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[1] Understanding the hydrological functioning of tidally influenced floodplain forests is
essential for advancing ecosystem protection and restoration goals in impacted systems.
However, finding direct relationships between basic hydrological inputs and floodplain
hydrology is hindered by complex interactions between surface water, groundwater, and
atmospheric fluxes in a variably saturated matrix with heterogeneous soils, vegetation, and
topography. Thus, an explanatory method for identifying common trends and causal
factors is required. Dynamic factor analysis (DFA), a time series dimension reduction
technique, models temporal variation in observed data as linear combinations of common
trends, which represent unidentified common factors, and explanatory variables. In this
work, DFA was applied to model water table elevation (WTE) in the floodplain of the
Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing
hydroperiod and salinity regimes and undesired vegetative changes in the floodplain
forest. The technique proved to be a powerful tool for the study of interactions among
29 long‐term, nonstationary hydrological time series (12 WTE series and 17 candidate
explanatory variables). Regional groundwater circulation, surface water elevations, and
spatially variable net local recharge (cumulative rainfall – cumulative evapotranspiration)
were found to be the main factors explaining groundwater profiles. The relative importance
of these factors was spatially related to floodplain elevation, distance from the river channel,
and distance upstream from the river mouth. The resulting dynamic factor model (DFM)
simulated the WTE time series well (overall coefficient of efficiency, Ceff = 0.91) and
is useful for assessing management scenarios for ecosystem restoration and predicted sea
level rise.

Citation: Kaplan, D., R. Muñoz‐Carpena, and A. Ritter (2010), Untangling complex shallow groundwater dynamics in the
floodplain wetlands of a southeastern U.S. coastal river, Water Resour. Res., 46, W08528, doi:10.1029/2009WR009038.

1. Introduction

[2] Description and modeling of hydroperiod, surface
water salinity, groundwater elevation and salinity, soil
moisture, and soil porewater salinity are essential to
understanding the hydrological and ecological functioning of
coastal floodplain wetlands [e.g., Glamore and Indraratna,
2009; Nyman et al., 2009; Benke et al., 2000]. However,
finding direct relationships between basic hydrological
inputs (rainfall, evapotranspiration, surface water elevation
and salinity, groundwater elevation and salinity, etc.) is
often difficult because of complex interactions between
surface water, groundwater, and porewater in a variably
saturated matrix with heterogeneous soils, vegetation, and
topography. For example, depth, duration, frequency, and
salinity of floodplain inundation are functions of tidal range;

distance from the ocean; distance from the river channel;
local elevation (microtopography); volume of freshwater
flow; and the direction, volume, and salinity of groundwater
fluxes [e.g., Wang, 1988; Liu et al., 2001; Melloul and
Goldenberg, 1997], as well as soil hydraulic character-
istics and floodplain vegetation properties.
[3] In these complex systems, long‐term monitoring can

characterize the ranges and temporal variation of hydrologi-
cal and water quality variables [e.g., Muñoz‐Carpena et al.,
2008] and support the development of initial relationships
between measured variables [e.g., Kaplan et al., 2010].
However, investigating relationships between multivariate
time series to improve understanding of system dynamics
using visual inspection and comparative statistics is difficult,
subjective, and may not appropriately characterize the system
[Ritter et al., 2007]. Nevertheless, a better understanding of
hydrological dynamics is vital to the development of man-
agement scenarios to protect valued ecosystems, especially
in modified wetland systems. Thus, an alternative method for
identifying common trends and causal factors is required.
This study applies dynamic factor analysis (DFA), a times
series dimension reduction technique, to untangle complex
groundwater dynamics in the floodplain wetlands of a
managed coastal river in the southeastern United States.
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[4] DFA is a multivariate application of classic time series
analysis originally developed for the interpretation of eco-
nomic time series [Geweke, 1977] and can be a powerful
tool for the modeling of short, incomplete, nonstationary
time series in terms of common trends and explanatory
variables [Zuur et al., 2003a]. With DFA, underlying tem-
poral variation in observed data (response variables) is
modeled as linear combinations of common trends (unex-
plained variability), a constant level parameter, zero or more
explanatory variables (additional observed time series), and
noise [Zuur et al., 2003b]. Like other time series models,
DFA aims to maintain a good fit while minimizing the
number of common trends. Using DFA, different formula-
tions of dynamic factor models (DFMs) are possible, and
thus, the best model selection is often made using goodness
of fit indicators. The Nash and Sutcliffe coefficient of effi-
ciency (−1 ≤ Ceff ≤ 1; Nash and Sutcliffe [1970]) can be
used to judge model performance. Additionally, Akaike’s
information criterion, AIC [Akaike, 1974] is often used as a
decision tool for choosing between competing models [Zuur
et al., 2003b].
[5] The ability to model time series as a combination of

common trends and explanatory variables is especially
useful for analyzing complex environmental systems, where
DFA can help assess what explanatory variables (if any)
affect the time series of interest, and thus may be worthy of
closer attention. DFA has been successfully applied in
hydrology to identify common trends in groundwater levels
[Kovács et al., 2004; Ritter and Muñoz‐Carpena, 2006], soil
moisture dynamics [Ritter et al., 2009], and interactions
between hydrological variables and groundwater quality
trends [Muñoz‐Carpena et al., 2005; Ritter et al., 2007].
Regalado and Ritter [2009a; 2009b] used DFA for identify-
ing common patterns of unexplained variability in soil water

repellency measurements. It has also been used to identify
trends and environmental variables affecting squid popula-
tions [Zuur and Pierce, 2004] and commercial fisheries
[Erzini, 2005; Tulp et al., 2008].
[6] Here, DFA is applied to study the interactions

between floodplain groundwater elevations and other
hydrological variables in the floodplain wetlands of the
Loxahatchee River (Florida, USA), where reduced fresh-
water flow has led to saltwater intrusion and a transition to
salt‐tolerant, mangrove‐dominated communities [South
Florida Water Management District (SFWMD), 2006].
Groundwater plays a vital role in the water balance of many
wetlands and is increasingly recognized as an important
driver of ecological processes [Hancock et al., 2009] and the
development of particular ecological communities in wet-
lands from Florida, USA [Harvey and McCormick, 2009] to
Australia [Hatton and Evans, 1998]. This is particularly true
in coastal wetlands, where the effect of groundwater on
salinity gradients can largely dictate habitat conditions in the
estuary [Jassby et al., 1995]. Except for one study of bio-
geochemical transport and submarine groundwater dis-
charge [Swarzenski et al., 2006], the role of groundwater in
the Loxahatchee River and its floodplain is largely unin-
vestigated. The specific objectives of this research are to
apply DFA to identify (1) important common trends among
the time series (unexplained variability) and (2) the external
local and/or regional hydrological factors (explained vari-
ability) that drive the observed shallow water table variation.

2. Study Site

[7] Historically, part of the greater Everglades watershed,
the Loxahatchee River is located on the southeastern coast
of Florida, USA (26°59′N, 80°9′W; Figure 1) and is often

Figure 1. The Loxahatchee River and surrounding area, showing (a) the location of the nine regional
USGS wells (WTE_R) used in this study and (b) transect locations (T1, T3, T7, T8, and T9), surface
water elevation (SWE) and meteorological measurement locations, and major hydraulic infrastructure.
Transect notation is followed by distance from river mouth (river kilometer, RK).
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referred to as the “last free‐flowing river in southeast Florida”
[SFWMD, 2006]. The river has three main branches (the
North, Southwest, and Northwest Forks), which join in a
central embayment that connects to the Atlantic Ocean via
Jupiter Inlet. The watershed drains approximately 550 km2 in
Palm Beach and Martin counties and includes several large,
publicly owned areas including Jonathan Dickinson State
Park (JDSP), the Loxahatchee Slough Preserve, and the J.W.
Corbett Wildlife Management Area. In 1985, a 15.3 km
stretch of the Northwest Fork became Florida’s first National
Wild and Scenic River [National Park Service (NPS), 2004]
and intensive data collection and modeling efforts in support
of management and restoration planning have been underway
for several years [e.g., SFWMD, 2006, 2006, 2009;
VanArman et al., 2005; Mortl, 2006; Muñoz‐Carpena et al.,
2008, Kaplan et al., 2010].
[8] The Northwest Fork of the Loxahatchee River (NW

Fork) and its watershed contain a diverse array of terrestrial
and aquatic ecosystems including sandhill, scrub, hydric
hammock (a plant community characterized by 30–60 days
of inundation yearly and mixed, facultative hardwood spe-
cies), wet prairie, floodplain swamp, estuarine (mangrove)
swamps, seagrass beds, tidal flats, oyster beds, and coastal
dunes [Roberts et al., 2006; Treasure Coast Regional
Planning Council (TCRPC), 1999]. Many of these ecosys-
tems remain relatively intact [VanArman et al., 2005] and
support a diversity of protected animal and plant species,
including the endangered Florida manatee (Trichechus
manatus latirostris) and four‐petal pawpaw (Asimina tet-
ramera Small) [SFWMD, 2006]. The upper watershed of the
NW Fork is also home to one of the last remnants of bald
cypress (Taxodium distichum [L.] Rich.) floodplain swamp
in southeast Florida. However, changing hydrology and
salinity regimes in the river and its floodplain have been
linked to vegetative changes in the floodplain forest
[SFWMD, 2002]. Of primary concern is the transition from
bald cypress floodplain swamp to mangrove‐dominated
communities in the tidal floodplain as salinity increased and
inadequate hydroperiod in the upstream riverine floodplain,
which has shifted the system towards drier plant commu-
nities [SFWMD, 2009].
[9] Altered hydroperiods and encroaching salinity in the

NW Fork have been linked to four major factors: (1) con-
struction of major and minor canals that direct water away
from the historic watershed; (2) the permanent opening of
Jupiter Inlet in 1947 (Figure 1b); (3) construction of the C‐18
canal in 1958, which transferred a majority of flow from the
NW Fork to the Southwest Fork (Figure 1b); and (4) low-
ering of the regional groundwater table by community
consumption [SFWMD, 2002]. These hydrologic changes
have been linked to changes in the vegetative composition
of the floodplain, where studies have documented the
upriver retreat of bald cypress since at least the turn of the
20th century [General Land Office, 1855, Surveyor field
notes from 1855 survey of the Jupiter/Loxahatchee River
area, available at http://www.labins.org (verified 20 Aug.
2009), Labins, Tallahassee, Fla.; and more recently Alexander
and Crook, 1975;McPherson, 1981;Ward and Roberts, 1996;
Roberts et al., 2008].
[10] The health of the Loxahatchee River and its adjacent

ecosystems is a priority for many residents, visitors, agen-
cies, and political leaders. As such, a number of planning
efforts have been initiated over the past 20 years, including

the North Palm Beach County Comprehensive Everglades
Restoration Plan project (part of the 30 year, $8–$15 billion
Everglades restoration project). Additionally, as in many
other U.S. states [e.g., Johnson, 2008], Florida law requires
its water management agencies to establish minimum flows
and levels (MFLs) to protect water resources (section
373.042[1], Florida Statutes). MFL criteria are also designed
to protect valued ecosystem components (VECs) from
“significant harm.” The MFL for the NW Fork [SFWMD,
2002] was adopted in 2003, and a restoration plan
[SFWMD, 2006] was completed in 2006 with the goal of
protecting the river’s remaining cypress swamp and hydric
hammock communities, as well as estuarine resources
including oysters (Crassostrea virginica), fish larvae, and
sea grasses, all identified as VECs. These MFL and resto-
ration scenarios rely primarily on increased freshwater flow
over Lainhart Dam (Figure 1b), which was found to be the
most important driver of upstream hydroperiod and down-
stream surface water salinity. In spite of the Loxahatchee’s
“free‐flowing” appellation, flow over Lainhart dam (calcu-
lated from headwater surface water elevation) is controlled
by managing conveyance through the G‐92 water control
structure (Figure 1b).

3. Materials and Methods

3.1. Experimental Site and Setup

[11] In cooperation with the Florida Park Service, the
SFWMD developed a network of 12 groundwater wells
along five previously established vegetation survey transects
perpendicular to the NW Fork (T1, T3, T7, T8, and T9;
Figure 1b). Water table elevation (WTE) data were collected
using TROLL 9000/9500 multiparameter water quality
probes (In‐Situ Inc., Ft. Collins, CO, USA) from September
2004 through January 2009. WTE data were measured every
30 min and converted to daily averages for this study.
Upriver transects T1 and T3 each had one well, while
transitional and tidal transects (T7, T8, and T9) had multiple
wells to document differences in WTE across the flood-
plain (Figure 2). Table 1 summarizes well attributes. A full
description of the groundwater dataset and quality assurance/
quality control (QA/QC) procedure is available in Muñoz‐
Carpena et al. [2008].
[12] Transects 1 and 3 are upriver locations, not directly

impacted by daily tides. T1 is located 23.3 km upstream of
the river mouth (indicated as river kilometer, RK, 23.3) and
has elevations ranging from 4.19 m (referenced to the
National Geodetic Vertical Datum of 1929 [NGVD29]) on
the top of a hydric hammock to 1.66 m in the river channel
(Figure 2a). This freshwater transect is dominated by upland
forest and hydric hammock at higher elevations and mature
bald cypress swamp (average diameter at breast height,
DBH = 49 cm) in the lower floodplain [SFWMD, 2006]. T3,
located at RK 19.5, has several shallow braided streams in
the floodplain and elevations ranging from 1.69 m in the
floodplain to −3.00 m in the river channel (Figure 2b). This
transect contains freshwater riverine swamp but is domi-
nated by pop ash (Fraxinus caroliniana Mill.) with only
four (very large) bald cypress in the canopy (average DBH =
92 cm). Intrusion of less flood‐tolerant species into the
riverine floodplain in these and other riverine transects has
been documented, indicating the ecological impact of
shortened hydroperiod in this area [SFWMD, 2006, 2009].
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[13] Moving downriver, transects 7, 8, and 9 all receive
daily tidal flooding of varying salinity over most or all of
their length. T7 is in a transitionally tidal area (RK 14.6) and
has elevations ranging from 3.07 m in the upland to 0.40 m
in the floodplain (Figure 2c). Vegetation studies indicate
that this transect has been impacted by saltwater intrusion,
logging, and invasion by exotic plants [SFWMD, 2006]. T7
presently contains upper tidal swamp (dominated by red
mangrove, Rhizophora mangle L.), which transitions to
mixed riverine swamp approximately 30 m from the river
channel. Transect 8 is located approximately 150 m
upstream of the confluence of the NW Fork and Kitching
Creek at RK 13.1. This transect has elevations ranging from
2.76 m in the upland to 0.23 m at the creek edge and
transitions from hydric hammock in the uplands to upper
tidal swamp in the floodplain (Figure 2d). The canopy is

dominated by pond apple (Annona glabra L.), wax myrtle
(Myrica cerifiera L.), and bald cypress, though red and
white mangrove (Laguncularia racemosa [L.] C. F. Gaertn.)
seedlings and subcanopy are present, especially within a
braided channel with direct connection to the creek
[SFWMD, 2009]. T9 is located at RK 10.5 on a small
peninsula in the NW Fork and has elevations ranging from
2.89 m in the upland to 0.40 m at the river’s edge (Figure 2e).
This transect consists of lower tidal swamp, dominated by
red and white mangrove except on an elevated trail, which
supports sabal palm (Sabal palmetto [Walter] Lodd. Ex
Schult. & Schult. f.). Roberts et al. [2008] documented
intense vegetation changes on this transect, with a transition
from freshwater to saltwater swamp species in less than
50 years.

Figure 2. Transect topographic cross sections, detailing well installation locations and elevations and
predominant vegetation types.
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3.2. Dynamic Factor Analysis

[14] DFA is based on structural time series models
[Harvey, 1989] and aims to describe a set of N time
series (termed response variables) using a dynamic factor
model (DFM) that includes M common trends (M < N), K
explanatory variables, a level or intercept parameter, and
noise [Lütkepohl, 1991; Zuur et al., 2003b]:

N time series ¼ M common trendsþ level parameter

þ K explanatory variablesþ noise: ð1Þ

In contrast to physically based or mechanistic models, DFMs
are not built upon the underlying mechanisms of a given
system but upon the common patterns among, and interac-
tions between, response variables and explanatory factors.
Thus, it requires no detailed information about the interac-
tions between response and explanatory time series [Ritter et
al., 2009]. In the case presented here, this means that a
complete a priori understanding of how groundwater (i.e.,
the response time series), surface water, and other hydro-
logical variables interact in the floodplain is not necessary.
[15] By performing DFA, one or more common trends in

the response time series are identified, which represent latent
(unidentified) variation. The goal of DFA is to minimize the
number of common trends (keeping M as small as possible)
while still achieving a good fit. The use of explanatory
variables can help improve the model fit and identify which
environmental factors most affect the response variables.
Equation (1) may be written in mathematical form as
follows:

sn tð Þ ¼
XM

m¼1

�m;n�m tð Þ þ �n þ
XK

k¼1

�k;n�k tð Þ þ "n tð Þ ð2Þ

�m tð Þ ¼ �m t � 1ð Þ þ �m tð Þ ð3Þ

where sn(t) is a vector containing the set of N time series
being modeled (response variables); am(t) [same units as the
response variables] is a vector containing the mth common

trend; gm,n [dimensionless] are factor loadings or weighting
coefficients, which indicate the importance of each of the
common trends within the DFM; mn [same units as the
response variables] is a constant level parameter; nk(t) [units
vary] is a vector containing 0 − K explanatory variables; and
bk,n [inverse units to convert explanatory variables to
response variable units] are regression parameters, which
indicate the importance of each of the explanatory variables
within the DFM. In this study, N represents the 12 WTE
time series. The terms ɛn(t) and hm(t) [same units as the
response variables] are independent, Gaussian noise with
zero mean and unknown diagonal or symmetric/nondiagonal
covariance matrix. Using a symmetric, nondiagonal matrix
can lead to adequate model fits using fewer common trends
than with a diagonal matrix but causes the number of
parameters in the DFM to increase considerably [Zuur et al.,
2003a].
[16] Common trends, am(t), are modeled as a random

walk [Harvey, 1989] and are predicted using the Kalman
filter/smoothing algorithm and the expectation maximiza-
tion (EM) technique [Dempster et al., 1977; Shumway and
Stoffer, 1982; Wu et al., 1996]. Factor loadings (gm,n) and
level parameters (mn) are also calculated using the EM
technique. Regression parameters (bk,n) are modeled using
linear regression [Zuur and Pierce, 2004]. DFA deals with
missing data in the response series by using a “design
matrix” to identify missing observations and modify the
factor loading, regression, and error matrices. The Kalman
filter and smoothing algorithm then skips these missing
observations [Zuur et al., 2003b].
[17] Factor loadings (gm,n) and regression parameters (bk,n)

accompanying the common trends and explanatory variables
allow for identification of the most relevant common trends
and explanatory variables for each response variable. The
magnitude of the bk,n and their associated standard errors
were used to assess whether response and explanatory
variables were significantly related (t value > 2). Additionally,
cross‐correlation between response variables and common
trends was quantified using canonical correlation coefficients
(rm,n). Values of rm,n close to unity indicate that the common
trend is highly associated with that response variable. In the
following sections, “minor” correlations will refer to those
with ∣rm,n∣ < 0.25, “low”will refer to thosewith 0.25 ≤ ∣rm,n∣ <
0.50, “moderate” will refer to those with 0.50 ≤ ∣rm,n∣ ≤
0.75, and “high” will refer to those with ∣rm,n∣ > 0.75.
[18] One possible limitation of DFA, which has not pre-

viously been identified in the literature, is that common
trends and explanatory variables are fit simultaneously.
Thus, the method may identify one or more common trends
that closely resemble candidate explanatory variables. If a
common trend produced by DFA improves the model more
than a similar explanatory variable, the resulting DFM will
rely on the trend (which will have relatively high factor
loadings) while overlooking the effect of the explanatory
variable (which will have relatively low regression coef-
ficients), potentially leading to spurious interpretation of
results (i.e., deeming that an explanatory variable is unim-
portant). To ensure against this possibility, we calculated
correlations between common trends and explanatory vari-
ables in DFMs that include both. High correlations between
the series may indicate that an explanatory variable has been
inappropriately disregarded in the model.

Table 1. Locations and Attributes of the 12 Groundwater Wells in
the Studya

Well
Transect
Type

River
Kilometer

Distance to
River (m)

Well Elevation
(m, NGVD29)

Well Depth
(m, bgs)

T1‐W1 Riverine 23.3 50 3.28 1.77
T3‐W1 Riverine 19.5 95 1.60 1.76
T7‐W1 Transitional 14.6 2 0.36 1.84
T7‐W2 30 0.43 1.82
T7‐W3 90 0.56 1.69
T7‐W4 130 2.94 3.67
T8‐W1 Transitional 13.1 5 0.12 1.62
T8‐W2 65 0.36 1.60
T8‐W3 105 2.28 2.64
T9‐W1 Tidal 10.5 70b 0.41 1.86
T9‐W2 50b 0.62 1.86
T9‐W3 30b 2.94 4.24

aWells are distributed across five transects (T1, T3, T7, T8, and T9).
River kilometer indicates distance from the river mouth. Well depth is
given in depth below ground surface (bgs).

bShortest distance from well to river (T9 is on a peninsula).
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3.3. Explanatory Variables

[19] Additional meteorological and hydrological variables
were measured across the watershed, and a total of 29 daily
time series (12 response variables and 17 candidate
explanatory variables, each with 1589 daily values) were
investigated for use in this analysis (Table 2). Not all can-
didate explanatory variables were used in the final DFMs
since multicolinearity may exist between explanatory vari-
ables measured at nearby locations. The severity of multi-
colinearity was quantified using the variance inflation factor
(VIF) of each set of explanatory variables [Zuur et al.,
2007]. Combinations of explanatory variables that resulted
in VIF > 5 were avoided in these analyses [Ritter et al.,
2009]. In cases where this criterion was exceeded, the
single candidate explanatory variable that best minimized
AIC and maximized Ceff was selected. For example, if using
two surface water elevation time series as explanatory
variables resulted in VIF > 5, the series that yielded the
poorer modeling results was discarded.
[20] Breakpoint rainfall data were recorded at the SFWMD

S‐46 structure on the Southwest Fork of the Loxahatchee
River and at the weather station in Jonathan Dickinson State
Park (station code IDWX), where daily reference evapo-
transpiration (ET0) values were also measured (Figure 1b).
These data are publicly available and were downloaded from
the SFWMD’s online database DBHYDRO (Stations S46_R
and JDWX; accessed at http://www.sfwmd.gov/org/ema/
dbhydro/index.html). Note that WTE data are autocorrelated
(i.e., WTE at time t is dependent on WTE at t − 1), while
this is not true for rainfall and ET, which contain no con-
sistent information about previous data. In order to make
rainfall and ET0 data useful to the DFA [Ritter et al., 2009],
the difference between cumulative rainfall and cumulative
ET0 was used to create two net local recharge (Rnet) time
series. Rainfall was measured at the S‐46 and JDWX
gauging stations (Figure 1b), but ET0 was only computed
from measurements at JDWX, so cumulative ET from this
station was used to calculate both Rnet series (Rnet,S46 and
Rnet,JDWX). Though only 11.2 km apart, the two rain stations
exhibited large differences in cumulative rainfall over the
4 year study period. The effect of this spatial variability on
model results was explored by developing DFMs using each
of the Rnet series, both series, and their average and com-
paring model results.
[21] Surface water elevation (SWE) data were recorded at

five locations in the NW Fork and one station upstream on
Kitching Creek (Figure 1b). A SFWMD monitoring station

on the headwater side of Lainhart Dam (0.45 km upstream
of T1) measured average daily SWE and is available on
DBHYDRO (station LNHRT_H; Figure 1b). Cooperatively
monitored United States Geological Survey (USGS)/
SFWMD stations located at RK 14.6 (adjacent to T7), RK
13.1 (at confluence with Kitching Creek, near T8), RK 9.5
(∼0.8 km downstream of T9), RK 1.1 (near the Jupiter inlet),
and 2.8 km upstream of the confluence of the NW Fork
with Kitching Creek each measured SWE every 15 min
(Figure 1b). These data were acquired from USGS staff and
converted to daily averages.
[22] Daily averageWTE from nine USGSwells (Figure 1a)

in and around the Loxahatchee River watershed (denoted as
WTE_R) are publicly available and were downloaded from
the USGS National Water Information System (accessed at
http://waterdata.usgs.gov/nwis/). An initial cross‐correlation
analysis identified possible lead/lag relationships between
WTE and WTE_R series, and candidate WTE_R series were
lagged from +3 to −3 days to determine if lagged series
improved the final DFM.

3.4. Analysis Procedure

[23] DFA was implemented using the Brodgar v. 2.5.7
statistical package (Highland Statistics Ltd., Newburgh,
UK), which is based on the statistical software language “R”
version 2.9.1 [R Core Development Team, 2009]. Response
and explanatory variables were normalized (mean sub-
tracted, divided by standard deviation) in Brodgar. This al-
lowed us to compare the relative importance of explanatory
variables across the set of response variables [Zuur et al.,
2003b; Zuur and Pierce, 2004]. The DFA was carried out
sequentially and resulted in three models (Table 3). First,
DFMs were built with an increasing number of common
trends until satisfactory model performance was achieved
according to goodness‐of‐fit indicators [Zuur et al., 2003a].
This DFM is referred to as Model I. Once the minimum
number of common trends (M) was identified, different
combinations of explanatory variables were incorporated
until a satisfactory combination of common trends and
explanatory variables was identified without exceeding the
VIF criterion (Model II). This reduced the unexplained
variability and improved description of WTE in the flood-
plain. Finally, a reduced model was explored by removing
common trends and using only the best subset of explana-
tory variables identified in the DFA to create a multi‐linear
model (Model III) using a multiple regression code run in
Matlab [2009b, The MathWorks, Inc., Natick, MA, USA].

Table 2. Hydrological Time Series Used in the DFAa

Variable Series Type
No. of
Series Description

WTE Response 12 Groundwater table elevation (m, NGVD29) from wells in the
Loxahatchee River floodplain

SWE Explanatory 6 Surface water elevation (m, NGVD29) from stations in the
Loxahatchee River at RK 23.3 (near T1), RK 14.6 (near T7),
RK 13.1 (near T8), RK 9.5 (near T9), RK 1.1 (near Jupiter Inlet),
and on Kitching Creek

Rnet Explanatory 3 Cumulative net local recharge (cumulative rainfall − cumulative ET0, mm)
calculated from weather stations at the S‐46 structure and in Jonathan
Dickinson State Park in the Loxahatchee River watershed (JDWX)

WTE_R Explanatory 9 Groundwater table elevation (m, NGVD29) from USGS wells near the
Loxahatchee River watershed

aSee Figure 1 for locations.
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[24] Goodness of fit was assessed by visual inspection of
the observed versus predicted WTE and quantified with the
Nash Sutcliffe coefficient of efficiency (−1 ≤ Ceff ≤ 1, Nash
and Sutcliffe [1970]) and Akaike’s information criterion
[Akaike, 1974]. Ceff compares the variance about the 1:1 line
to variance of the observed data, with Ceff = 1 indicating that
the plot of predicted versus observed data matches the 1:1
line. The AIC is a statistical criterion that balances goodness
of fit with model parsimony by rewarding goodness of fit
but including a penalty term based on the number of model
parameters. For two different DFMs, the DFM with largest
Ceff and smallest AIC was preferred.

4. Results and Discussion

4.1. Experimental Time Series

[25] The hydrological data collected during this study
represent a wide range of climatic conditions, including four
wet/dry season cycles, two wet years with hurricane‐
induced flooding (2004–2005), and the driest 2 year
period (2006–2007) recorded in south Florida since 1932
(C. Neidrauer, 2009, Water Conditions Summary, available at
http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_
governingboard/porlet_gb_subtab_presentations_page/
tab20092120/3%20%20water%20conditions.pdf (verified 21
September 09), South Florida Water Management District,
Operations Control Dept., West Palm Beach, Fla.). Daily time
series of hydrological variables are presented in Figure 3.
Rainfall (Figure 3a) followed a seasonal pattern, with wet
season (May–October) rain accounting for 73%–80% of
yearly totals over the 4 years (mean, 77%; Figure 3a). This is
in agreement with previous seasonal rainfall observations
in the Loxahatchee River Basin, which have shown that
approximately two thirds of yearly rain falls in the wet
season between May and October [Dent, 1997]. Significant
spatial variation between rainfall data collected at the S‐46
and JDWX stations was also found. Though the rain gauges
were only 11.2 km apart and roughly equidistant from the
shore in flat terrain, cumulative rainfall at the JDWX gauge
in JDSP was 2151 mm greater than that at the S‐46 structure
over the 4 year study period, yielding divergent Rnet series
(Figure 3b). Correlation between the rainfall time series was
also low (r2 = 0.18), further justifying the use of both series
in the DFMs developed (see following sections). Both
rainfall series passed QA/QC procedures by the SFWMD
and were deemed reliable.
[26] WTE was variable across wells and transects, as well

as over seasons and years. WTE ranged from a maximum of
3.80 m upstream at well T1‐W1 to a minimum of −0.88 m
in the tidal floodplain of T8 (T8‐W1). In general, WTE was

highest in upriver wells (T1‐W1, T3‐W1) and downriver in
higher elevation wells (T7‐W4, T8‐W3) (Figure 3c). Visual
inspection of WTE in these higher elevation wells suggested
common trends associated with wet and dry season rainfall
patterns. For example, the impact of late season rains in
2004 and 2005 and dry summers in 2006 and 2007 on the
WTE are apparent across these wells. WTE in lower ele-
vation wells closer to the river appeared to be more influ-
enced by daily tidal flooding (Figure 3d). Some seasonal
wet/dry patterns were still apparent, but less so, as the signal
was damped by daily and monthly tidal fluctuations. Note
high water events in September 2004 during hurricanes
Frances and Jeanne.WTE generally decreased from upstream
(T1) to downstream (T9). One exception to this is well T7‐
W4, which maintained higher WTE than well T3‐W1 (which
is further upstream) throughout most of the period of record
(Figure 3c) due to its high elevation (Table 1).
[27] Figures 3e–3f show temporal variation in the six

SWE and nine WTE_R series explored as candidate
explanatory variables. In the upriver SWE series (RK 23.3
and Kitching Creek), large rainfall events coincided with
peaks in SWE, and distinct drawdowns during each of the
four dry seasons were observed (most drastically in 2006
and 2007). Daily average SWE measured near T7, T8, T9,
and the Jupiter Inlet were nearly identical and overlap in the
figure (0.94 ≤ r2 ≤ 0.99 for these four series; Figure 3e).
WTE_R series measured in and around the Loxahatchee
River exhibited a large range (from close to sea level to over
10 m) but consistently mirrored the wet and dry season var-
iations observed in the two upriver SWE series (Figure 3f).
[28] Other WTE trends in the floodplain of the Lox-

ahatchee River became apparent when looking closely at a
single transect. For example, WTE increased with distance
from the river on T7, with the highest elevation well (T7‐W4)
showing the maintenance of much higher WTE (Figure 4).
During the dry seasons of 2006 to 2007, this freshwater
[Muñoz‐Carpena et al., 2008] head fell, approaching but not
reaching WTE in the floodplain. This indicates a variable
but consistently positive flow of freshwater from the upland
toward the river even in extremely dry seasons, which likely
plays a role in mitigating the severity of saltwater intrusion
on T7. This highlights the importance of understanding the
dynamics of this hydrological flux. The same pattern was
apparent on T8 (not shown), with higher WTE maintained in
well T8‐W3, except for the dry seasons of 2006 and 2007,
when the groundwater levels in T8‐W2 and T8‐W3 met
during an extreme WTE drawdown. At T9, which is on a
peninsula with the river on two sides, these patterns were not
as apparent, with higher elevation and lower elevation wells
sharing similar WTE (not shown).

Table 3. Dynamic Factor Models Tested in This Studya

DFM
No. of
Trends

Explanatory
Variables

Regression
Parameters

No. of
Parameters Ceff AIC

Model I 6 None — 81 0.94 4840
Model II 3 SWERK23.3, SWERK14.6,

WTE_RM1001, Rnet,S46,
Rnet,JDWX

From DFA 117 0.91 2998

Model III 0 SWERK23.3, SWERK14.6,
WTE_RM1001,
Rnet,S46, Rnet,JDWX

Multiple regression 60 0.81 22,063

aSee explanation in text.
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4.2. Dynamic Factor Analysis

4.2.1. Baseline DFA (No Explanatory Variables)
[29] The DFA was advanced in three discrete steps. First,

different DFMs were obtained by increasing the number of
common trends until a maximum Ceff and minimum AIC
were achieved. With a diagonal matrix, AIC was minimized

and Ceff maximized with six trends (M = 6; Table 4). The
minimized AIC of 4840 and maximized Ceff of 0.94 using
six common trends (Model I) were then used as targets for
subsequent DFMs. That six common trends (representing
unexplained, but shared, information) were necessary to
achieve the best DFM with no explanatory variables sug-

Figure 3. Precipitation, reference evapotranspiration (ET0), calculated net local recharge (Rnet), water
table elevation (WTE), surface water elevation (SWE), and regional water table elevation (WTE_R) mea-
sured in and around the Loxahatchee River watershed. Gaps in times series in Figure 3c represent missing
data.
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gests that several latent effects influence the variability of
WTE across the watershed. It is instructive to examine these
common trends and their associated canonical correlation
coefficients (rm,n) since high rm,n values indicate high cor-
relation between two latent variables.
[30] Three example trends from Model I with high rm,n

values are shown in Figure 5. Though only describing latent
(unknown) variability at this stage in the DFA, these trends
and their patterns of correlation are useful for developing
ideas about how WTE varies in the Loxahatchee River
floodplain and where to look for the most useful explanatory
variables. For example, the trend in Figure 5a was highly to
moderately correlated (positively) with all five higher ele-
vation wells (T1‐W1, T3‐W1, T7‐W4, T8‐W3, and T9‐W3)
but relatively unimportant (minor and low correlations) for
the seven lower floodplain wells (T7‐W1, T7‐W2, T7‐W3,
T8‐W1, T8‐W2, T9‐W1, and T9‐W2). On the other hand,
the trend in Figure 5b was negatively correlated with the
upland and upriver wells (low to minor correlations) but
positively and more strongly correlated with floodplain
wells (moderate to low correlations). This geographic and
topographic distribution of rm,n values across the twelve
wells suggests that the use of explanatory variables that
represent distinct parts of the river may help reduce the
unexplained variability represented by these trends. The
trend in Figure 5c had low to moderate correlation with two
of the twelve wells, both on T8, and the correlations were in
opposite directions. The rest of the correlations are minor.
This indicates a latent effect specific to these wells and
could be an indicator of anomalous data or an unidentified
environmental factor (or factors) that only affects these wells
(i.e., pumping in the area). Model I required this common
trend to achieve the best match of WTE data in these wells.

From the remaining three common trends (not shown), no
clear spatial or physical interpretations could be drawn.
4.2.2. DFA With Explanatory Variables
[31] Next, explanatory variables were added in an attempt

to reduce the number of common trends required to achieve
an adequate fit of WTE (and to reduce the canonical cor-
relation coefficients and factor loadings of remaining
trends). Candidate explanatory variables included surface
water elevations (SWE) at six locations in the NW Fork,
regional groundwater elevations (WTE_R) in nine ground-
water wells in and around the Loxahatchee River watershed,
and net local recharge (Rnet) calculated from two rain gauges
and one ET monitoring station, for a total of 17 possible
explanatory time series. When two or more candidate
explanatory variables were colinear or multicolinear (result-
ing in VIFs > 5), the explanatory variable resulting in the best
overall model fit (highest Ceff and lowest AIC) was selected.
[32] For the SWE time series, upstream river stage at

Lainhart Dam (RK 23.3) and tidal river stage at RK 14.6
provided the best benefit to the model and were not col-

Figure 4. Average daily water table elevation (WTE) in the four wells on transect 7 (T7). Gaps in time
series represent missing data.

Table 4. Akaike’s Information Criteria (AIC) and Nash‐Sutcliffe
Coefficients of Efficiency (Ceff) for Dynamic Factor Models With
no Explanatory Variables and 1–7 Common Trends (M)a

M Ceff AIC

1 0.44 32,204
2 0.80 19,860
3 0.85 15,390
4 0.89 11,211
5 0.90 7337
6 0.94 4880
7 0.93 6875

aBest model is rendered in bold.
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linear. That both upriver and tidal SWE series were required
for the best DFM follows from Model I, whose trends were
split across high and low elevation floodplain wells. For
WTE_R time series, USGS well M‐1001 most improved the
model. The DFM was not improved by lagging any of the
WTE_R series by −3 to +3 days. The model was also
improved by using both net local recharge series (Rnet,S46

and Rnet,JDWX) compared with either series alone or their
average. Recorded rainfall at the S‐46 and JDWX gauges
were drastically different (Figure 3b), and thus, when used

to calculate Rnet, each series had distinct information that
improved the DFM. The use of both Rnet series also high-
lighted the effects of the high spatial variability of rainfall in
the region. The VIFs for this set of five explanatory vari-
ables did not exceed the VIF threshold (1.30 ≤ VIF ≤ 2.51).
Correlations between common trends and this set of
explanatory variables were low (0.001 ≤ r2 ≤ 0.34), indi-
cating that the importance of these explanatory variables
was not masked by common trends (though we did observe
higher correlations between trends and explanatory variables

Figure 5. Three example normalized trends from Model I (left) and their associated canonical correla-
tion coefficients (right). (a) Trend 1 shows high correlation to higher elevation and upstream wells; (b)
trend 2 is most associated with lower elevation floodplain wells; and (c) trend 3 has low correlations
except for wells T8‐W1 and T8‐W3.

KAPLAN ET AL.: COASTAL WETLAND SHALLOW GROUNDWATER DYNAMICS W08528W08528

10 of 18



in other DFMs, confirming that it is important to check for
this correlation before interpreting DFA results).
[33] In summary, the best DFM used five explanatory

variables (K = 5): SWE at RK 23.3 and 14.6 (SWERK23.3

and SWERK14.6), WTE from USGS well M‐1001
(WTE_RM1001), and both net local recharge series (Rnet,S46

and Rnet,JDWX). With these explanatory variables, the num-
ber of required common trends was reduced from six to
three (M = 3), reducing the unexplained variability in the
model while achieving performance similar to that of
Model I. This model (Model II) yielded an AIC value of

2998 (lower than the 4880 target from Model I) and a Ceff

value of 0.91 across the 12 wells (compared with the target
of 0.94). Model fits are illustrated in Figure 6. Model fits are
good to excellent (0.78 < Ceff < 1.0). Some higher elevation
wells lack data from the beginning of the time series, and
model results help paint a more complete picture of WTE in
these wells during the hurricanes of 2004 (e.g., frames 1 and
2 in Figure 6).
[34] Table 5 summarizes the results obtained fromModel II

(M = 3, K = 5). Significant regression parameters (t value > 2)
are shown in bold. WTE in the 12 wells in the Loxahatchee

Figure 6. Observed (gray symbols) and modeled (black lines) normalized WTE for the 12 wells ob-
tained from Model II using three common trends and five explanatory variables.
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River had variable relationships to the common trends from
Model II, but canonical correlations were reduced from
Model I, indicating a reduced dependence of the DFM on
these latent series. The trends inModel II had zero “high” and
four “moderate” correlations with response variables, com-
pared to four “high” and seven “moderate” correlations in
Model I.
[35] The spatially distributed effects of the explanatory

variables and common trends on Model II are compared in
Figure 7. Regression parameters (bk,n; Figures 7a–7e) rep-
resent the relative importance of each explanatory variable
to each response time series, with black bars indicating
significant regression parameters by t test. In general,
inclusion of explanatory variables in Model II reduced
factor loadings (Figure 7f) over those in Model I (overall
average ∣gn∣ for the six trends in Model I was 0.13 ± 0.16
compared to 0.05 ± 0.04 in Model II), suggesting that the
patterns observed in the Loxahatchee River floodplain wells
may be adequately described using only the selected
explanatory variables (see following section).
[36] Visualizing the spatial distribution of the importance

of each explanatory variable in the floodplain can be useful
when assessing river management options. For example,
Figure 7a shows that the Lainhart Dam surface water time
series (SWERK23.3) was most important in describing vari-
ability in wells T1‐W1 and T3‐W1 but had reduced impact
downriver. As the major management tool in the NW Fork,
river stage (i.e., flow) at Lainhart Dam had only limited
impact in maintaining WTE downstream of T3. Similarly,
Figure 7b demonstrates the strong importance of tidal sur-
face water (SWERK14.6) in lower elevation wells further
downstream. This variable was most important for ex-
plaining WTE variability on downstream transects (T7, T8,
and T9) and was strongest for those wells closest to the
river, decreasing with distance from the river, for example,
from T7‐W1 (strongly significant, with b = 0.92) to T7‐W4
(insignificant, with b = 0.01). This explanatory variable, and
by extension the response variables that it influences most,
is most susceptible to sea level rise.
[37] Figures 7c–7d show regression parameters for the

two net local recharge series (Rnet,S46 and Rnet,JDWX).
Though the importance of these two series was distributed
across the 12 wells in the floodplain, a geographic pattern is

apparent. Wells T1‐W1 and T3‐W1 are closer to the rainfall
gauging station at the S‐46 structure (3.2 and 3.9 km,
respectively) than the JDWX gauging station (9.7 and
7.2 km, respectively). These wells were more strongly
affected by Rnet,S46 (significant, with b values of 0.73 and
0.56, respectively) than by Rnet,JDWX (insignificant b values
of 0.10 and 0.13, respectively). The importance of the two
net local recharge series were split fairly equally over the
remainder of the wells (average bRnet,S46: 0.46 ± 0.34;
average bRnet,JDWX: 0.65 ± 0.35), with bRnet,JDWX being
slightly more important in describing the downstream wells.
The importance of capturing this spatially distributed rain-
fall is reinforced when building a DFM using just one of the
Rnet series or the average of the two, which yielded poorer
results (4859 ≤ AIC ≤ 6998; 0.88 ≤ Ceff ≤ 0.89).
[38] Figure 7e shows that highest b values for WTE_R

were associated with upstream wells (T1‐W1, T3‐W1) and
downstream, high elevation wells (T7‐W4, T8‐W3, and
T9‐W3), whose time series closely resembled regional
groundwater circulation. The importance of regional ground-
water elevation (WTE_RM1001) increased with well eleva-
tion and was significant for 9 of the 12 wells. A lowered
regional groundwater table has been identified as a cause of
reduced hydroperiod and increased saltwater intrusion in the
Loxahatchee River [SFWMD, 2002], and the dependence of
floodplain WTE on regional groundwater is substantiated by
these results. It is interesting to note that, although the
regional groundwater trend and SWE at Lainhart Dam were
correlated (r2 = 0.71), including both explanatory variables
in Model II allowed us to decompose the general effect of
the regional groundwater circulation from the more local
effect of SWE at Lainhart Dam shown in Figure 7a.
[39] The remaining three trends in Model II and their

associated rm,n values are given in Figure 8. These common
trends represent the remaining unexplained (latent) vari-
ability among the WTE series. Common trend 1 has a high
starting value, likely associated with high water events
during the hurricanes of 2004, which may not be sufficiently
described by explanatory variables, especially if measure-
ment errors occurred during these extreme events. This trend
was most important to wells T1‐W1 and T3‐W1, which
were also most strongly affected by SWE at Lainhart Dam.
WTE in all wells were generally positively correlated with

Table 5. Constant Level Parameters (mn), Canonical Correlation Coefficents (rm,n), Factor Loadings (gm,n), Regression Coefficients (bk,n),
and Coefficients of Efficiency (Ceff) From Model IIa

sn mn

Canonical Corr. Factor Loadings Regression Coefficients (bk,n)

Ceff,nr1,n r2,n r3,n g1,n g2,n g3,n SWERK23.3 SWERK14.6 Rnet,S46 Rnet,JDWX WTE_RM1001

T1‐W1 −0.44 0.61 0.10 −0.30 0.08 0.02 0.00 0.53 −0.01 0.73 0.10 0.22 1.00
T3‐W1 −0.26 0.52 0.14 −0.31 0.05 0.02 0.00 0.58 0.01 0.56 0.13 0.19 0.97
T7‐W1 −0.10 0.19 0.23 0.02 0.00 −0.01 0.04 −0.07 0.92 0.23 0.05 0.16 0.94
T7‐W2 0.58 0.16 0.35 0.26 0.00 0.02 0.18 0.02 0.62 0.71 0.74 −0.05 0.90
T7‐W3 0.22 −0.08 0.09 −0.04 −0.01 −0.02 0.20 0.12 0.47 1.05 1.00 −0.12 0.83
T7‐W4 1.20 0.27 0.43 −0.38 0.00 0.10 −0.01 0.10 −0.01 0.09 0.77 0.24 1.00
T8‐W1 −0.14 0.05 0.30 0.27 0.00 −0.01 0.03 0.19 0.74 −0.26 0.00 0.12 0.78
T8‐W2 0.01 0.45 0.36 0.04 0.03 0.01 0.12 −0.08 0.43 0.54 0.72 0.19 0.80
T8‐W3 0.90 0.35 0.55 −0.14 0.02 0.10 0.00 0.21 −0.09 0.3 0.65 0.2 0.88
T9‐W1 0.50 0.16 0.31 0.29 0.00 0.00 0.23 −0.12 0.58 0.92 1.03 0.06 0.97
T9‐W2 0.09 0.02 0.30 0.24 0.01 0.00 0.16 0.06 0.70 0.49 0.84 0.01 0.98
T9‐W3 1.06 0.35 0.54 −0.16 −0.01 0.07 0.03 0.12 0.27 0.03 0.70 0.16 0.86

Overall 0.91

aModel II includes three trends and five explanatory variables. Significant regression parameters are rendered in bold.
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both common trends 1 and 2 but have low correlations
(average r1,n value: 0.25 ± 0.21; average r2,n value: 0.31 ±
0.15). Common trend 3 is weaker and less consistent, with
positive correlations for most floodplain wells and negative
correlation for most upland wells, all of which were either
“minor” or “low.” Correlations between these remaining
trends and the explanatory variables in Model II were also
low, confirming that the importance of explanatory variables
was not masked by common trends. Though not pursued
here, in cases where common trends do mask explanatory
variables, it may be possible to use a two‐step process
wherein the “ignored” explanatory variable(s) are fit to the

data first using linear regression. DFA could then be run on
the residuals of this process as previously described. This
method would essentially be a time series‐based partial
regression technique [e.g., Zuur et al., 2007].
4.2.3. Multilinear Regression Model (DFA With No
Common Trends)
[40] Finally, common trends were removed from the

model to assess the validity of a DFM using only explana-
tory variables. In this model (Model III), the five explana-
tory variables identified in the DFA were used to create a
multilinear model of the response variables. As expected,
Ceff values for Model III were somewhat reduced from

Figure 7. (a–e) Regression parameters and (f) factor loadings for Model II (M = 3, K = 5). Regression
parameters are shown with their standard errors, with black bars indicating significance.
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Figure 8. (left) Common normalized trends and (right) their associated canonical correlation coeffi-
cients for Model II.
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Model II (overall Ceff = 0.81, 0.59 < Ceff < 0.94; compared
to Ceff = 0.91, 0.78 < Ceff < 1.0 for Model II) but were still
adequate for most wells (Table 6). Model III accurately
predicted WTE series in higher elevation wells farthest from
the river (e.g., Figure 9, well T3‐W1) and in lower elevation
wells close to the river (e.g., Figure 9, well T7‐W1) but
performed worse for middle distance and elevation wells
(e.g., Figure 9, well T7‐W3). Closer to the edges of the sys-
tem, explanatory variables act as boundary conditions (e.g.,
regional WTE at the farthest landward end of transects and
SWE acting at the river), and their effects can be seen
directly in the WTE series. In middle distance and middle
elevation wells, the interaction of surface water and
groundwater is most complex and nonlinear, which may not
be as well captured by a linear combination model. Despite
these limitations, overall performance of Model III was
adequate to describe variations in WTE in the Loxahatchee
River floodplain and may be useful for assessment of
Loxahatchee River restoration scenarios [SFWMD, 2006],
especially considering the wide range of climatic conditions
captured in the study. In general, all restoration scenarios
rely primarily on increased freshwater flow over Lainhart
Dam, which was found to be the most important driver of
upstream hydroperiod and downstream surface water salin-
ity. The Restoration Plan for the Northwest Fork of the
Loxahatchee River [SFWMD, 2006] identified a single
preferred restoration flow scenario (PRFS) that incorporated
seasonally and yearly variable flows to maintain healthy,
functioning ecosystems. In addition to estimating water
table elevation under the PRFS, the models developed in
this study can be applied to any number of possible future
scenarios, including increased groundwater withdrawals, sea
level rise, and changes in rainfall and ET patterns associated
with climate change.

5. Conclusions

[41] Detailed hydrological multivariate time series, ob-
tained in and around the Loxahatchee River watershed in
south Florida, were studied and modeled using dynamic
factor analysis (DFA). The analysis was successfully
applied to understand the hydrological processes in this
area, which has been affected by reduced hydroperiod and

increased saltwater intrusion. The technique proved to be a
powerful tool for the study of interactions among 29 long‐
term, nonstationary hydrological time series (12 water table
elevation [WTE] series and 17 candidate explanatory vari-
ables). Upstream and tidal surface water elevations (SWE),
regional groundwater circulation (WTE_R), and cumulative
net local recharge (Rnet) were found to be the most important
factors responsible for groundwater variation in the flood-
plain wetlands of the Loxahatchee River, and the analysis
quantified the spatial distribution of the importance of each
explanatory variable to WTE in the 12 monitoring wells.
[42] Upstream SWE at Lainhart Dam is the primary

managed hydrological input in the Loxahatchee River and
was important for describing variability in wells T1‐W1 and
T3‐W1 but had limited impact on WTE on downstream
transects. Although SWE at Lainhart Dam has been shown
to largely dictate downstream surface water salinity
[SFWMD, 2006], its role in explaining WTE variation is
limited to the upstream, riverine river reaches. Tidal SWE at
RK 14.6, which is susceptible to climate change‐induced
sea level rise, was important for explaining observed WTE
variability for downstream, lower elevation wells.
[43] WTE_R was significant for nine of the 12 wells,

corroborating the noted dependence of floodplain WTE on
regional groundwater [SFWMD, 2002]. The best DFM used
two Rnet series, with wells T1‐W1 and T3‐W1 gaining the
most benefit from the Rnet series calculated using rain from
the nearby (to these wells) S‐46 structure. The importance of
the Rnet series from the JDWX gauging station were split
fairly equally over the remainder of the wells. Using the
average of the two series (a common technique in small
watersheds) yielded inferior results. This highlights the
importance of using the best available local rainfall data for
hydrological modeling, whether it be empirical or mecha-
nistic, and stresses the need to move to more advanced
rainfall measurement techniques, including Next Generation
Radar (NexRad).
[44] The DFM resulting from the DFA (Model II) had

good results (overall Ceff = 0.91, 0.78 ≤ Ceff ≤ 1.0, visual
inspection) and is useful for filling in data gaps during the
study period and identifying the relative importance and
relationships between hydrological variables of interest. The
reduced model with no common trends (Model III) did a fair
to excellent job (overall Ceff = 0.81, 0.59 ≤ Ceff ≤ 0.94) and
is likely adequate for describing variations in WTE in the
Loxahatchee River floodplain. This empirical model may be
deemed useful for assessment of the effects of Loxahatchee
River restoration and management scenarios on WTE
dynamics.
[45] The study also provides a quantitative validation of

our qualitative expectations that tidal effects propagate some
distance inland (along a river or estuary), river effects
propagate some distance inland from the banks (here to
swamps/floodplains), hydraulic structure effects propagate
some distance from the structure, and net recharge effects
are highly localized. Results of the analysis presented here
have practical implications, in addition to guiding climate
change mitigation planning and ecohydrologic analysis of
salinity in coastal river wetlands. For example, mechanistic
modeling efforts that consider spatial variability of land
covers and soils would likely benefit from knowledge of
where tidal effects end and the degree to which local rainfall
variability is an important determining factor. Mechanistic

Table 6. Model Parameters and Coefficients of Efficiency (Ceff)
From Model IIIa

sn

Model Parameters

CeffSWERK23.3 SWERK14.6 WTE_RM1001 Rnet,S46 Rnet,JDWX

T1‐W1 0.69 −0.09 0.41 0.07 −0.02 0.91
T3‐W1 0.70 −0.06 0.35 0.08 0.00 0.94
T7‐W1 −0.07 0.95 0.09 0.08 −0.05 0.93
T7‐W2 0.07 0.86 0.09 −0.05 −0.31 0.76
T7‐W3 0.13 0.65 −0.32 0.42 0.30 0.59
T7‐W4 0.18 0.03 0.68 0.07 0.23 0.91
T8‐W1 0.18 0.78 0.07 −0.38 −0.09 0.80
T8‐W2 0.06 0.55 0.35 −0.12 0.01 0.68
T8‐W3 0.34 −0.04 0.69 −0.05 −0.04 0.81
T9‐W1 −0.12 0.87 0.10 −0.06 −0.11 0.81
T9‐W2 0.12 0.87 −0.04 −0.17 0.15 0.86
T9‐W3 0.14 0.38 0.50 −0.01 0.05 0.77

Overall 0.81

aNo trends, five explanatory variables. Significant model parameters are
rendered in bold.
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Figure 9. Observed (gray symbols) and modeled (black lines) normalized WTE for the 12 wells
obtained from Model III using five explanatory variables and no trends.
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frameworks using conditional modeling approaches can also
benefit from knowing which explanatory variables are most
important as a function of the relative location of a study
area to the ocean, a tidal river, or hydraulic structures.
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