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a b s t r a c t

We examined environmental factors which are most responsible for the 8-year temporal dynamics of the
intertidal seagrass Thalassia hemprichii in southern Taiwan. A dynamic factor analysis (DFA), a dimension-
reduction technique, was applied to identify common trends in a multivariate time series and the
relationships between this series and interacting environmental variables. The results of dynamic factor
models (DFMs) showed that the leaf growth rate of the seagrass was mainly influenced by salinity (Sal),
tidal range (TR), turbidity (K), and a common trend representing an unexplained variability in the
observed time series. Sal was the primary variable that explained the temporal dynamics of the leaf
growth rate compared to TR and K. K and TR had larger influences on the leaf growth rate in low- than in
high-elevation beds. In addition to K, TR, and Sal, UV-B radiation (UV-B), sediment depth (SD), and
a common trend accounted for long-term temporal variations of the above-ground biomass. Thus, K, TR,
Sal, UV-B, and SD are the predominant environmental variables that described temporal growth varia-
tions of the intertidal seagrass T. hemprichii in southern Taiwan. In addition to environmental variables,
human activities may be contributing to negative impacts on the seagrass beds; this human interference
may have been responsible for the unexplained common trend in the DFMs. Due to successfully applying
the DFA to analyze complicated ecological and environmental data in this study, important environ-
mental variables and impacts of human activities along the coast should be taken into account when
managing a coastal environment for the conservation of intertidal seagrass beds.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Seagrass beds provide valuable resources and carry out
numerous processes in coastal ecosystems worldwide. Seagrass
leaves retard water movement (Koch and Beer, 1996) and thereby
reduce coastal erosion; this process enhances sediment stabiliza-
tion and the accumulation of nutrients in sediment pore water, and
improves water quality by filtering out suspended matter (Short
and Short, 1984). The ecological benefits gained from seagrass beds
provide environments which serve as invertebrate nurseries and
feeding locations (Alfaro, 2006) for juvenile fish populations (Bell
and Pollard, 1989), and other important fish populations such as
tarpon, snook, and redfish (Sanchez et al., 1996; Short et al., 1989;
USGS and Gulf of Mexico Program, 2004). Seagrass beds are
nces, National Chung Hsing
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considered among the most productive environments within
aquatic ecosystems (UNEP, 2004; Zieman and Wetzel, 1980).

Anthropogenic activities in coastal zones such as construction
on the coastline, tourism, near-shore fishing, and aquatic activities
can have long-lasting negative effects on seagrass beds and coastal
ecosystems (Duarte, 2002; Meng et al., 2008). Additionally, possible
climate effects on the functioning of seagrass communities have
aroused considerable concern (Short and Neckles, 1999). Changes
in seawater temperature (Neckles et al., 1993), salinity stress (Caye
et al., 1992), ultraviolet-B (UV-B) radiation (Dawson and Dennison,
1996; Raven, 1991), and storm frequency and intensity (Talbot et al.,
1990) are all potential factors that regulate the dynamics of sea-
grass communities.

Taiwan lies near the northern latitudinal limit for the
geographical distribution of Thalassia hemprichii (Ehrenb.) Aschers.,
which is one of the two most widely distributed tropical seagrasses
in the western Pacific (Mukai, 1993). Most seagrass studies in
Taiwan were limited to structural aspects (Mok et al., 1993), which
provide little information on dynamics. Lin and Shao (1998)
documented temporal changes in the abundance and productivity
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Fig. 1. Location of the study sites on the Hengchun Peninsula of southern Taiwan.
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of T. hemprichii in the intertidal zone and found that wind speed
and rainfall were the variables most responsible for the seasonal
variability.

Statistical stationarity of ecological and environmental data
might not be applicable because substantial anthropogenic effects
manifested by the global climate are altering the means and
extremes of precipitation, sea levels, and rates of river discharge
(Milly et al., 2008). Therefore, long-term monitoring of the
temporal variations in seagrass and environmental factors will be
necessary to evaluate and maintain the sustainability of a healthy
seagrass community. A mathematical or statistical approach that
can identify to what extent environmental factors contribute to the
temporal dynamics of seagrasses may be a useful tool to improve
our understanding of seagrass beds.

Dynamic factor analysis (DFA) is a dimension-reduction tech-
nique especially designed for time-series data. A DFA can be used
to analyze non-stationary time series (which can have missing
values) in terms of common patterns and explanatory variables.
Therefore, DFA is able to identify underlying common trends
(unexplained variability) between multivariate time series and
can evaluate interactions with selected potential explanatory
variables. DFA was originally developed for economics, but has
also been successfully applied to fisheries (Zuur and Pierce, 2004),
groundwater issues (Ritter and Muñoz-Carpena, 2006), ground-
water quality trends (Muñoz-Carpena et al., 2005; Ritter et al.,
2007), and topsoil water dynamics (Ritter et al., 2009). It has been
widely used in the last decade due to the simplicity of inter-
preting the results.

The study presented here focused on the statistical analysis of 8-
year temporal variations in environmental variables and growth of
Thalassia hemprichii in the intertidal zone of the Hengchun Penin-
sula, southern Taiwan. This study is the first in which a multivariate
time series analysis is applied. The specific goals of this analysis
were to apply a DFA to: (1) examine which environmental factors
are most responsible for the long-term temporal changes in the
growth rate and above-ground biomass of T. hemprichii, and (2)
identify common trends that represent unexplained variability in
the growth rate and above-ground biomass of T. hemprichii.

2. Materials and methods

2.1. Thalassia hemprichii and study area

The life form of Thalassia hemprichii is perennial. Thalassia
hemprichii is capable of both clonal propagation and sexual repro-
duction to colonize open areas and/or maintain existing meadows
(Vermaat et al., 1995). In southern Taiwan, shoot density and
biomass were greatest in June and lowest between December and
February. Greater leaf growth rates were observed in October or
December and lower values in February or April (Lin and Shao,
1998). Above-ground biomass is persistent throughout the year,
with a unimodal pattern in which the peak occurred in June (Lin
and Shao, 1998). The flowering phenology of T. hemprichii generally
initiated in January, reached a peak in February and declined until
April.

The study area is located on intertidal reef flats of the Hengchun
Peninsula at the southern tip of Taiwan (Fig. 1; 21�570N, 120�440E).
Nanwan Bay, in the central part of Kenting National Park, is a semi-
enclosed embayment bounded by 2 capes with well-developed
fringing reefs distributed along the shoreline. Millions of tourists
visit Kenting National Park annually to experience the diving and
tropical coastal atmosphere (www.ktnp.gov.tw/eng/home/index.
asp). Raised reefs scattered across the peninsula form several
levels of fringing coastal terraces. Three seagrass beds were
selected to investigate the effects of environmental variables on the
growth rate and above-ground biomass of Thalassia hemprichii. The
first seagrass bed, identified as Nanwan, was along the coast of
Nanwan (Fig. 1) (21�57.300N; 120�5.300E), off the eastern coast of
Nanwan Bay. This bed covered approximately 4000 m2 of a Tha-
lassia-Halodule community with T. hemprichii as the dominant
seagrass species. Two sites, identified as the Nanwan_High
(abbreviated N_H) and Nanwan_Low (N_L) sites, had mean
substrate levels of about 1.17 and 0.99 m above the chart datum,
respectively. The referred datum plane of all tide gauge stations was
based on the mean sea level of tide gauge stations at Keelung in
northern Taiwan. The second seagrass bed was located along the
coastline of Dakwan (Fig. 1) (21�57.120N; 120�44.300E), off the
western coast of Nanwan Bay, and was identified as Dakwan. This
seagrass bed covered approximately 3000 m2 of a homogenous
T. hemprichii community. Similar to the Nanwan site, two sites,
identified as Dakwan_High (D_H) and Dakwan_Low (D_L) sites,
were selected. The mean substrate levels were about 1.19 and
0.99 m above the chart datum at the two sites, respectively. The
third seagrass bed was located along the coastline of the Taiwan
Strait (Fig. 1) (21�59.020N; 120�42.450E). This seagrass bed covered
about 25 m2 of a T. hemprichii community. The estimated mean
substrate level was about 0.85 m above the chart datum, where the
seagrasses were in a tidal pool and were continuously covered by
water during low tide periods.

These seagrass beds, along with the five monitoring sites, were
partially protected from wave action by a 5–10-m-wide zone of
elevated fringing reef, and their substrata were covered by at
least 5 cm of coral sand and debris. A few small coral colonies
were scattered in the seagrass beds. The water in these beds
underwent a complete exchange with the ocean water at high
tide. During low tide, seagrasses in the high-elevation beds may
be exposed to the air or direct sunlight. The time of seasonal low
tide exposure during daylight for Thalassia hemprichii averaged
7.63 h (Lan et al., 2005).

2.2. Data collection

On the Hengchun Peninsula, maximum air temperatures often
occur in July, and minimums occur in January (Lin and Shao, 1998).
Temporal variations in the biomass and leaf growth rate of Thalassia
hemprichii and relevant environmental variables were thus moni-
tored in January (winter, about 20 �C), April (spring, about 25 �C),
July (summer, about 28 �C), and October (fall, about 25 �C) for 8
years from January 2001 to October 2008 at each site. However,
some data were unavailable from 2004 to 2005 because the funding
grant was not continued during that period. The above-ground
biomass and leaf growth rate of T. hemprichii were determined at
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low tide to avoid water turbulence issues. A transect was surveyed
perpendicular to the shoreline at each site, and its length depended
upon the width of the seagrass bed where T. hemprichii dis-
appeared. The positions of these transects were delineated by
marker posts that were left in place.

Three sampling locations along each transect were randomly
selected to determine the above-ground biomass of Thalassia
hemprichii. A quadrat (50 � 50 cm) divided into 25 squares
(10 � 10 cm) was placed on the substratum. The biomass of
T. hemprichii was randomly collected from 1 square among 25
squares using a spade. The biomass samples were rinsed with fresh
water in the laboratory to determine the above-ground parts (leaf
blades and sheaths). The edge of a glass slide was used to gently
scrape epiphytes off leaves. Seagrass samples were then dried at
60 �C until a constant weight was obtained.

The leaf growth rate was estimated in three random plots
(10 � 10 cm) along each transect using a leaf needle-punching
method (Kirkman and Reid, 1979). A small hole was punched
through each leaf at the base of a shoot to provide a reference level.
This method is considered the most suitable for large-scale
monitoring studies of seagrass primary production in tropical
environments (Erftemeijer and Herman, 1994). Seven to 10 days
after the initial marking, the shoot was cut at the base and
the new growth increments of the leaves were cut off and dried
at 60 �C until a constant weight was obtained. The leaf growth rate
was expressed as a specific growth rate (g g�1 day�1) (Hillman
et al., 1989).

Data on 9 potential environmental variables affecting the
growth of Thalassia hemprichii were collected. Five variables among
them, including water temperature (Temp), salinity (Sal), sediment
depth (SD), dissolved inorganic nitrogen (DIN; NH4

þ þ NO3
� þ NO2

�),
and turbidity (K) in the water column, were measured or sampled
at each site on each sampling occasion. Five replications for each
variable were measured. The temperature and salinity of the water
overlying the seagrass beds were measured in situ using a portable
meter (WTW Cond 330i/SET, WTW, Weilheim, Germany).
Turbidity, expressed as the water-column extinction coefficient for
photosynthetically active radiation (PAR), was determined with an
LI-COR LI-1400 Quantum Meter (LI-COR Biosciences, Lincoln, NE,
USA) interfaced with an LI-192SA underwater quantum sensor.
Sediment depth was measured with a ruler. Water samples,
collected for nutrient analysis, were filtered in the field through
0.45-mm cellulose nitrate membrane filters (Whatman Interna-
tional Ltd, Maidstone, UK), and transported back to the laboratory
on ice. At the laboratory, these samples were analyzed for ammo-
nium (NH4

þ, (Fiore and O’Brien, 1962), nitrate (NO3
�), and nitrite

(Bendschneider and Robinson, 1952). UV-B radiation (UV-B) and
atmosphere sulfur dioxide (SO2) were obtained from the Hengchun
air quality monitoring station (EPA 2001–2009). Rainfall (Rain) and
tidal range (TR) were obtained from the Hengchun weather station
(Taiwan Central Weather Bureau 2001–2009). The daily tidal range
was defined as the range between the daily maximum and
minimum tidal depths. The average of daily tidal range within three
months was defined as TR.

2.3. Dynamic factor analysis (DFA)

DFA, a multivariate time series analysis method, attempts to
identify underlying latent trends, the influence of explanatory
variables, and interactions between multivariate time series. In
a DFM (dynamic factor model), time series are expressed in terms
of a linear combination of common trends, cycles, seasonal effects,
explanatory variables, and noise. Each of these components is
assumed to be stochastic. The structural time series model of the
form, in words, is as follows (Zuur and Pierce, 2004):
N time series ¼ linear combination of M common trends
þ level parametersþ explanatory variables

þ noise: ð1Þ

The mathematical formulation for the DFA model is given by:

SnðtÞ ¼
XM

m¼1

gm;namðtÞ þ mn þ
XK

k¼1

bk;nxkðtÞ þ 3nðtÞ (2)

and

amðtÞ ¼ amðt � 1Þ þ hmðtÞ; (3)

where SnðtÞ is the value of the nth response variable at time t, which
in this case represents the leaf growth rate or above-ground biomass
at the nth monitoring sites at time t.

PM
m¼1 gm;namðtÞ is a linear

combination of common trends, in which amðtÞ is the mth unknown
common trend at time t and gm;n is the factor loading or weighting
coefficients for each amðtÞ trend. The terms 3nðtÞ and hmðtÞ are noise
components which are assumed to be independent and homoge-
nous for each response time series, and to be normally distributed
with a mean of zero and an error covariance matrix. Thus, the mth
trend at time t is equal to the mth trend at time t� 1 plus a contri-
bution of the noise component, hmðtÞ. As in a linear regression, non-
normality itself is not a concern (which can be dealt with using data
transformations). The term, mn, is the nth constant level parameter
(intercept term) which increases or decreases the linear combination
of common trends.

PK
k¼1 bk;nxkðtÞ represents a linear combination

of explanatory variables, in which bk;n represents the regression
coefficients for the kth explanatory variables,xkðtÞ. When the time
series of the explanatory variable are normalized, the magnitude of
bk;n can be used with a t-test to assess whether or not the explana-
tory variables are significantly related to the response variables.

Canonical correlation coefficients ðrm;nÞ were used to assess the
degree to which each of the response variables ðSnðtÞÞwas related to
each of the common trends ðamðtÞÞ. These coefficients quantify the
cross-correlation between a response variable and a common trend.
The closer the coefficient is to unity (in absolute value), the stronger
the correlation between the corresponding response variable and
the common trend. Although a higher number of common trends
result in a better model fit, additional unexplained information is
introduced to the DFM, which cannot easily be interpreted. There-
fore, the DFA should be conducted with a model that yields
a reasonable fit with the smallest number of common trends (Zuur
et al., 2003). The terms ‘strong’, ‘moderate’, ‘weak’, and ‘minor’ as
applied to canonical correlation coefficients respectively refer to
absolute values of >0.75, 0.75–0.5, 0.5–0.3, and <0.3. Results pre-
sented in this paper were implemented using the Brodgar statistical
package (Highland Statistics, Newburgh, UK). Further details of the
DFA can be found in Zuur et al. (2003) and Ritter et al. (2007).
2.4. Evaluation of the DFM performance

Akaike’s information criterion (Akaike, 1974) and the Nash–
Sutcliffe coefficient of efficiency (Ceff) (Nash and Sutcliffe, 1970)
were adopted to select the best performance of the DFM. AIC, an
estimate of the mean log-likelihood, provides a versatile procedure
for judging the selection of explanatory variables that optimally fit
the model (maximum likelihood) and provide model simplicity.
The term, Ceff, a relative assessment of the model performance, is
widely applied to evaluate the performance of hydrological and
water quality models (Harmel and Smith, 2007; McCuen et al.,
2006). The more the parameters (number of trends or explanatory
variables) which are included in the DFM, the better the fit is.
However, AIC penalizes the addition of parameters; therefore, the
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optimal model is one that well fits the time series data while having
a minimum number of parameters (ensuring both simplicity and
parsimony). The DFM with the smallest AIC was selected as the
optimal model if the Ceff was close enough to unity.

2.5. Analytical procedure

Two incremental steps were conducted to extract important
explanatory variables and latent common trends. First, relevant
explanatory variables were identified by reviewing related refer-
ences. The seasonal patterns of response and explanatory variables
were removed using the LOESS smoothing method (Cleveland,
1993). The variance inflation factor analysis (Zuur et al., 2007) was
used to remove explanatory variables that showed multi-
collinearity after de-seasonalizing and normalizing. These variables
were then standardized before conducting the DFA. Second,
goodness-of-fit indicators (AIC and Ceff) were used to determine the
optimal DFMs which contained various combinations of common
trends and explanatory variables. After the optimal DFM was
determined, the Ceff was also employed to evaluate the goodness-
of-fit of each response variable.

2.6. DFA variables

The leaf growth rate (g g�1 day�1) and above-ground biomass (g
[100 cm]�2) of Thalassia hemprichii at the five monitoring sites were
selected as response variables. These two variables were collected
seasonally during the 8-year period with a total maximum of 32
sampling data points. Above-ground biomass is an abundance
parameter, which describes the standing crop at a given time of
a seagrass consists of leaf blades and sheaths. The present obser-
vation of above-ground biomass may be influenced by previous and
present explanatory variables. Thus, the time lag between explan-
atory variables and response variables was taken into accounted for
above-ground biomass. In addition, since the T. hemprichii may not
evenly grow in the seagrass bed, which will result in higher vari-
ations in above-ground biomass. Leaf growth rate is a growth
parameter, which measures the new growth increment over
around 7 days. Leaf growth rate is useful for obtaining insight into
the causes and mechanisms of change in seagrass abundance. The
present observation of leaf growth rate should be highly affected by
the present observations of explanatory variables.

In order to investigate potential environmental variables affecting
temporal variations in the leaf growth rate and above-ground
biomass, the atmospheric variable (Ultraviolet-B radiation), hydro-
logic and ocean properties (rainfall, sediment depth, water temper-
ature, salinity, turbidity, and tidal range), and anthropogenic activity
(sulfur dioxide and dissolved inorganic nitrogen) were included in
the DFA as explanatory variables. Details regarding their effects on
the growth and biomass of seagrasses are described as follows.

2.6.1. Rainfall (Rain)
Typhoons and storms bring rainfall which can disturb coastal

environments. The rainfall directly impacts coastal circulation,
vertical stratification, erosion by wave action, sediment deposition,
and water turbidity from suspended sediments (Clarke and Kirk-
man, 1989; Dyer, 1995). Severe storms have destroyed seagrass-bed
communities in many parts of the world (Short and Wyllie-Eche-
verria, 1996).

2.6.2. Sediment depth (SD)
Seagrasses require sediment of sufficient depth to allow roots to

anchor the plants. Organic materials can accumulate in the pores of
seagrass sediments (Gacia et al., 2002), and nutrients can be fixed
within the root and rhizome systems of seagrass beds (Capone and
Taylor, 1980). Thus, pore waters in sediment are considered a main
source of nutrients for seagrasses (Short and Short, 1984; Zim-
merman et al., 1987), and consequently sediment depth plays an
important role in seagrass beds.

2.6.3. Water temperature (Temp)
Fluctuations of water temperature can directly alter seagrass

metabolism, depending on individual species’ thermal tolerances
and optimum temperatures for photosynthesis, respiration
(Terrados and Ros, 1995), seed germination (Phillips et al., 1983),
flowering (Durako and Moffler, 1987), and growth (Short
and Neckles, 1999). Thus, seasonal water temperatures influence
the geographic abundance and distribution of seagrasses
(Walker, 1991).

2.6.4. Salinity (Sal)
The growth and abundance of seagrasses vary along spatial and

temporal salinity gradients (Quammen and Onuf, 1993). Based on
the salinity tolerance of seagrasses, salinity fluctuations may
influence seagrass biochemical and physiological processes, which
can in turn influence seagrass germination (Conacher et al., 1994;
Moore et al., 1993), seedling growth (Loques et al., 1990), and
reproduction (McMillan and Moseley, 1967).

2.6.5. Turbidity (K)
Depending on the plant characteristics and local environmental

conditions, light reduction from algal overgrowth, phytoplankton,
and sediment resuspension may limit seagrass photosynthesis
(Madsen et al., 2001), alter seagrass populations (Koch and Beer,
1996) and growth (Short et al., 1995), and result in negative impacts
on the habitat (Fourqurean and Zieman, 1991).

2.6.6. Tidal range (TR)
Tidal range effects on the available light, current velocities, and

water depths can regulate the distribution and abundance of sea-
grasses. An increased tidal range will reduce available light at the
bottom, and decrease the duration of the light period at seagrass
beds (Koch and Beer, 1996; Short and Neckles, 1999) while sea-
grasses of high-elevation beds experiencing decreased tidal ranges
suffer less exposure stress.

2.6.7. Dissolved inorganic nitrogen (DIN)
Excessive nitrogen that is discharged into the sea degrade

coastal environments due to the eutrophication of coastal waters
(Cloern, 2001). Eutrophication prevents sunlight from reaching
seagrasses, which was identified as a major adverse factor affecting
seagrass beds and healthy coastal ecosystems worldwide (Hem-
minga and Duarte, 2000; Short and Wyllie-Echeverria, 1996).

2.6.8. Ultraviolet-B radiation (UV-B)
Solar UV-B radiation penetrating to ecologically significant

depths in aquatic systems can cause mutagenic, DNA, and physio-
logical damage (Teramura and Sullivan, 1994) to aquatic life. Thus,
exposure to solar UV-B radiation can alter seagrass productivity,
growth rates, and photosynthesis (Trocine et al., 1982), and increase
the mutation rates of phytoplankton, marine algae, and larval
stages of fish (Larkum and Wood, 1993).

2.6.9. Sulfur dioxide (SO2)
Sulfur dioxide, mainly emitted from power generation, cars, and

factories, is a significant pollutant that can acidify water bodies and
adversely impact environments. Acidification and chemical
changes in seawater can harm the abilities of some fish and other
aquatic species to survive, grow, and reproduce. This alteration of
the environment consequently results in a loss of biological
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diversity and degradation of essential coastal ecosystem habitats
such as seagrass beds.

3. Results

3.1. Descriptive statistical analysis

The 8 years of observed temporal variations in the two
response variables and nine environmental variables are illus-
trated in Figs. 2 and 3, respectively. The number of missing data,
mean, and coefficient of variation (CV) of each explanatory vari-
able and each response variable are given in Table 1. The yearly
low values for the leaf growth rate and above-ground biomass are
obviously found in the fall and/or winter (from October to
January) seasons at the both high and low elevation sites of
Nanwan and Dakwan (Fig. 2). The correlation coefficients between
the leaf growth rate and above-ground biomass are ranging from
�0.61 to �0.31 among these five sites showing negative moderate
correlations. High variations (with CVs of >50%) were found for
most response variables. However, very high variations (with CVs
of >90%) were found for the explanatory variables, Rain and DIN,
which may have resulted from heavy rainfall accompanying
typhoons and nutrient discharges from human activities in
different seasons. The average and standard deviation were
calculated from five monitoring sites at each sampling time for
Temp, K, Sal, SD, and DIN as shown in Fig. 3. The correlation
coefficients between the average of five response time series and
each response time series at five sites were in the range of 0.95–
0.98 for Temp, 0.75–0.97 for K, 0.81–0.89 for Sal, 0.72–0.80 for SD,
and 0.67–0.90 for DIN, and reasonable agreement was shown for
temporal patterns. Four additional variables were obtained from
the Henchun weather and air quality monitoring stations; thus,
each explanatory variable only has one time series to represent
the whole study area. The amount of rainfall follows a cyclic
pattern with a peak in summer and fall (May–October) and
(
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Fig. 2. Observations of the leaf growth rate and above-ground biomass during the study pe
x-axis represents one season time interval in order of January (winter), April (spring), July
a trough in winter and spring (December–April). UV-B and Temp,
both relating to solar irradiation, seemed to follow the same
patterns with a maximum occurrence in the summer of each year.
These three variables apparently exhibit seasonal patterns. In
some seasons, a higher Rain accompanies a lower TR, which was
obvious for October 2002, October 2003, July 2004, and October
2007 (Fig. 3). The mean salinity was 32.3 (with a standard devi-
ation of 3.27). SO2 rapidly increased in July 2004 from a mean of
0.36 mg/L to a mean of 1.78 mg/L. The air pollution carried in the
atmosphere from the industrial district in the Kaohsiung area,
north of the Hengchun Peninsula, may have affected the air
quality and increased SO2 concentrations in the study area. DIN
showed high standard deviations in October 2001, April 2003, and
July 2006.

3.2. Variance inflation factor (VIF) analysis

The set of potential explanatory variables was reduced by using
a VIF analysis (Zuur et al., 2007), which allows for the identification
of environmental variables that are collinear. Only variables that
contain unique information were retained for further analysis. In
the VIF analysis, a linear regression is used to predict each
explanatory variable as a function of the others (Montgomery and
Peck, 1992). If the VIF value is >5, then the variable is collinear
(Ritter et al., 2009). The VIF of 11.8 for SO2 verified the existence of
multicollinearity; thus SO2 was omitted from subsequent analyses.
In addition, cross-correlations of the remaining variables were
<0.35.

3.3. Deseasonalization and normalization

Seasonality was observed in the UV-B, Rain, and Temp time
series; thus the original time series data of these three variables
were deseasonalized using the LOESS smoothing method (Cleve-
land, 1993) to reduce significant outliers. For variables that do not
Date
t-2004 Oct-2005 Oct-2008Oct-2007Oct-2006

riod. Some observations were missed between 2004 and 2005. Each minor tick on the
(summer), and October (fall).
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Fig. 3. Observations of environmental variables during the study period: (a) rainfall; (b) water temperature; (c) turbidity; (d) salinity; (e) sediment depth; (f) dissolved inorganic
nitrogen; (g) tidal range; (h) UV-B radiation; (i) sulfur dioxide. Sub-figures (b)–(f) show average values and standard deviation calculated from five monitoring sites for each sample
time. Other variables were obtained from the Taiwan EPA (2001–2008) and Central Weather Bureau (2001–2008). Each minor tick on the x-axis represents one season time interval.
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exhibit a clear periodic pattern, normalization was performed by
subtracting the respective mean and dividing by the standard
deviation to facilitate interpretation of the DFA results.

3.4. Performance of the best DFM

DFMs were analyzed by selecting different combinations of
common trend numbers, explanatory variables, and a diagonal or
a non-diagonal error covariance matrix, which are given in Table 2.
The best DFM (i.e., with the lowest AIC) contained one common
trend and various explanatory variables as shown by the bold
characters in Table 2 which acceptably described variations in the
response variables. The best DFM for both leaf growth rate and
above-ground biomass response variables was applied using
a diagonal error covariance matrix. This provided lower AIC values
than the corresponding models with a non-diagonal error covari-
ance matrix. Ceff values of the best DFMs for leaf growth rate and
above-ground biomass were 0.710 and 0.610, respectively, which
are considered acceptable when Ceff is greater than 0.50.

The estimated regression parameters, factor loadings, and Ceff of
the best DFMs for predicting the leaf growth rate and above-ground
biomass are respectively shown in Figs. 4–6. The common trends of
response variables and related canonical correlation coefficients at
each site are shown in Fig. 7. This information can be used to
determine the major factors influencing the leaf growth rate and
above-ground biomass based on Eq. (2). The magnitude of factor
loading (g) indicates how the common tend is related to the time
series of the response variable within the best DFM. The higher g



Table 1
Number of missing data, mean, and coefficient of variation (CV) of the response and
explanatory variables.

Explanatory variables Response variables

Variablea

(units)
Mean CV No. of

missing
data

Variableb Mean CV No. of
missing
data

Rain (mm) 480 90.5 0 N_H (GR) 0.0113 58.4 8
Temp (�C) 28.7 12.7 5 D_H(GR) 0.0119 60.6 8
K (m�1) 1.15 38.6 5 N_L(GR) 0.0129 69.3 8
Sal (psu) 32.3 10.1 5 D_L (GR) 0.0142 51.2 8
SD (cm) 9.61 21.1 4 Wan(GR) 0.0245 57.7 6
UV-B (�)c 7.53 21.7 0 N_H(AB) 0.9282 50.4 8
DIN (mM) 14.6 90.2 11 D_H(AB) 1.0592 28.3 8
TR (cm) 99.8 7.59 0 N_L(AB) 0.6824 48.8 8
SO2 (ppb) 1.12 67.6 0 D_L(AB) 1.1244 78.4 8

Wan(AB) 1.1289 50.9 6

a K, turbidity; TR, tidal range; Sal, salinity; SD, sediment depth; DIN, dissolved
inorganic nitrogen; Rain, rainfall; Temp, seawater temperature; UV-B, UV-B
radiation.

b GR, leaf growth rate (g g�1 day�1); AB, above-ground biomass (g 100 cm�2); N,
Nanwan; D, Dakwan; H, high elevation; L, low elevation; Wan, Wanliton.

c The units of UV-B are indexed in the range of 1–10.

Fig. 4. Regression coefficients (in absolute value) of the explanatory variables at five
sites for the dynamic factor models (DFM): (a) leaf growth rate; (b) above-ground
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value indicates the weight of the common trend within the DFM is
important. Fig. 5 shows that the common trend is highly important
for leaf growth rates at Nanwan_High and Nanwan_Low sites. The
prediction results obtained from the best DFM for the leaf growth
rate and above-ground biomass are respectively illustrated in Figs.
8 and 9. The model performance was acceptable (Ceff > 0.50) for the
eight response time series, which represent 80% (8 of 10) of the
monitoring sites. The higher fluctuations of observed leaf growth
rate after year 2006 at Dankan_High and Wanliton sites (Fig. 8)
Table 2
Selection of dynamic factor models (DFMs) based on performance coefficients (AIC,
Ceff). Bold characters indicate the best DFM for each response variable.

Response variable Explanatory variablesa Common
trend

AICb Ceff
c

Leaf growth rate – 1 334 0.569
– 2 341 0.659
K, TR, Sal 1 323 0.710
K, TR, SD 1 326 0.695
K, TR, Sal 1 346d 0.635
K, TR, DIN 1 329 0.685
Temp, SD, DIN 1 331 0.671
K, Temp, DIN, TR 1 332 0.678

Above-ground
biomass

– 1 342 0.467
– 2 354 0.571
K, TR, Sal, SD, UV-B 1 318 0.610
K, TR, Sal, SD, UV-B 1 339d 0.584
Rain, K, SD, UV-B, TR 1 319 0.597
Rain, Sal, SD, UV-B, TR 1 320 0.613
K, Sal, DIN 1 343 0.583
K, TR, SD 1 343e,d 0.549
K, TR, Sal, SD, UV-B 1 348e,d 0.524
K, TR, Sal, SD, UV-B 1 340f,d 0.536

a K, turbidity; TR, tidal range; Sal, salinity; SD, sediment depth; DIN, dissolved
inorganic nitrogen; Rain, rainfall; Temp, seawater temperature; UV-B, UV-B
radiation.

b AIC, Akaike’s information criterion, the lowest number represents the best
model.

c Coefficients of efficiency (Ceff) were computed with the combined set of pre-
dicted vs. observed values for the five response variables time series.

d Using a non-diagonal error matrix.
e The original first monitoring values are the same as in the first term of the new

time series. However, after first term, the average of previous season, y(t � 1), and
current season, y(t), is the new value, x(t),of the new time series. Expressed as
[y(t� 1)þ y(t)]/2¼ x(t), t¼ 2, 3,. J; where x(t) as the same in Eq. (2) and J is the total
monitoring seasons which is 32 in this study.

f One time lag step of original moniotring values, y(t� 1), of explanatory variables
as the new time series, x(t). Expressed as yðt � 1Þ ¼ xðtÞ.

biomass. The asterisk shown in the bar represents the explanatory variable was
statistically significant (t > 2). N: Nanwan; D: Dakwan; Wan: Wanliton; H: high
elevation; L: low elevation.
indicate that the DFMs cannot satisfactorily predict the peak values
of leaf growth rate during this period.

4. Discussion

4.1. Leaf growth rate

Lin and Shao (1998) found that salinity showed little correlation
with the annual growth dynamics of Thalassia hemprichii. However,
Fig. 5. Factor loadings for the common trends of leaf growth rate (GR) and above-
ground biomass (AB). N: Nanwan; D: Dakwan; H: high elevation; L: low elevation;
Wan: Wanliton.



Fig. 6. The coefficients of efficiency (Ceff) calculated from the measured response time series and the comment trend (CT g), comment trend plus the combination of explanatory
variables (CT g þ EVs), and fitted response time series (Sn of the DFM in Eq. (2)). The response time series is: (a) leaf growth rate, and (b) above-ground biomass. N: Nanwan; D:
Dakwan; Wan: Wanliton; H: high elevation; L: low elevation.
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results of the best DFM (AIC ¼ 323; Ceff ¼ 0.71) given in Table 2
show that K, TR, and Sal are the main factors influencing the leaf
growth rate of T. hemprichii. The regression coefficients, bSal;n, at
four sites (Fig. 4a) were higher than bK;n and bTR;n, indicating that
the contribution of salinity to the long-term dynamics of leaf
growth rate was larger than the influences of tidal range and
turbidity. Increased salinity stress can reduce chlorophyll concen-
trations and uptake of nutrients (Baek et al., 2005; Touchette, 2007)
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Fluctuations in the tides may cause water movement, which can
resuspend sediments, increase water turbidity, and reduce the
amount of light reaching seagrass beds throughout their depth
range (Koch and Beer, 1996; Madsen et al., 2001). Under increased
tidal ranges, seagrasses at lower elevations receive less light at high
tide, and will withdraw the population of the deep-elevation bed
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resulting in a net loss of total seagrass area (Koch and Beer, 1996).
Fig. 4a shows that the regression coefficients, bK,n and bTR,n, in low
elevation beds (Nanwan_Low, Dakwan_Low, and Wanliton sites)
were greater than those in the high-elevation beds (Nanwan_High,
and Dakwan_High sites), indicating that both K and TR have larger
influences on the leaf growth rate of seagrass in low elevation beds
than in high-elevation beds. Thus, both turbidity and tidal range
can be treated as coherent factors affecting the leaf growth rate of
Thalassia hemprichii at low elevations at Nanwan and Dakwan, and
the increased TR values caused declines in the leaf growth rate
which were observed in January and July 2003, October 2006, July
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2007, and July 2008. The contributions of explanatory variables to
the leaf growth rate are important at the Nanwan_Low, Dakwan_-
Low and Wanliton sites as shown in Fig. 6a. Especially at the Dak-
wan_Low sites, the Ceff was increased from 0.12 to 0.45 with
considering effects of three explanatory variables on leaf growth
rate instead of only common trend. The Ceff computed from
measured and fitted leaf growth rate time series (as Sn in Eq. (2) or
in Fig. 6a) for Nanwan_High, Dakwan_High, Nanwan_Low, Dak-
wan_Low, and Wanliton sites are 0.95, 0.51, 0.90, 0.56, and 0.53,
respectively.

4.2. Above-ground biomass

Considering time lag effect in the DFM, the Ceff and AIC of DFMs
were little improved as shown in the last three columns of Table 2.
The optimal DFM was obtained with a common and a combination
of explanatory variables. In addition to K, TR, and Sal, UV-B and SD
also affected temporal variations in above-ground biomass. The
relative influences of K, TR, and Sal on temporal variations of the
above-ground biomass at each site differ from those on leaf growth
rate in DFMs because the canonical correlation coefficients of the
common trend, r1;n, differed and two additional variables were
added to explain the variations. Solar UV-B radiation that reaches
seawater can reduce seagrass productivity and the leaf growth rate;
thus, UV-B radiation had a significant effect on the above-ground
biomass, especially at the Nanwan_High, Dakwan_High, Dak-
wan_Low sites, which can be seen during April 2002, October 2003,
January 2007, and January 2008. The UV-B radiation effect is
expected to be greatest in shallow intertidal environments such as
the seagrass beds in this study area. UV-B radiation was reported to
affect phytoplankton, zooplankton, and fish in the food web of
seagrass ecosystems (Häder et al., 2007).

Sediment depth shows a significant effect on the above-ground
biomass at the Dakwan site. An increasing sediment depth
enhances roots to anchor the plants. In addition, nutrient concen-
trations of pore water in sediments are much higher than those of
the overlying water column (Kaldy, 2006; Kaldy and Dunton, 1999).
Thus, an increasing sediment depth increases nutrient enrichment
of the sediments (Koch, 2001) and consequently enhances germi-
nation rates (Moore et al., 1993; van Katwijk and Wijgergangs,
2004). The ammonium pore water concentration increased with
increasing sediment depth in the upper of 12 cm (Stapel et al.,
1997). The contributions of explanatory variables are more impor-
tant for above-ground biomass than for leaf growth rate at these
five sites. The higher regression coefficient of an explanatory vari-
able indicates a higher contribution on a response variable. Thus,
the higher contributions of explanatory variables on above-ground
biomass can be found at Nanwan_High, Dakwan_High, and Dak-
wan_Low sites (Fig. 6b), where the increased Ceff values were
greater 0.20 magnitude when adding effects of explanatory vari-
ables in the DFM (as in Eq. (2)). The Ceff computed from measured
and fitted above-ground biomass time series for Nanwan_High,
Dakwan_High, Nanwan_Low, Dakwan_Low, and Wanliton sites are
0.73, 0.44, 0.49, 0.56, and 0.34, respectively. For the above-ground
biomass prediction, the local minimum alternating with the local
maximum between year 2006 and year 2007 at Nanwan_Low and
Dakwan_High sites result in poor above-ground biomass
predictions.

4.3. Common trends

According to the DFA, the response variables are not only
explained by the explanatory variables, but also by the latent
common trend. The corresponding canonical correlation coeffi-
cients, rm;n, given in Fig. 7 provide information about the extent to
which each response time series was influenced by the common
trend. This benefit provides sufficient information for modeling
temporal variations in the growth rate and above-ground biomass
in seagrass beds. The common trend shown in Fig. 7 illustrates
strong correlations ðjrm;nj > 0:75Þ with the time series of leaf
growth rate at the N_H and N_L sites, while their Ceff values were
>0.89. Thus, we may infer that the explanatory variables included
in the DFM only account for a small portion of the variability in the
observed temporal growth rate dynamics. However, at the D_L site,
a weak correlation ð0:30 < jrm;nj < 0:50Þwith leaf growth rate and
a minor correlation ðjrm;nj < 0:30Þ with above-ground biomass
were found. Both of their Ceff values were about 0.56. Including
explanatory variables in DFMs (CT g þ EVs), the Ceff values were
increased obviously from 0.12 to 0.45 for leaf growth rate and from
0.02 to 0.21 for above-ground biomass (Fig. 6). Kenting coral reefs
were once well known for their abundant and diverse communi-
ties. In the past two decades, however, blasting, poisoning, free-
diving, and three-layer gill nets were employed to catch fish. The
rapid expansion of tourism in Kenting National Park of the Heng-
chun Peninsula has also led to increases in untreated domestic
wastewater discharges into coastal waters (Lin et al., 2007; Meng
et al., 2008). High proportions (10–55%) of the reef area were
occupied by macroalgae (Dai, 1993). The trophic model potentially
suggests an overfished status (Liu et al., 2009). Additionally, aquatic
activities and near-shore fishing cause physical modification of
seagrass habitats (Walker et al., 1989; Duarte, 2002). These human
activities may be responsible for the unexplained common trend in
the DFMs.

5. Conclusions

The extents to which the leaf growth rate and above-ground
biomass of Thalassia hemprichii are affected by the potential
atmosphere variables, hydrologic and ocean properties, and
anthropogenic activities are difficult to directly evaluate from
comparative statistical techniques. DFA, a dimension-reduction
technique, allows for the identification of underlying common
trends and interactions between selected potential explanatory
variables. The results of the dynamic factor models (DFMs) show
that the leaf growth rate is influenced by the salinity (Sal), tidal
range (TR), and turbidity (K) explanatory variables, and one
common trend (representing unexplained variability in the
observed time series). In general, salinity was the primary variable
that explained long-term dynamics in the leaf growth rate of
T. hemprichii at five sites compared to TR and K. Additionally, both
K and TR had larger influences on the leaf growth rate in the low
elevation beds than in the high-elevation beds. In addition to K, TR,
and Sal, UV-B and sediment depth (SD) also accounted for temporal
variations in the above-ground biomass. Thus, we inferred that K,
TR, Sal, UV-B, and SD are the predominant environmental variables
describing temporal growth variations of intertidal T. hemprichii
seagrass beds in southern Taiwan. Tourism has spurred develop-
ment in Kenting National Park of the Hengchun Peninsula; there-
fore, in addition to environmental variables, human impacts
(including boating, fishing, wastewater, and construction) are
becoming major sources of change to seagrass beds, which may be
responsible for a part of the unexplained common trend in the
DFMs.

The DFM performances for predicting leaf growth rate and
above-ground biomass of Thalassia hemprichii were acceptable
(Ceff > 0.50) for eight response variables (representing 80% of sites).
The optimal DFMs satisfactorily described fluctuations in the leaf
growth rate and above-ground biomass, especially in this seagrass
study with high variations of the time series dataset. In conclusion,
DFA may be considered a useful technique for these types of
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studies, especially when dealing with complex long-term envi-
ronmental conditions. Due to successfully applying DFA to seagrass
beds, important environmental factors determined from DFMs and
human activities along the coast should be taken into account
when managing coastal environments with the aim of conserving
intertidal seagrass beds.
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