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Abstract. The Coast Range of California is one of five global regions that dominated
historical production of mercury (Hg) until declining demand led to the economic collapse of
the Hg-mining industry in the United States. Calcines, waste rock, and contaminated alluvium
from inactive mine sites can release Hg (including methylmercury, MeHg) to the environment
for decades to centuries after mining has ceased. Soils, water, and sediment near mines often
contain high concentrations of total Hg (TotHg), and an understanding of the biogeochemical
transformations, transport, and bioaccumulation of this toxic metal is needed to assess effects
of these contaminated environments on humans and wildlife. We briefly review the
environmental behavior and effects of Hg, providing a prelude to the subsequent papers in
this Special Issue. Clear Lake is a northern California lake contaminated by wastes from the
abandoned Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency Superfund
Site. The primary toxicological problem with Hg in aquatic ecosystems is biotic exposure to
MeHg, a highly toxic compound that readily bioaccumulates. Processes that affect the
abundance of MeHg (including methylation and demethylation) strongly affect its
concentration in all trophic levels of aquatic food webs. MeHg can biomagnify to high
concentrations in aquatic food webs, and consumption of fish is the primary pathway for
human exposure. Fish consumption advisories have been issued for many North American
waters, including Clear Lake and other mine-impacted waters in California, as a means of
decreasing MeHg exposure. Concerns about MeHg exposure in humans focus largely on
developmental neurotoxicity to the fetus and children. Aquatic food webs are also an
important pathway for MeHg exposure of wildlife, which can accumulate high, sometimes
harmful, concentrations. In birds, wild mammals, and humans, MeHg readily passes to the
developing egg, embryo, or fetus, life stages that are much more sensitive than the adult. The
papers in this issue examine the origin, transport, transformations, bioaccumulation, and
trophic transfer of Hg in Clear Lake, assess its potential effects on biota and humans, and
provide information relevant to remediation of mine-impacted aquatic ecosystems.
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INTRODUCTION

Mercury (Hg) has a long history of human usage,

including mining for precious metals and an array of

industrial, domestic, and agricultural applications (Hy-

lander and Meili 2005). Beginning in the late 1960s,

increasing awareness of the hazards of Hg exposure

prompted widespread discontinuation or phased reduc-

tions in use of the metal in many applications and goods

and regulation of many industrial emissions of Hg to

receiving waters (Wiener et al. 2003). The rapid declines

in demand and prices for Hg precipitated abrupt

decreases in Hg mining and the eventual economic

collapse of Hg-mining operations in the United States

(Jasinski 1995) and elsewhere (Hylander and Meili

2003).

The mountainous Coast Range in the state of

California (USA) was one of five mining regions that

dominated the historical global production of elemental

Hg (Jasinski 1995, Ferrara 1999). The other regions were

the Almadén district in Spain, the Idrija district in

Slovenia, the Monte Amiata district in Italy, and the

Huancavelica district in Peru. Mining for gold and other

precious metals was the primary use of Hg in the United

States during the latter half of the 1800s, and the mining

of Hg deposits (primarily cinnabar ore, HgS) in the

Coast Range of California (Fig. 1) was stimulated by the

demands created by gold and silver mining (Averill

1946, Jasinski 1995, Alpers et al. 2005). Approximately

100 000 Mg of Hg were mined from the Coast Range.

The mining operations, emissions, and environmental

contamination associated with Hg mining at Almadén

(Spain), Idrija (Slovenia), and Mt. Amiata (Italy), three
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sites that together accounted for two-thirds of the

estimated total global production of Hg (i.e., ;530 000

of 800 000 Mg), have been reviewed by Ferrara (1999).

Operations at these sites involved mining of cinnabar

ores, which were transported to smelters, crushed, and

roasted at 6508–7008C. The Hg vapors released by

roasting were condensed in cooling towers and placed in

flasks for transport. In mining operations before ca.

1960, from 20% to 40% of the Hg in processed ores was

released to the surrounding environment (Ferrara 1999).

Thus, the air, soil, water, and sediment in the vicinity

of Hg-mining and smelting operations often contain

high concentrations of total Hg (TotHg) (Gosar et al.

1997, Ferrara 1999, Turner and Southworth 1999, Gray

et al. 2000, Lockhart et al. 2000). Moreover, calcines

(roasted ores), waste rock, and contaminated alluvium

from mining sites can release Hg (including methylmer-

cury, MeHg) to the environment for decades or centuries

after mining and smelting operations have ceased

(Ganguli et al. 2000, Hines et al. 2000, Rytuba 2000,

Covelli et al. 2001, Domagalski et al. 2004, Gray et al.

2004, Lowry et al. 2004). Concentrations of MeHg in

benthic invertebrates (Žižek et al. 2007), fish, and fish-

eating birds (Gray et al. 2000, Weech et al. 2004, 2006)

are substantially greater in waters affected by Hg mines

than in unaffected reference waters. Concentrations of

MeHg and TotHg are also substantially elevated in

terrestrial plants and wildlife at sites contaminated by

historic Hg-mining operations (Gnamuš and Horvat

1999).

In Pinchi Lake (British Columbia, Canada), for

example, cinnabar-containing waste ore from an adja-

cent Hg mine was deposited into the lake during 1940–

1944 (Plouffe et al. 2004), significantly contaminating

sediments in Pinchi Lake and downstream Stuart Lake

(Lockhart et al. 2000). Although the most Hg-contam-

inated sediments have been buried under subsequent

deposits (Lockhart et al. 2000), fish and fish-eating birds

sampled from Pinchi Lake in 2001–2002 contained

substantially higher concentrations of Hg than fish and

birds sampled concurrently from nearby lakes unaffect-

ed by Hg-mining activities (Weech et al. 2004, 2006).

This indicates that Hg from mining operations may

continue to be methylated and bioaccumulated as MeHg

for decades after Hg-mining operations cease.

About 12 000 Mg of Hg0 mined in California were

used in the state, mostly in gold-mining operations in the

Sierra Nevada and Klamath-Trinity Mountains (Averill

1946, Alpers et al. 2005). Substantial quantities of

elemental Hg (Hg0) were released to the environment at

gold-mining sites (Fig. 1). At a typical hydraulic gold-

mining site in California, for example, several hundred

kilograms of Hg0 would be added to a single sluice to

recover gold through amalgamation. An estimated 10–

30% of the Hg0 used in gold mining in California was

released to the environment (Averill 1946, Alpers et al.

2005). Total anthropogenic emissions of Hg in North

America during 1995–2000 were ;200 Mg/yr (Pacyna et

al. 2006); thus, the estimated 1200–3600 Mg of Hg0

released to the environment of California during gold-

mining operations represents a substantial anthropo-

genic source at the continental scale. In many developing

countries, there has been a resurgence in the use of Hg in

gold mining in recent decades, in small-scale (artisanal)

mining operations to amalgamate gold, exposing mil-

lions of miners and their families to high concentrations

of Hg0 vapor (Swain et al. 2007).

The mining, extraction, redistribution, and wide-

spread use of Hg, followed by decades of environmental

transport and redistribution, has left California and

other regions in the western United States with a legacy

of Hg-contaminated streams, rivers, reservoirs, and

floodplains down-gradient from historic mining sites in

the Coast Ranges and Sierra Nevada extending through

San Francisco Bay (Hornberger et al. 1999, Domagalski

et al. 2004, Heim et al. 2007). While there are a variety of

environmental disturbances from Hg, gold, and silver

mines and prospects in California, very few sites have

undergone extensive remediation to lessen the impacts of

Hg on humans and wildlife. However, many Hg-

contaminated mining sites in California and Nevada

are undergoing investigation. Environments surround-

ing the Sulphur Bank Mercury Mine in California and

the Carson River/Lahontan Reservoir (gold and silver

mining) region in Nevada, both U.S. Environmental

Protection Agency (EPA) Superfund Sites, contain very

high concentrations of TotHg in water and sediment.

Given the geographic extent and intensity of such

environmental contamination, information on the cy-

cling, transport, transformations, and bioaccumulation

of Hg in environments affected by inactive Hg-, gold-,

and silver-mining sites is needed to assess the potential

consequences of this contamination. Results of these

investigations can inform management decisions at

mining sites where Hg is a contaminant of concern.

In North America, many investigations of environ-

mental Hg pollution during recent decades have focused

on ecosystems contaminated by atmospheric deposition

(Lamborg et al. 2002, Grigal 2003, Branfireun et al.

2005, Orihel et al. 2006, Lindberg et al. 2007) or

industrial sources (Rudd et al. 1983, Turner and

Southworth 1999, Wiener and Shields 2000). Recent

studies have also focused on systems with high rates of

MeHg production, such as newly flooded reservoirs

(Bodaly et al. 2004, St. Louis et al. 2004) and wetlands

(St. Louis et al. 1996, Gilmour et al. 1998, Branfireun et

al. 2005). Many areas in California (Fig. 1), the western

United States, and Alaska contain abandoned mine sites

(including Hg, gold, and silver mines) that continue to

release significant amounts of Hg into down-gradient

aquatic environments.

The transport, distribution, transformation, and

bioaccumulation of Hg in mining-impacted landscapes

have received increasing study in recent years, and it is

evident that some aspects of the physical transport,

biogeochemical transformations, uptake, and effects of
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Hg from Hg-mining sites differ substantially from that

at sites dominated by Hg from atmospheric deposition,

industrial sources, and gold mines. At Hg-mining sites,

the total masses of Hg are large, existing mostly as

particulate Hg-sulfides (cinnabar and metacinnabar;

Lockhart et al. 2000, Rytuba 2000, Lowry et al. 2004).

At Clear Lake, Hg from calcines and waste rock from

the Sulphur Bank Mercury Mine is probably transport-

ed largely as colloidal and fine-grained cinnabar and

metacinnabar (Lowry et al. 2004). Cinnabar and

metacinnabar have low solubility under oxic conditions,

leading one to expect that the bioavailability of Hg in

these forms to methylating bacteria would be low. Yet

mine wastes, stream sediments, and surface waters at the

Almadén Mining District in Spain, the world’s largest

Hg-producing region, contain very high concentrations

of MeHg (Gray et al. 2004). In anoxic, sulfidic

sediments, cinnabar can dissolve and become available

for methylation (Benoit et al. 2001). Organic acids from

vegetation can enhance the dissolution of cinnabar

(Ravichandran et al. 1998) and increase the transport of

colloidal Hg from former mining sites (Slowey et al.

2005).

This issue provides a comprehensive assessment of

environmental and biotic impairment of the Clear Lake

ecosystem from the Sulphur Bank Mercury Mine, an

abandoned Hg mine site in the Cache Creek drainage

basin in the Coast Range of northern California. The

primary objective of this introductory paper is to briefly

review the ecotoxicological effects of Hg, providing a

prelude to the subsequent research papers from the

Clear Lake investigation. We do not attempt to review

the biogeochemistry of Hg in mine-impacted surface

waters, but instead focus on the rationale for concern

about Hg pollution and its adverse effects in aquatic

ecosystems. A synthesis of information on the Clear

FIG. 1. Locations of Clear Lake and of known historic sites of mercury, gold, and silver mines and prospects in California,
USA. Data were compiled from the Department of Conservation (California Geological Survey, Sacramento) and the U.S.
Geological Survey (Sacramento).
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Lake Hg investigation is provided by Suchanek et al.

(2008e).

MERCURY IN AQUATIC ECOSYSTEMS AND FOOD WEBS

Toxicological concerns about Hg pollution of aquatic

ecosystems focus on MeHg, a highly toxic, organome-

tallic compound that readily accumulates in exposed

aquatic organisms and biomagnifies in food webs

(Wiener et al. 2003). Although most of the Hg in

terrestrial and aquatic environments exists as inorganic

forms, nearly all of the Hg accumulated by fish and

higher trophic levels is MeHg (Grieb et al. 1990, Bloom

1992, Hammerschmidt et al. 1999), even in surface

waters containing unusually high concentrations of

inorganic Hg (Southworth et al. 1995, Kuwabara et al.

2007). Methylmercury readily crosses the lining of the

gastrointestinal tract and other internal biological

membranes (Pickhardt et al. 2006), is eliminated slowly

relative to its rate of uptake (Trudel and Rasmussen

1997, Van Walleghem et al. 2007), and accumulates to

concentrations in aquatic organisms that vastly exceed

those in the surrounding water. In fish, for example,

concentrations of MeHg commonly exceed those in the

water in which they reside by a factor of 106–107 or more

(Wiener et al. 2003). Direct uptake from water is

important for organisms, such as algae, in the lowest

trophic levels (Pickhardt et al. 2002, Gorski et al. 2006),

whereas aquatic organisms, such as fish, in upper

trophic levels obtain MeHg almost entirely from the

diet (e.g., Rodgers 1994, Hall et al. 1997, Harris and

Bodaly 1998). Characteristic patterns in the biomagni-

fication of MeHg are evident across ecosystems that

differ in type of water body, Hg source, and pollution

intensity (Wiener et al. 2003). For example, the

concentration of MeHg increases up the food web from

water and lower trophic levels to fish and piscivores, the

greatest increase in concentration occurs in the trophic

step between water and algae, and the fraction of TotHg

present as MeHg increases with ascending trophic level

from algae through fish.

In contrast to MeHg, inorganic HgII and Hg0 in

natural waters are not readily transferred through

successive trophic levels and do not biomagnify in food

webs (Watras et al. 1998, Kim and Burggraaf 1999,

Pickhardt et al. 2002). In a toxicological sense, the

primary problem with Hg in aquatic ecosystems stems

from biotic exposure to, or bioaccumulation of, MeHg

(Wiener et al. 2003).

Processes that affect the mass of MeHg in aquatic

ecosystems or its concentration at the base of the aquatic

food web strongly affect its concentration in all trophic

levels, including predatory fish and wildlife (Paterson et

al. 1998, Benoit et al. 2003, Wiener et al. 2003). Such

processes include the production of MeHg via the

microbial methylation of inorganic HgII (Benoit et al.

2003) and the destruction of MeHg by photodemethyl-

ation (Sellers et al. 1996, 2001) and microbial demeth-

ylation (Oremland et al. 1991, Marvin-DiPasquale et al.

2000). Anaerobic zones in sediments, hypolimnia, and

wetlands are the most important sites of microbial

methylation, and a water body can receive MeHg from

both internal and external sites (Watras et al. 1994,

Sellers et al. 2001). Wetlands are important sites of

MeHg production and export to adjacent or down-

stream waters (Hurley et al. 1995, St. Louis et al. 1996,

Sellers et al. 2001, Wiener et al. 2006). Concentrations of

MeHg in phytoplankton, zooplankton, and higher

trophic levels can also be influenced by biodilution of

MeHg at the base of the food web by algal blooms or

high algal biomass (Pickhardt et al. 2002, 2005, Chen

and Folt 2005).

EXPOSURE OF HUMANS AND WILDLIFE

Aquatic food webs are the primary pathway of MeHg

exposure in most human populations, given that finfish,

marine mammals, and shellfish are the principal sources

of MeHg in the human diet (NRC 2000, Mahaffey et al.

2004, Clarkson and Magos 2006). Elevated MeHg

exposure in human populations with high levels of fish

consumption has been documented around the globe,

unconstrained by geographic, social, economic, or

cultural boundaries (Mergler et al. 2007). To reduce

human exposure to MeHg, fish consumption advisories

have been issued for many lakes, rivers, and coastal

waters, providing guidance on the number of meals and

species of fish that can be eaten safely (U.S. EPA 2007).

The State of California first issued a fish consumption

advisory for Clear Lake in 1987; this advisory was

recently updated to include recommendations based on

analyses of additional data for Clear Lake and nearby

water bodies (Gassel et al. 2005).

Methylmercury contamination has adversely affected

the benefits derived from fishery resources in many

inland and coastal waters. In the United States, MeHg

was responsible for 80% or 3080 of the fish consumption

advisories posted in 2006, when 48 states, one territory,

and two tribes had advisories attributed to MeHg (U.S.

EPA 2007). The number of statewide fish consumption

advisories issued for coastal waters, lakes, and rivers in

the United States has increased substantially since 1993

(Wiener et al. 2003, U.S. EPA 2007). In 2006, 23 states

had Hg-related, statewide fish consumption advisories

for lakes, 21 had statewide advisories for rivers, and 13

had statewide advisories for coastal waters. More than

57 400 km2 of lake area and 1 420 000 km of rivers in the

United States were under advisory for Hg in 2006. In

Canada, more than 97% (2572) of all fish consumption

advisories listed in 1997 were attributed to Hg (U.S.

EPA 2001). In California, many of the lakes, rivers, and

reservoirs with fish consumption advisories for Hg are

mining-impacted systems (OEHHA 2007).

The consumption of fish and aquatic organisms is also

an important pathway for MeHg exposure of wildlife,

including birds, mammals, and reptiles (Wiener et al.

2003). Moreover, wildlife atop aquatic food webs can

bioaccumulate high concentrations of MeHg (Wolfe et
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al. 1998, Wiener et al. 2003, Ackerman et al. 2007, 2008,

Scheuhammer et al. 2007).

ADVERSE EFFECTS

The uptake, distribution, and effects of MeHg in

humans have been recently reviewed in detail (Clarkson

and Magos 2006, Mergler et al. 2007). To summarize

briefly, MeHg in ingested food is very efficiently

absorbed across the gut, enters the bloodstream, and is

rapidly transported to all tissues and organs, readily

crossing both the blood–brain and placental barriers.

Methylmercury is extremely neurotoxic, adversely af-

fecting both the adult and developing brain, and damage

to the central nervous system is irreversible. In adults

exposed to lethal doses of MeHg, a substantial latent

period (months) precedes the onset of symptoms. In

lethal and severe cases of MeHg poisoning in adults,

paresthesia has been the first symptom to appear,

followed in rapid succession by ataxia (loss of voluntary

muscular coordination), dysarthria (loss of speech),

impaired hearing, constriction of the visual fields, and

loss of vision. Fetal exposure occurs via the maternal

diet, and the fetus is highly sensitive to MeHg because of

its developmental neurotoxicity. Accordingly, toxico-

logical concern about human exposure to MeHg has

focused largely on women of childbearing age, the fetus,

and children (Schober et al. 2003, Mahaffey et al. 2004,

Gassel et al. 2005, Oken et al. 2005). Some recent studies

suggest that exposure to MeHg could increase the risk of

adverse cardiovascular effects in humans, including

adult males (Mergler et al. 2007).

Present exposures to MeHg in human populations are

much lower than those that caused the historic

epidemics of severe Hg poisoning in Minamata, Japan,

a few decades ago (Mergler et al. 2007). Yet persons who

consume significant quantities of predatory fish can

accumulate harmful doses of MeHg. At present expo-

sure levels, concerns regarding health effects of MeHg

exposure focus on reduced neurologic status and slower

development in infants and children exposed to MeHg in

the womb and during early childhood. In children, for

example, in utero exposure to MeHg has been associated

with lower performance on tests of language, attention,

memory, visuospatial, and motor functions (Mergler et

al. 2007).

The impacts of contaminated fishery resources on

humans are not limited to the direct effects of MeHg

exposure. In Canada, for example, some aboriginal

communities that had relied on subsistence fishing have

suffered adverse cultural, social, health, and economic

effects as a result of industrial Hg pollution (Wheatley

1997, Wheatley et al. 1997, Wheatley and Wheatley

2000). For these communities, abandonment of subsis-

tence fishing was followed by a change to less healthy

diets, and the disruption of lifestyle led to social and

cultural upheaval. These multidimensional effects have

presented a more severe overall problem for the affected

communities than the direct, clinical effects of exposure

to MeHg via consumption of contaminated fish (Wheat-

ley and Wheatley 2000).

In birds and mammals, MeHg in reproducing females

readily passes to the developing egg or embryo, life

stages that are much more sensitive than the adult to

MeHg exposure (reviewed by Wolfe et al. 1998, Wiener

et al. 2003, Scheuhammer et al. 2007). In birds, for

example, the dietary concentrations of MeHg that

significantly impair reproduction are only one-fifth of

those that produce overt toxicity in the adult (Scheu-

hammer 1991). Reproductive impairment has been

associated with high MeHg exposure in field studies of

several aquatic and marsh birds (Wiener et al. 2003,

Heath and Frederick 2005, Scheuhammer et al. 2007),

including populations of the endangered California

Clapper Rail (Rallus longirostris obsoletus) nesting in

the San Francisco Bay-Delta estuary (Schwarzbach et al.

2006). In laboratory experiments with birds and

mammals, MeHg adversely affects adult survival,

reproductive success, behavior, and neurological devel-

opment, reduces immune resistance to disease, and

causes teratogenic effects (Wolfe et al. 1998, Spalding et

al. 2000, Wiener et al. 2003, Scheuhammer et al. 2007).

Recent experiments have also shown that exposure of

fish to environmentally realistic concentrations of MeHg

can impair foraging efficiency and adversely affect

endocrine systems and reproduction (Fjeld et al. 1998,

Latif et al. 2001, Hammerschmidt et al. 2002, Drevnick

and Sandheinrich 2003, Scheuhammer et al. 2007).

Diminished reproductive success could have adverse

population-level consequences for fish and wildlife

species exposed to high levels of MeHg.

THE CLEAR LAKE STUDY

Clear Lake is a 177-km2 eutrophic lake in Lake

County, California. The lake, which is described

elsewhere (Suchanek et al. 2003, 2008e), was selected

for an ecosystem-scale investigation of Hg cycling and

effects for several reasons. First, the dominant source of

Hg in the lake was (and remains) the now-inactive

Sulphur Bank Mercury Mine (Suchanek et al. 2008e;

Suchanek et al., in press). During operation of the mine,

Hg-laden tailings and waste rock that were not of

sufficient quality for processing were bulldozed into the

lake for disposal (Suchanek et al. 2008a, e). Second, the

cycling, transport, distribution, transformations, bioac-

cumulation, trophic transfer, and ecotoxicological ef-

fects of mine-derived Hg had not been studied at the

ecosystem scale in a system of this type. Third, the

distribution, transport, and cycling of Hg within the lake

were sufficiently constrained within the basin to identify

key inputs, outputs, and inventories (Rueda et al. 2008;

Suchanek et al., in press). Fourth, the lake has received

one of the highest loadings of inorganic Hg of any site

worldwide (Suchanek et al. 2008a, e), and the distribu-

tion of Hg from mining sources can be characterized

spatially and temporally in the physical and biotic

components of the ecosystem (Anderson et al. 2008,
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Suchanek et al. 2008a, b, c). Fifth, the pronounced

spatial gradients in Hg concentrations that extend from

the mine site to the furthest end of the lake provide a
template for assessing the transport, cycling, and

bioaccumulation of Hg from the mine through several

levels of the food web. Sixth, the availability of coring

data from deep (28–177 m) sedimentary strata deposited
in the lake as early as 2- to 3-million years before present

allows comparison of prehistoric and modern rates of

Hg accumulation in the lake bottom (Sims and White

1981, Sims et al. 1988, Osleger et al. 2008, Richerson et
al. 2008, Suchanek et al. 2008d ). Lastly, Clear Lake is

representative of many other aquatic ecosystems that are

contaminated with Hg from mining sources, such as

Pinchi and Stuart lakes in British Columbia, Canada
(Lockhart et al. 2000, Weech et al. 2004, 2006).

The papers in this issue collectively provide a

comprehensive assessment of environmental and biotic

impairment of the Clear Lake ecosystem from the

Sulphur Bank Mercury Mine. This dedicated issue
examines the origin, transport, transformations, bioac-

cumulation, trophic transfer, and effects of this Hg on

resident biota and humans in this ecosystem, providing a

holistic view of the effects of the Hg mine on a lacustrine
ecosystem, as well as information relevant to remedia-

tion.
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