θ +α ν ν ν  [5]

where νi,n are n-length vectors of fi tting 

parameters. Th us, model validation (Eq. 

[5]) only requires fi tting of three param-

eters (ν1, ν2, and ν3) for each soil sample 

and the parameters in Eq. [4] are only 

fi tted once during the calibration of the 

model. Figure 4 illustrates the outcome of 

the fi tted model for the 40 soil samples 

selected for model validation, showing the 

good correspondence between measured 

and predicted WR values (R2 > 0.89). 

Since the MED test is only sensitive for 

contact angles >90° only α > 90° points 

are shown in Fig. 4. Th e large variety of 

curve shapes successfully fi tted by the 

model shows its fl exibility and generality 

given the wide range of soil organic matter 

content exhibited by the 40 soil samples, 

i.e., 110 to 650 g kg−1. We may stress that 

the satisfactory fi tting outcome shown in 

Fig. 4 is achieved with only three fi tting 

parameters (ν1, ν2, and ν3) for each 

sample. Another issue is related to pos-

sible relations between model parameters 

and soil properties. Th e proposed model 

is empirical, however, and any connec-

tion between fi tting parameters and soil 

properties may be simply coincidental. 

Th e only soil property determined for all 

soil samples was the organic matter con-

tent, and no unequivocal relationship 

was observed between the soil organic 

matter content and the νi parameters 

(results not shown).

Conclusions
Lacking a mechanistic understanding 

of soil WR, we have approached model-

ing the water content dependence of the 
F®¦. 3. (a, c, e) Common paƩ erns and (b, d, f) canonical correlaƟ on coeffi  cients (ρm,n) for the 
dynamic factor model with the number of common paƩ erns M = 3.

T��½� 2. Fiƫ  ng parameters and goodness-of-fi t criteria of the 
model Eq. [4] for the two common paƩ erns shown in Fig. 2a and 2c.

Parameter PaƩ ern 1 PaƩ ern 2
a 3.30 1.16
b −5.74 −7.25
c −16.88 −18.02
d 12.57 20.73
e 30.75 66.45
f −12.42 −18.79
g −23.48 −133.66
h 5.11 −9.26
i 13.06 85.15
j −0.45 18.22
k −6.69 20.89
R2 0.99 0.97
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F®¦. 4. Empirical 
models Eq. [4–5] 
fi Ʃ ed to the 40 
measured contact 
angle α–water 
content θg data 
sets used for 
model validaƟ on.
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contact angle by means of DFA, which permitted us to identify 

two common patterns representing unexplained variability. Using 

those two patterns recognized by DFA as the seed for a general 

WR-characterizing model, a multiple linear empirical model was 

derived that successfully described the α–θg dependence of 40 soil 

samples with organic matter contents from 110 to 650 g kg−1. 

Th ese are considered a representative family of α–θg forms given 

the wide range of soil organic matter and curve shapes exhibited, 

and therefore the fl exibility and generality of the proposed model 

is ensured. Th is provides the basis for further application of the 

derived model in other soils with diff erent textures to prove its 

universality. Furthermore, the nonlinearity of WR–θg measure-

ments is not exclusive to the MED test but is also representative of 

the water drop penetration time (WDPT) test, which character-

izes the WR of the soil in terms of persistence instead of contact 

angle, and therefore the proposed techniques used here may well 

be applied in deriving an equivalent WDPT–θg model.
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