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s u m m a r y

Lake Okeechobee in Florida is a major component of the greater Everglades hydrologic system and pro-
vides a number of valuable uses to society and nature, such as water supply, navigation, wildlife habitat,
and fishery. Suspended solid concentration (SSC) affects directly the lake’s conditions for some of these
applications. Therefore, accurate prediction of SSC can enhance the management of the water quality
and the long-term protection of Lake Okeechobee. Extensive data, including wind speed, flow velocity,
flow direction and SSC, have been collected. Models for predicting suspended solid concentration based
on 10 different scenarios are developed using these measurements. Data are divided into two groups as
training and testing for the construction of the models. SSC is predicted by the Kriging interpolation tech-
nique. Criterions of mean relative error, root mean squared error and coefficient of efficiency (CE) are
used to determine the prediction errors of the developed models. In general, mean relative error is below
7% and coefficient of efficiency stays above 0.92 for the models presented. Graphs, results, and interpre-
tations are given in detail in this paper.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Lake Okeechobee is one of the most important water bodies in
the state of Florida for the use of different purposes such as, water
supply, navigation, wildlife habitat and commercial fishery. The
lake, located in south-central Florida, covers a surface area of
1730 km2 with an average depth of 2.7 m (South Florida Water
Management District (SFWMD), 2007). Considering its huge stor-
age capacity as the largest lake in the southeastern United States,
Lake Okeechobee also serves important hydrologic and ecologic
roles for the region of great Everglades in Florida.

Wind has a dominant effect on the motion and mixing of water
in shallow water bodies. In Lake Okeechobee flow circulation,
free-surface oscillation, and transportation of the sediments are
attributable to wind blowing over the lake (Wang et al., 2003). A
modeling study of wind induced sediment resuspension in a shal-
low estuary by Liu and Huang (2009) also confirmed the strong
correlation between wind and the transport of suspended sedi-
ments. The bottom sediments in Lake Okeechobee contain a large
area of semi-fluid mud. Resuspended sediment is a major concern
ll rights reserved.
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in Lake Okeechobee. Sediment resuspension causes greater turbid-
ity and reducing light penetration through the water column. It is
also noticeable that the internal phosphorus loads associated with
resuspended sediments are approximately the same order of mag-
nitude as the external loads (Reddy 1991). By examining the phos-
phorous budgets of Lake Okeechobee, for around 10 years span of
1990th, the phosphorous has accumulated in the sediments at
the rate of 303 metric tons per year (Reedy et al. 2002). Therefore,
over the decades through excessive phosphorus (P) loading and
accumulation of fine sediments, there is an increasing concern that
the increase of suspended sediments may be impacting the water
quality of the lake.

An extensive field study on Lake Okeechobee has been carried
out by Wang et al. (2003) to collect time varying hydrodynamic
data including three-dimensional flow velocities and suspended
solid concentrations. The effects of wind and flow velocities on
transporting SSC were analyzed statistically. Currently, a Lake Oke-
echobee Environmental Model (LOEM) has been applied to predict
water circulation patterns and suspended solid concentration (SSC)
(Jin et al., 2002; Jin and Ji, 2004). However, it would be interesting
and practical to establish other pretictive models that can provide
more effective and accurate estimation on SSC for the impact study
of the Lake Okeechobee.

The Triple Diagram Model (TDM), firstly proposed by Altunkay-
nak and his colleagues in 2003, concurrently shows the variation of
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three variables and can be used for predictions (Altunkaynak et al.,
2003; S�en et al., 2004). Also, plots obtained by this technique facil-
itate the procedure of making useful explanations of the influencing
trend among variables. To establish the TDM, three variables,
including two affecting variables, and one dependent variable, are
required. In this study, 10 TDMs are developed with the application
of the constructed contour maps of three variables to identify and
relate the effects of wind speed (WS), surface flow velocity (FV),
and flow direction (FD) to SSC and the classical Kriging technique,
or the so called geostatistical approach, (Matheron, 1963) to deter-
mine the time variation of SSC at a station in Lake Okeechobee.
2. Kriging approach

The principal of the Kriging (optimum interpolation) approach
is to establish a valid variogram model that can interpret and char-
acterize the structural relationships of natural phenomenon. In
other words, the variogram model can be used as a simple and reli-
able statistical tool to interpret the regional behaviour of a random
field. The Kriging method (Krige, 1951) has been adopted for appli-
cations in various areas, such as earth sciences (Journel and
Huijbregts, 1978; Isaaks and Srivastava, 1989; Cressie, 1993), min-
ing (Matias et al., 2004), tunnels (Öztürk and Nasuf, 2002), ocean
engineering (Altunkaynak, 2005; Ozger and Sen, 2007) and hydrol-
ogy (Altunkaynak, 2009; Altunkaynak et al., 2003; S�en et al., 2004).
In this study, a series of SSC related contour maps are prepared by
using the geostatistical approach for the development of prediction
models for SSC in the water column of the Lake Okeechobee.

One of the major principles of the geostatistical applications is
to describe the behaviour of a natural phenomenon relying on
two different variables. For the present Lake Okeechobee study,
variables such as wind speed, flow velocity, and flow direction
can be paired as two input location variables for the prediction
of SSC as regional variable (ReV). For example, SSC contour maps
can be constructed with the variables of wind speed and flow
velocity using Kriging approach. Other contour maps with selec-
tion of two other input variables can also be obtained. Overall, this
mapping technique is adopted to facilitate the understanding of
the alteration of current SSC with the effects of wind speed, flow
velocity, flow direction, and previous SSC. It is also applied to show
the relationships between the surface SSC with the middle-layer
SSC or the bottom-layer SSC.

Regional dependency between scattered points can be defined
by the following equation (Matheron, 1963; Journel and
Huijbregts, 1978; Isaaks and Srivastava, 1989; S�en 1989),
cðdÞ ¼ 1
2NðdÞ

XNðdÞ
i¼1

½Cðxþ dÞ � CðxÞ�2 ð1Þ

This expression is called semivariogram (SV) function. Here,
c(d) = SV function; N(d) = number of pairs of two variables for dis-
tance d; C(x) = magnitude of the regional variable; and
C(x + d) = magnitude of the regional variable that is away from
the C(x) by a distance d. For example, when the wind speed and
flow velocity are considered as the independent variables and the
SSC as the dependent variable, the distances are calculated be-
tween data points formed by the wind speed and flow velocity.
Generally, a geostatistical study covers two steps: (i) obtaining
semivariogram and (ii) solving the prediction problem using the
Kriging. The fundamental procedure of a Kriging system is to min-
imize the error variance (Isaaks and Srivastava, 1989; Subyani
1997; Altunkaynak et al. 2003; S�en et al., 2004). The following
equation can be used for the SSC prediction at any point of the con-
tour map,
CðxoÞ ¼
XN

i¼1

wi CðxiÞ: ð2Þ

Here, C(xo) = magnitude of the SSC at any prediction point xo;
C(xi) = SSC measurements at point i; and wi = weighting coefficients
that can be determined by solving the following system of equa-
tions constructed from the semivariogram function (Isaaks and
Srivastava, 1989; Subyani, 1997)
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Here cij = values of semivariogram between two points, namely, i
and j; cio = values of semivariogram between point i and the predic-
tion point o; and l = Lagrange parameter. Therefore, the weighting
matrix can be obtained from two variables (e.g. a combination of
two variables selected from wind speed, flow velocity, flow direc-
tion, and SSC at previous time level) by applying various scenarios
of the variables for the development of predictive models for esti-
mating the surface-layer SSC or SSC at middle or bottom layer.
3. Study area and sources of data

Lake Okeechobee (Fig. 1) is located in south-central Florida and
covers nearly 1730 km2 with an average depth of only 2.7 m. Lake
Okeechobee is the ‘‘liquid heart” of South Florida. It is a large, shal-
low, eutrophic lake. Its maximum water storage capacity is about
3.97 billion m3. After Lake Michigan, Lake Okeechobee is the sec-
ond-largest freshwater lake in the continental United States and
its drainage basin covers more than 11,914 km2 (James et al.,
1995; Wang et al. 2003). The main sources of water to the lake
are rainfall and the Kissimmee River. Lake Okeechobee’s major out-
flows are the westward flowing Caloosahatchee River, the St. Lucie
Canal to the east, and the agricultural canals that bring water
southward through the Everglades agricultural area and into the
developed areas of south Florida’s east coast. A large amount of
water is also lost to the atmosphere through evapotranspiration.

The sediments in Lake Okeechobee have a high organic content.
The bottom sediments include a large area of more than 10-cm
thick fluid mud. This sediment is easily entrained and transported
into the water column. Therefore, resuspended sediments are a
common problem in Lake Okeechobee. Sediment resuspension
(or the turbidity) results in the reduction of light penetration
through the water column. This leads to the decline of submerged
plant beds. As submerged plants compete with water column algae
(phytoplankton) for nutrients and help to stabilize sediments,
plant losses can further accelerate deterioration of water quality.
Sediment resuspension can also cause the increased inputs of
phosphorus to the water column (SFWMD, 2007).

Recently, to enhance the development and calibration of predic-
tive models for SSC, Wang et al. (2003) conducted field measure-
ments in Lake Okeechobee to collect continuous data describing
three-dimensional velocity distribution and SSCs from January 18
to March 5, 2000. A complete data set including the velocity distri-
bution and SSCs at surface layer (302 cm from the bottom), middle
layer (145 cm from the bottom), and bottom layer (95 cm from the
bottom) were recorded at the interval of 15 min at Station L006
(Fig. 1). Detailed description of the field measurements can be
found in Wang (2000a,b) and Wang et al. (2003). The wind data
at the interval of 15 min were collected by the SFWMD. In this
study, the gathered wind speed, fluid velocity at the surface layer,



Fig. 1. Lake Okeechobee and the location of station L006. The map of Lake Okeechobee was generated by using two discrete successive orthorectified LANDSAT-7 images
taken in 1st of September 2002.
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fluid velocity direction (or flow direction), and SSC data at station
L006 are adopted for the development of triple diagram models
for the prediction of suspended solid concentration.
4. Results and discussion

As described above, the level of SSC plays an important role in
affecting the water quality of Lake Okeechobee, it is necessary to
develop predictive models to estimate the SSC accurately. In this
study, one of the focuses is to develop models for predicting the
surface SSC using the related surface hydrodynamic data as the in-
puts. Development of other models for predicting the SSCs at the
middle and bottom layers is also conducted. Contour maps as
shown in Fig. 2 from the Kriging approach using the data collected
at station L006 are obtained to determine and to interpret how the
current surface SSC changes with the previous surface SSC, wind
speed, surface flow velocity, or flow direction for the development
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of predictive models. Presented in Figs. 3 and 4 are the contour
maps used to develop models that predict the values of middle-
layer SSC and bottom-layer SSC from the inputs of surface SSC.
As we know obtaining the measurements at the surface level are
Fig. 2. Surface suspended solid concentration (SSC) conto
generally easier than the middle or bottom level. Therefore, in
principle, only limited efforts are needed to collect the data of sur-
face SSC as the SSC at the other layers can be predicted from the
calibrated models. In this study, we establish and test 10 TDMs
ur maps using: (a) Model 1, (b) Model 2, (c) Model 3.



Fig. 3. Middle-layer suspended solid concentration (SSC) contour maps using: (a) Model 4, (b) Model 5, (c) Model 6.
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for predicting the current SSC at L006 based on the current (time
step k) or previous (time step k � 1) data of affecting variables.
Data are divided into two groups; one group with 3500 data points
is for the training (or calibration) and the other group with the
remaining 1000 data points is for the prediction (testing or valida-
tion). Contour maps of Models 1–10 are given in Figs. 2–5. Details



Fig. 4. Bottom-layer suspended solid concentration (SSC) contour maps using: (a) Model 7, (b) Model 8, (c) Model 9.
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of these models with the selections of the input and output vari-
ables as well as the analyzed errors are summarized in Table 1.
Considering the important effect of previous surface SSC on the
prediction of current surface SSC (at k time level), the basic models



Fig. 5. Surface suspended solid concentration (SSC) contour maps using Model 10.

Table 1
Various scenarios to predict suspended solid concentration (SSC).

Model
number

Inputs Output Mean
relative
errors (%)

Root mean
squared errors
(mg/L)

Coefficient
of efficiency

1 Surface Surface
WS(k) SSC(k) 3.03 3.01 0.98
SSC(k � 1)

2 Surface Surface
FV(k) SSC(k) 3.21 3.07 0.98
SSC(k � 1)

3 Surface Surface
FD(k) SSC(k) 3.27 3.14 0.98
SSC(k � 1)

4 Surface Middle
WS(k) SSC(k) 4.97 4.14 0.96
SSC(k)

5 Surface Middle
FV(k) SSC(k) 5.94 4.64 0.95
SSC(k)

6 Surface Middle
FD(k) SSC(k) 5.86 4.60 0.95
SSC(k)

7 Surface Bottom
WS(k) SSC(k) 6.25 5.48 0.93
SSC(k)

8 Surface Bottom
FV(k) SSC(k) 6.76 5.75 0.92
SSC(k)

9 Surface Bottom
FD(k) SSC(k) 6.55 5.56 0.93
SSC(k)

10 Surface Surface
SSC(k � 2) SSC(k) 3.73 3.46 0.97
SSC(k � 1)

Coefficient of efficiencyðCEÞ ¼ 1�
PN

i¼1
ðxoi
�xpi

Þ2PN

i¼1
ðxoi
�xÞ2

� �
.

xo: measurement; xp: prediction; x: average of measurements.
Fig. 6. Predicted and measured time series plots for surface suspended solid
concentration (SSC) using: (a) Model 1, (b) Model 2, (c) Model 3.
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based on the inputs of the previous surface SSC (at k � 1 time level)
and one of the chosen variables from wind speed, flow velocity,
and flow direction are developed respectively as Model 1, Model
2, and Model 3 (see Table 1). In addition, the Model 10 can be used
to predict the current surface SSC using surface SSC data from two
previous time levels (i.e. k � 1 and k � 2 time levels) at occasions
the data of wind speed, flow velocity, and flow direction are not
available. For the SSC at other layers, we also develop six models
(named as Model 4, Model 5, Model 6, Model 7, Model 8, and Mod-
el 9) to predict the SSC values at middle and bottom layers using
only inputs from surface data.

For the Model 1 with inputs of previous SSC and wind speed, the
Kriging contour map shown in Fig. 2a demonstrates the strong
relationship between SSC(k � 1) (k � 1 time level) and SSC(k) (k
time level or current time level). Contour results generally can be
divided into three different sets as Low, Medium, and High. When
SSC(k � 1) increases, SSC(k) increases. It is also shown that when
wind speed(k) is High, SSC(k) is High. When wind speed(k) is
Low or Medium, SSC(k) is Low or Medium, respectively. These rules
are similar to those proposed in the fuzzy logic sets by Zadeh
(1965). This contour plot shows the positive correlations between
these variables.

Examining the effect of current flow velocity on the surface SSC
as considered in Model 2, we notice from Fig. 2b that no apparent
positive correlation between flow velocity(k) and SSC(k) can be
concluded. An increase in SSC is seen in lower flow velocity values.
This may be a combined result of sediment settling and reduced
sediments transported out from the station L006. The data reveal-
ing the transport of sediment from a certain flow direction to
Fig. 7. Predicted and measured time series plots for middle-layer suspended solid
concentration (SSC) using: (a) Model 4, (b) Model 5, (c) Model 6.
station L006 are presented in Fig. 2c for the development of Model
3. The contour plot shows that there is an increase in surface SSC(k)
value in the 120–180� band of the surface layer at L006. The 120 to
180� band (counterclockwise from the east direction) corresponds
to the flow from the south-east to the flow from the east direction.
Consequently, the flows that move within the range from the
south-east to the east directions carry more SSC as compared to
SSC from other directions. The results from Model 1, Model 2 and
Model 3 indicate that wind speed has a more dominating effect
on the prediction of surface SSC than flow velocity and flow
direction.

For the Model 4 considering the inputs of wind speed and sur-
face SSC to the prediction of middle-layer SSC, the contour plot in
Fig. 3a, as expected, shows a strong relationship between surface
SSC(k) and middle-layer SSC(k). The direct wind effect is not signif-
icant. However, as described above, wind affects strongly the sur-
face SSC, therefore, indirectly impacts the change of SSC in the
middle layer through the change of the surface SSC. The results
in Fig. 3b used for the development of Model 5 suggest that the
surface flow velocity also has less influence on the middle-layer
SSC than the surface SSC. The surface SSC is the major input vari-
able that affects the prediction of the middle-layer SSC. For the ef-
fect of flow direction on the middle-layer SSC (Model 6), the
contour map in Fig. 3c indicate that sediments are generally trans-
ported to the middle layer from band of 0 to 100� (flow from west
to flow from south-east) direction. The results in Figs. 2c and 3c
show that the surface SSC(k) and middle-layer SSC(k) are affected
by different fluid flow directions at L006. For the prediction of bot-
tom-layer SSC using Model 7, Model 8, and Model 9, surface SSC(k)
Fig. 8. Predicted and measured time series plots for bottom-layer suspended solid
concentration (SSC) using: (a) Model 7, (b) Model 8, (c) Model 9.
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is again revealed to have a greater contribution to the bottom-layer
SSC(k) as shown in Fig. 4a–c. The surface flow velocity is not shown
to have strong correlation with the bottom-layer SSC. For the effect
of the flow direction, the contour plot in Fig. 4c shows that the bot-
tom-layer SSC(k) is affected mostly by the south-east flow to
north-east flow (150–230�).

A Contour map for Model 10 is constructed in Fig. 5 using the
surface SSC(k) and two previous surface SSCs, i.e. SSC(k � 2) and
SSC(k � 1). This map shows obviously that there is a strong rela-
tionship among the data of surface SSC(k), SSC(k � 1), and
SSC(k � 2). Also, while the values of surface SSC(k � 2) and
SSC(k � 1) increase, surface SSC(k) increases. This indicates that
the autocorrelation of SSC(k) either with lag-1 data of SSC(k � 1)
or with lag-2 data of SSC(k � 2) is strong.

The time series plots showing the comparisons of measured
surface SSCs and the predicted values using Model 1, Model 2,
and Model 3 for the data set selected for prediction are pre-
sented in Fig. 6a–c, respectively. The time series data selected
for prediction include 1000 data points and the time index
shown along the horizontal coordinate represents time with each
unit being equal to 15 min. From Fig. 6a–c, it is noted that the
predicted values follow the recorded data with great consistency.
Mean relative error is 3.03% and root mean squared error is
3 mg/L for Model 1. Also, the coefficient of efficiency, CE, show-
ing the consistency between measured and predicted data, is
0.98. The CE is defined as CE = 1�(mean square errors/variance
of observation). The good agreement between observation and
prediction for Model 1 is also demonstrated in Fig. 10a with a
plot of predicted surface SSCs with measured data following
the 45� perfect model line.

The results obtained by using the Model 2 give respectively
the mean relative error, root mean squared error, and coefficient
of efficiency as 3.21%, 3.07 mg/L and 0.98. The consistency be-
tween observation and prediction is also shown to follow the per-
fect model line in Fig. 10b. When Model 3 is applied, the values of
mean relative error, root mean squared error, and coefficient of
efficiency are respectively 3.37%, 3.14 mg/L, and 0.98, similar to
the results computed from Model 1 and Model 2. The trend of
agreement between observation and prediction for Model 3 is
shown in Fig. 10c. Although each model among Models 1, 2,
and 3 produces similar predictions, slightly enhanced scattering
data along the 45� line are shown in Fig. 10b and c when com-
pared to the data plot in Fig. 10a. This further confirms that the
correlation of SSC(k) and wind speed(k) is greater than the corre-
lation between SSC(k) and flow velocity(k) or flow direction(k).
Considering the convenience of the inputs of the affecting vari-
ables and the accuracy of the model prediction, Model 1 can be
served as a practical and effective model for estimating surface
SSC.
Fig. 9. Predicted and measured time series plots for surface suspended solid
concentration (SSC) using Model 10.
In principle, measurements in the middle and bottom layers are
relatively difficult and not cost-effective when compared to the
surface measurements. Extending the measurements of surface
SSC to predict middle or bottom-layer SSC can be practically
important. Models 4–6 are developed to predict the middle-layer
SSC(k) and Models 7–9 can be used to predict the bottom-layer
SSC(k) by using wind speed(k), flow velocity(k), flow direction(k),
and surface SSC(k) as inputs. For the estimation of middle-layer
SSC, the predicted time series results using Model 4, Model 5,
and Model 6 are given in Fig. 7a–c, respectively, whereas the cor-
responding perfect model line plots are shown in Fig. 11a–c. The
comparison plots for the predicted bottom-layer SSCs using Model
7, Model 8, and Model 9 are shown respectively in Fig. 8a–c and in
Fig. 12a–c. Examining the results shown in Figs. 7 and 8, it is noted
that the middle-layer SSC(k) can be predicted with less error than
the bottom-layer SSC(k). Greater deviations, when comparing to
the recorded data, are noticed in predicted values in Fig. 8 than
those in Fig. 7. In general, predictions of middle-layer SSC(k) and
Fig. 10. Comparisons of observed and predicted surface suspended solid concen-
tration (SSC) using: (a) Model 1, (b) Model 2, (c) Model 3.



Fig. 11. Comparisons of observed and predicted middle-layer suspended solid
concentration (SSC) using: (a) Model 4, (b) Model 5, (c) Model 6.

Fig. 12. Comparisons of observed and predicted bottom-layer suspended solid
concentration (SSC) using: (a) Model 7, (b) Model 8, (c) Model 9.

Fig. 13. Comparisons of observed and predicted surface suspended solid concen-
tration (SSC) using Model 10.
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bottom-layer SSC(k) are in the acceptable error range for engineer-
ing applications.

Model 10 is a model for predicting surface SSC(k) using two
antecedent values, i.e. SSC(k � 1) and SSC(k � 2), as inputs. The
predicted time variations of surface SSC using Model 10 are pre-
sented in Fig. 9 and the perfect model line plot with the compari-
sons to the measured data is shown in Fig. 13. The respective mean
relative error, root mean squared error, and coefficient of efficiency
of 3.73%, 3.46 mg/L and 0.97 suggest that Model 10 can also be
served as an appropriate predictive model for estimating surface
SSC.

Overall, the mean relative errors of the presented 10 models in
this study are below 7%. Also, the coefficient of efficiency that
shows the consistency between observation and the prediction of
the models is above 0.92. This study suggests that there is a strong
and positive correlation between SSC(k � 1) and SSC(k). Wind
speed is also shown to have a more dominating effect on the pre-
diction of surface SSC(k) than variables of flow velocity(k) and flow
direction(k). It is also found that the middle-layer or bottom-layer
SSC can be reasonably predicted using the inputs of surface SSC
and other hydrodynamic variables.
5. Conclusions

The application of TDM approach for the development of
predictive models for the determination of time variation of
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suspended solid concentration either at the surface, middle or bot-
tom-layers at a location in Lake Okeechobee, Florida is presented in
this paper. The recorded wind speed, flow velocity, flow direction
and SSC data at station L006 in this lake are used for this study.
The data are divided into two parts for the development of the
models. 3500 data for training (calibration) and 1000 data for pre-
diction (testing or validation) are assigned. Contour maps are
established from the training data and 1000 testing data are pre-
dicted by Kriging technique. Mean relative error, root mean
squared error and coefficient of efficiency are obtained for the
developed 10 TDMs. It occurs that wind speed has the greatest
influence on SSC. The wind speed associated Model 1 has a consid-
erable advantage when compared to other models due to the
greater availability of the measured wind data. Predicted results
of these 10 TDMs are presented in graphs as time series and perfect
model line for comparisons with measured data. In general, the
mean relative error is below 7%, and coefficient of efficiency is
above 0.92 for models described in this paper. These results show
that all 10 TDMs work efficiently. Depending on the availability of
the recorded data of the influencing variables, appropriate predic-
tive models as presented in this study can be applied to provide
reliable estimation of the SSC in the region near the station L006.
Similar methodology can also be extended to develop models for
other locations in Lake Okeechobee.
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