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Environmental impacts from drainage water phosphorus (P) loads from Everglades Agricultural Area
(EAA) farms in South Florida led to the adoption of best management practices (BMPs). The BMPs have
been very successful at reducing EAA farm drainage water P loads. However, analytical investigation into
how environmental and management factors affect farm P loading may allow additional improvements
in BMP performance. Sixteen variables that included cropping systems, water management, and farm
specific constants were hypothesized to affect farm P loads. Data collected from ten farms between
1992 and 2002 were analyzed using Spearman correlation, Principal Component Analysis, and stepwise
multivariate regression. Monthly farm P load on a unit area basis (UAL) showed stronger correlation with
drainage unit area volume (UAV) than with flow weighted total P concentration (FWTP). The UAL was
negatively correlated with irrigation demand and positively correlated with irrigation P concentration,
hosphorus load
rincipal Component Analysis

rainfall, preceding month’s rain, drainage pumping to rainfall ratio, and percent fallow plus flooded field
acreage (PFFA). A positive correlation between soil depth and FWTP was significant. Stepwise regression
analysis identified canal water level management, percent sugarcane acreage, PFFA, and irrigation water
P concentration as explanatory variables that impact farm P loads; PCA revealed similar results. The study
suggests that lower pumping to rainfall ratio and increased sugarcane acreage lead to lower farm P loads;
that irrigation water P concentration impacts farm P loads; and that shallower soils export less P than

deeper soils.

. Introduction

The Everglades Agricultural Area (EAA) in south Florida com-
rises 220,000 ha of cultivated Histosols with about 70% of the land
armed to sugarcane and lesser acreages to vegetables, sod, and rice
Rice et al., 2002b). The EAA is characterized by flat topography,
hallow soils, seasonally elevated water tables, and an imperme-
ble marl/limestone bedrock layer underlain by porous shellrock.
uring the dry season (November through May) and reduced rain-

all periods, irrigation water is sourced from Lake Okeechobee to
he north. During the wet season (June through October) and dur-
ng wetter than normal dry seasons, excess precipitation must
e pumped off farms to allow crop production. Farm drainage is
chieved by pumping water from fields through a system of farm
eld ditches and farm canals via pump station(s) into conveyance

anals that route the water south to Stormwater Treatment Areas
STAs, constructed wetlands) for phosphorus (P) removal via biofil-
ration and sequestration via sedimentation. Reduced P loads from
he EAA to the STAs will enhance their outflow concentrations

∗ Corresponding author. Tel.: +1 561 993 1500; fax: +1 561 993 1582.
E-mail address: talang@ufl.edu (T.A. Lang).
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and increase their longevity (Pietro et al., 2009). Water from the
STAs is sent to adjacent Water Conservation Areas (WCAs) where
it replenishes groundwater and supplies water to the Everglades
National Park to the south. The South Florida Water Management
District (SFWMD) manages water quality, flows, and levels in the
conveyance canals, STAs, and WCAs.

The EAA is dominated by Histosols (sub order: saprist) which
are characterized by high soil organic matter content (>80%) that
is highly decomposed (Snyder, 1994; Snyder and Davidson, 1994).
The organic soils of the EAA differ mainly in the depth of the O hori-
zon to the limestone bedrock (Rice et al., 2002a). Soils located close
to the east and south shores of Lake Okeechobee (S5A and S6 sub-
basins) are deeper, with depths greater than 1 m, while soils further
south and east of the lake (S7 and S8 sub-basins) are shallower, i.e.,
less than 1 m (McCollum et al., 1978; Cox et al., 1988; Snyder, 2004).
The EAA is located in a sub-tropical environment and has an aver-
age rainfall of 1.27 m year−1. Distribution of the rainfall is, however,
uneven with 66% occurring during the wet season, which lasts from

June through October (Ali et al., 2000).

Phosphorus fertilization and soil organic matter oxidation (sub-
sidence) are the two main sources of P exported from the EAA
(Sanchez and Porter, 1994). Soil subsidence rates in the EAA have
decreased from 3.00 cm year−1 in the 1940s and 1950s (Stephens

dx.doi.org/10.1016/j.agee.2010.04.015
http://www.sciencedirect.com/science/journal/01678809
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mailto:talang@ufl.edu
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nd Johnson, 1951) to 2.36 cm year−1 in the 1970s (Shih et al.,
978) to less than 1.45 cm year−1 in the 1990s (Shih et al., 1998).
he decline in subsidence rate is thought to be due to higher
ater table management and decreases in the amount of readily

xidized organic matter (Shih et al., 1998). Non-point P loading
e.g. P from drainage of agricultural lands) is important because
f its ecological impacts on freshwater and marine biota (House
t al., 1995; Rabalais et al., 1996; Turner and Rabalais, 2003).
hosphorus is of particular concern because it has been impli-
ated as the limiting nutrient in the eutrophication of lakes and
etlands in south Florida (Davis and Marshall, 1975; Federico

t al., 1981). Phosphorus concentrations of more than 0.1 mg L−1

re high for freshwater bodies and detrimental to aquatic ecosys-
ems (Correll, 1998; Downing et al., 2001). Phosphorus may be
ransported through the canal systems into Everglades wetlands,
ausing deterioration of water quality and alterations to the nat-
ral ecosystem (Wright and Reddy, 2001; Childers et al., 2003).
rainage, irrigation, rainfall, cropping systems, and other man-
gement factors can increase the potential for P movement into
ownstream ecosystems (Sharpley et al., 1994). Concerns regard-

ng the impact of elevated P concentration drainage waters from
he EAA on the Everglades ecosystem resulted in a regulatory pro-
ram that requires annual EAA basin P loads to be reduced by at
east 25% relative to historic levels (Everglades Forever Act, 1994).

To reduce farm P loads, growers in the EAA are required to adopt

MPs which have assigned points by the SFWMD; each grower’s
et of BMPs must add up to at least 25 points (Whalen and Whalen,
996; Sievers et al., 2003; Daroub et al., 2004). Growers in EAA
dopt similar sets of BMPs which typically include banding of P
ertilizers, application of P fertilizers according to calibrated soil

ig. 1. Location of the ten farms (indicated by red stars), sub-basins (S5A, S6, S7, and S8), an
gricultural Area in south Florida. Water Conservation Areas (WCAs) and Stormwater Tre
d Environment 138 (2010) 170–180 171

tests, avoiding drainage pumping until a pre-determined amount
of rainfall has fallen, and implementing particulate matter control
measures to reduce sediment export.

Since basin-wide BMP program implementation in 1995, the
EAA basin has achieved an average P load reduction of 50% relative
to the baseline period from 1978 to 1988 (Van Horn et al., 2009). The
reported variability in sub basin and farm P loads despite 100% par-
ticipation and implementation of similar BMPs by growers in the
EAA since 1995 suggests that there are other factors that may be
affecting EAA farm P loads besides those targeted by current BMPs
(SFWMD, 2008). Numerous factors have been suggested to affect
drainage P loads of EAA farms (Izuno and Rice, 1999). Using Sea-
sonal Mann-Kendall analysis to determine long-term water quality
trends in EAA drainage waters, Daroub et al. (2009) reported a
decreasing trend in P loads from the outflows of the basin and two of
its sub basins between 1992 and 2006. Differences in P load trends
were noted within farms and sub-basins and were thought to be
due to impact of irrigation water source, cropping systems, and
flooding practices. It is not known, however, how these environ-
mental, crop management, and site specific variables impact the
individual farm P loads. Our goal was to use multivariate regres-
sion analysis to reveal the main factors affecting farm P loads using
data collected during a long-term water quality study of ten EAA
farms.

We hypothesized that EAA farm drainage water P load is affected

by many variables including farm geographical location, irrigation
water quality, farm size, soil depth, land use practices, and farm
water management. The specific objectives of the study were to (1)
evaluate relationships between farm P load and cropping systems,
water management, and farm specific variables; and (2) investigate

d irrigation inflow structures from Lake Okeechobee (S352, S2, S3) in the Everglades
atment Areas (STAs) are also indicated on the map.
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Table 1
Selected monthly parameters at the ten farms between August 1992 through December 2002.

Parameter Farm ID

00A 01A 02A 03A 04A 05A 06AB 07AB 08A 09A

Basin S5A S6 S7 S7 S6 S8 S5A S6 S6 S8
Crop Sugarcane Mixed Sugarcane Sugarcane Sugarcane Mixed Mixed Mixed Sugarcane Sugarcane
Percent cane (% of farm) 95.0 ± 0.8d 0.0 ± 0.0 96.8 ± 1.1 87.1 ± 0.6 90.7 ± 2.3 70.8 ± 1.9 34.9 ± 0.7 74.4 ± 1.1 78.9 ± 3.9 95.1 ± 0.7
Soil depth (m) 1.16 0.61 0.46 0.43 1.62 0.55 0.88 0.98 0.73 0.98
Farm size (ha) 518 518 129 1865 259 129 710 1012 106 1243
Inside Head, AMSLa (m) 2.47 ± 0.02 2.53 ± 0.02 3.23 ± 0.02 2.49 ± 0.02 2.54 ± 0.02 2.63 ± 0.02 1.80 ± 0.04 2.36 ± 0.02 2.63 ± 0.07 2.21 ± 0.02
Outside Head, AMSL (m) 3.08 ± 0.03 3.46 ± 0.06 3.43 ± 0.03 3.30 ± 0.03 3.19 ± 0.02 3.11 ± 0.01 2.97 ± 0.05 3.33 ± 0.03 2.56 ± 0.08 3.07 ± 0.01
Head difference (m) 0.61 ± 0.03 0.93 ± 0.07 0.20 ± 0.02 0.81 ± 0.03 0.64 ± 0.02 0.48 ± 0.02 1.16 ± 0.03 0.97 ± 0.03 -0.07 ± 0.04 0.86 ± 0.02
Rainfall (mm) 131 ± 10 98 ± 10 154 ± 10 114 ± 8 135 ± 10 118 ± 11 125 ± 8 116 ± 8 143 ± 11 109 ± 8
Drainage volume (×105 m3) 3.37 ± 0.37 4.25 ± 0.63 0.80 ± 0.11 6.01 ± 0.65 1.00 ± 0.12 1.76 ± 0.22 6.68 ± 0.57 6.76 ± 0.69 0.39 ± 0.04 6.20 ± 0.54
Pumping: Rainfall (mm:mm) 0.50 ± 0.05 1.13 ± 0.20 0.37 ± 0.04 0.30 ± 0.04 0.28 ± 0.03 1.20 ± 0.15 0.75 ± 0.05 0.61 ± 0.08 0.41 ± 0.09 0.54 ± 0.08
Irrigation P (mg L−1) 0.17 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 0.12 ± 0.01 0.12 ± 0.01 0.07 ± 0.00 0.16 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 0.08 ± 0.00
Irrigation P load (kg ha−1) 0.08 ± 0.02 0.10 ± 0.02 0.06 ± 0.02 0.06 ± 0.01 0.08 ± 0.02 0.05 ± 0.01 0.10 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.01
Irrigation Demand (mm) 36.3 ± 5.2 62.3 ± 6.9 24.9 ± 5.0 49.5 ± 5.0 40.0 ± 5.7 55.1 ± 6.6 46.2 ± 5.0 43.5 ± 5.0 34.9 ± 5.9 50.6 ± 5.0
Flow Weighted TP (mg L−1) 0.26 ± 0.02 0.75 ± 0.06 0.08 ± 0.01 0.14 ± 0.01 0.18 ± 0.01 0.09 ± 0.01 0.30 ± 0.02 0.27 ± 0.02 0.09 ± 0.01 0.09 ± 0.01
UAVb (m3 drainage ha−1) 650 ± 72 820 ± 121 617 ± 83 322 ± 35 385 ± 45 1357 ± 173 941 ± 80 668 ± 68 367 ± 38 499 ± 44
UALc (kg P ha−1) 0.18 ± 0.04 0.69 ± 0.13 0.06 ± 0.01 0.04 ± 0.00 0.07 ± 0.01 0.12 ± 0.02 0.31 ± 0.05 0.16 ± 0.02 0.03 ± 0.00 0.04 ± 0.00
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a Above mean sea level.
b Unit Area Volume.
c Unit Area Load.
d Mean of monthly data ± standard error.

ossible predictive equations that relate farm P load to environ-
ental, geophysical, and land use characteristics of farm basins.

he study is intended to provide researchers, water managers, reg-
lators, and growers with a more complete understanding of the
actors affecting EAA farm P loading and assist in attaining addi-
ional reductions in farm P loads.

. Materials and methods

.1. Study area

The EAA comprises a flat landscape of organic soils (Histosols)
hat is underlain by limestone bedrock and has been actively
rained since the early 1920s (Snyder, 2005; Rice et al., 2002b).
o sustain productivity, growers in the EAA drain their fields via
n extensive array of canals, ditches, and large volume, low lift,
umps into SFWMD conveyance canals, which transport the water
ownstream to STAs for P removal via biofiltration and sequestra-
ion. The EAA basin is divided hydrologically into four sub-basins,
5A, S6, S7, and S8 (Fig. 1). The four sub-basins correspond to out-
ow structures that line the south and east periphery of the EAA
asin. Each sub-basin is also associated with a main conveyance
anal that transects each sub-basin. The S-5A sub-basin contains
he West Palm Beach Canal, the S-6 sub-basin contains the Hills-
oro canal, the S-7 sub-basin contains the North New River Canal,
nd the S-8 sub-basin contains the Miami Canal. These sub-basins
ave been shown to vary greatly with regard to their respective P

oad exports (SFWMD, 2008).
The majority of data used in the study were collected from a long

erm BMP efficacy study that involved monitoring ten EAA farms’ P
elated parameters and farm specific variables for seven to ten years
Daroub et al., 2004). Each of the ten farms was given a unique farm
D: 00A, 01A, 02A, 03A, 04A, 05A, 06A/B, 07A/B, 08A, 09A respec-
ively (Fig. 1). Two farms (00A and 06A/B) are located in the S-5A
ub-basin; four farms (01A, 04A, 07A/B. and 08A) are located in the
-6 sub-basin, two farms (02A and 03A) are in the S-7 sub-basin;
nd two farms (05A and 09A) are in the S-8 sub-basin (Fig. 1). Six

arms (00A, 02A, 03A, 04A, 08A, 09A) were predominantly sugar-
ane farms; four farms (01A, 05A, 06A/B, 07A/B) cultivated multiple
rops included sugarcane, vegetables, and sod (Daroub et al., 2004).
he six sugarcane farms had more than 85% of the farm acreage
lanted to sugarcane in most years. One exception was farm basin
08A which switched from being predominantly sugarcane mono-
culture from 1992–1999 to 55% and 29% of the acreage planted
to vegetables in 2000 and 2001, respectively. The remaining four
farms had mixed-cropping systems: farm 01A was strictly veg-
etable monoculture; farm 05A was planted to sugarcane, sod, and
melons; farm 06A/B was planted to sugarcane, vegetables, rice, sod
and trees; and farm 07A/B grew sugarcane, vegetables, rice and sod
(Table 1).

The ten farms represent a range of EAA sugarcane-vegetable-
rice-sod cropping systems, farm sizes, drainage capacities, soil
depths, and hence adequately represent the population of EAA
farm basins. Farm basins in the EAA select and implement similar
BMPs—improved handling and spill prevention practices, modified
application methods, calibrated soil testing, rainfall detention, and
sediment controls (Table 2). This suite of BMPs were employed on
the ten farm monitored farms with only minor differences (Daroub
et al., 2004).

2.2. Data collection

Monitoring of drainage volumes, P concentrations, P loads, and
twelve other related parameters of the ten farm basins began in
July 1992 and lasted between 7 and 10 year. The datasets were
summarized into monthly time intervals for use in the statistical
analyses. Seven of the ten farms have data for the complete ten year
monitoring period which is continuous from August 1992 through
December 2002. Two of the remaining farms (01A and 05A) have
continuous data from August 1992 through December 1999. One
farm (08A) has continuous data from August 1992 through August
2001. Drainage water samples, collected by autosampler that were
triggered by datalogger wired to drainage pumps, were digested via
mercuric oxide procedure (Method 365.4, USEPA, 1983) and ana-
lyzed for P using a Flow IV segmented flow analyzer (OI Analytical,
College Station, TX). Farm rainfall was measured via tipping bucket
rain gauge connected to datalogger. Lag rain was defined as the pre-
vious month’s rainfall. Detailed descriptions of farm variables and
data collection can be found in Daroub et al. (2009).
To account for the differences in farm areas on the estimated P
load, unit area P load (UAL) in kg P ha−1 was obtained by divid-
ing the farm P load by farm area. Similarly, unit area drainage
water volume (UAV) in m3 ha−1 was obtained by dividing monthly
drainage water volume (m3) of each farm by farm-area (ha). The
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Table 2
Best management practices and assigned points for EAAa basin farms.

BMP PTS Description

Nutrient control Minimize movement of nutrients off-site
Nutrient Application Control 2.5 Controlled application of nutrients;

banding; fertigation
Nutrient Spill Prevention 2.5 Formal spill prevention protocols
Plant Tissue Analysis 2.5 Determines plant nutrient

requirements next growing season
(crop specific)

Calibrated Soil Testing 5 Determine the P requirements of the
soil and follow standard
recommendations for application rates

Water management Minimize volume of off-site discharges
1/2 Inch Detained 5 Delay discharge based on measuring

daily rain events using a rain gauge1 inch Detained 10
Improved Water Management

Infrastructure
5 Re-circulate water inside farm

boundaries prior to offsite discharge;
rice and fallow flood waters not direct
discharged off-farm; increased water
detention using properly constructed
canal berms.

Particulate matter Minimize movement of particulat matter and sediments
Any 2 2.5 Leveling fields Barriers at discharge locations

Slow drainage velocity near pumps Ditch bank stabilization
Any 4 5 Grassed swales Sediment sump/trap in canals

Vegetated ditch banks Culvert bottoms above ditch bottoms
Any 6 10 Ditch bank berms Cover crops
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a For the EAA basin, a minimum of 25 points is required for each farm’s BMP plan

roduct of UAV and FWTP is equivalent to the UAL for each farm
asin.

Irrigation water P concentration data were obtained for the
AA basin inflow structures from SFWMD DBHYDRO (http://my.
fwmd.gov/dbhydroplsql/show dbkey info.main menu) database
or the period of 1992–2002. Basin inflow water TP data were
btained for the three inflow structures into the EAA (S352, S2, and
3). The West Palm Beach Canal (sub basin S-5A) received irriga-
ion water from structure S352 while farms linked with North New
iver (Sub basin S7) and Hillsboro (sub basin S-6) canals received

rrigation from structure S2. The S8 sub basin received irrigation
ater from structure S3 via the Miami canal (Fig. 1). Irrigation
emand was calculated as the difference of monthly evaporation
ata from the Belle Glade, Florida weather station evaporation pan
nd an individual farm’s monthly rainfall. Surface ditch irrigation
o manipulate field water table is the predominant method used
o irrigate crops in the EAA (Izuno, 1994). Irrigation P load was
stimated as the product of irrigation demand, irrigation P concen-
ration, and a surface ditch irrigation use efficiency of 50% (Jones et
l., 1984; Omary and Izuno, 1995).

Percent farm acreages occupied by sugarcane, rotational flood,
nd fallow plus flood were determined from monthly crop maps
hat had delineated crops by field. Interpolated crop acreages were
ubstituted for missing monthly data according to standard har-
est and planting schedules. The percent fallow plus flood acreage
PFFA) was included as a single variable in the data set, since
he crop mapping personnel often had difficulty making definitive
eterminations on flooding or fallow condition for fields that were
ften intermittently flooded.

.3. Statistical data analysis
Monthly UAV, FWTP, and UAL data were not normally dis-
ributed. Box-Cox transformations (Box and Cox, 1964) were used
o stabilize the variance, and make the residuals Gaussian dis-
ributed for regression analyses. Spearman correlation, stepwise

ultivariate regression analysis, and Principal Component Analysis
program Field ditch drainage sumps
ontrol

(PCA) were employed to determine farm P load variable relation-
ships. Stepwise regression was conducted to identify measured
variables that could account for drainage water volume, P loads,
and P concentrations. Stepwise regression is not recommended for
testing the significance of a variable, but it is a convenient pro-
cedure for selecting variables when a large number of variables
are considered, as in this study. Stepwise regression was con-
ducted for all ten farms (pooled data), the six sugarcane farms, four
mixed-crop farms, and for each individual farm. Regression anal-
ysis was conducted on Box-Cox transformed UAL, UAV, and FWTP
data (dependent variables) using PROC REG in SAS (SAS Institute,
2006), and all statistical tests were conducted at ˛ = 0.05 signifi-
cance level. A PCA was performed using PROC PRINCOMP in SAS
(SAS Institute, 2006) to identify principal trends in explanatory
variables. The PCA is widely applied in exploratory data analysis and
for generating predictive models. The PCA mean centers the data
for each attribute and then computes eigenvalue decomposition
(or singular value decomposition) of a dataset. Principal compo-
nents with eigenvalue greater than 1 were retained as suggested
in Kaiser’s rule (Kaiser, 1960, 1961). The Kaiser’s rule ensure that
any component that accounts for less variance than does a single
variable is dropped. The rule has been widely used as criteria to
decide on PC to retain in PCA analysis (Jackson, 1993; Jolliffe, 2002;
Peres-Neto et al., 2005), and using same rule, as much PC to explain
between 70 and 90% of population variance were identified in this
study.

3. Results and discussion

3.1. Environmental parameters and management factors

Monthly averages of the measured variables are shown in

Table 1. Average farm soil depths ranged from 0.43 m at farm
03A to 1.62 m at farm 04A. Soil depth varies considerably across
the EAA, and generally decreases with distance from Lake Okee-
chobee. A comprehensive soil survey of the organic soils of Palm
Beach County conducted in 1988 indicated that the S-5A sub-basin

http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu
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ig. 2. Regression of Box-Cox transformed unit area P load (UAL) and the predicted
alues for the pooled ten farms. (RF = rainfall; LR = lag rain; PTR = pump to rainfall
atio; HD = head difference; IP = irrigation P concentrations; IPL = irrigation P loads;
D = soil depth).

as the deepest soils, while the S-7 and S-8 sub-basins have the
hallowest soils (Cox et al., 1988). Farms with deeper soils are
ble to hold more water on farm without detriment to crops and
re able to reduce the frequency of drainage. Thus, deeper soils
an lower drainage volumes, resulting in lower P loadings. Farms
ith shallow soils have less capacity to hold water on farm. The

educed water holding capacity requires them to drain more fre-
uently to successfully farm. However, the greater interaction of
rainage water with fragments of limestone (CaCO3) cap rock and
arl on shallow soils may increase the probability that soluble P

s removed from the soil water through sorption/precipitation pro-
esses, offsetting increases in P loading due to increased drainage
equirements (Murphy et al., 1983; Diaz et al., 1994).

The ten farms ranged in size from 106 to 1865 ha. Even though
he drainage volume and the P load were normalized with farm area
o obtain UAV and UAL, smaller farms would seem to be more sus-
eptible to seepage from surrounding farms and adjoining water
onveyance canals. Depending upon the elevation of surrounding
anals and farms, there could be high drainage UAV with resul-
ant high UAL in small farms (e.g. farms 02A, 04A, 05A, and 08A).
n addition, small farms may not have the flexibility of storing

ater on farm and may have less capacity to adjust field water

ables across the farm. A farm’s canal head difference (difference
etween outside and inside canal water levels) can serve as index
f drainage requirement and may indicate a farm’s elevation rela-
ive to drainage and seepage in its location. Maintenance of a high
ead difference should require more drainage volume to maintain
d Environment 138 (2010) 170–180

the head difference. Mean head difference ranged from −0.07 m in
farm 08A to 1.16 m in farm 06AB.

Mean monthly rainfall ranged from a low of 98 mm at 01A to
154 mm at 02A. Pumping to rainfall ratio ranged from a low of 0.28
at farm 04A to a high of 1.2 in farm 05A (Table 1). Six of the farms
(00A, 02A, 03A, 04A, 08A, and 09A) had a PTR ratio of less than 0.5,
and the remaining four farms (01A, 05A, 06A/B, and 07A/B) had PTR
ratio greater than 0.5. Lowest PTR ratio was observed at farm 08A,
a small sugarcane farm (106 ha) located in the S6 sub-basin with an
average soil depth of 0.73 m. Excluding farm 05A, which appeared
to have seepage from the adjacent Miami canal and a high PTR ratio
of 1.20, the two farms that had the highest PTR ratio were farm
01A (PTR = 0.68) and farm 06A/B (PTR = 0.73). Farm 01A is strictly
a vegetable farm in the S6 sub-basin with an average soil depth
of 0.60 m and farm 06A/B is a mixed crop farm located in the S5A
sub-basin with an average soil depth of 0.88 m. Research has shown
that sugarcane can maintain optimum yields through a wide range
of water tables (Glaz et al., 2004b) and cultivars with constitutive
aerenchyma are able to tolerate flooded conditions for at least 1
week with minimal effect on yield (Glaz et al., 2004a). The leafy
vegetables grown in the EAA are water sensitive and cannot tolerate
flooding or high water tables (Snyder et al., 1978; Snyder, 1987).
Percentage sugarcane cropped, and inside/outside canal heads for
the different farms are also reported in Table 1.

Mean monthly UAV (m3 ha−1) values of the ten farms ranged
from 322 m3 ha−1 in farm 03A to 1357 m3 ha−1 in farm 05A
(Table 1). Cropping systems can also affect UAV; for example, the
four farms (01A, 05A, 06A/B, and 07A/B) that show greatest UAV
have mixed-cropping systems, which are less tolerant to flooding,
and require more drainage pumping than sugarcane farms.

The FWTP ranged from less than 0.26 mg L−1 in the sugarcane
farms to 0.75 mg L−1 in mixed cropping farms. Four farms (02A, 05A,
08A, and 09A), had a mean annual FWTP of less than 0.10 mg L−1.
All of these farms were sugarcane farms except for 05A. Four farms
(00A, 03A, 04A 06A/B, and 07A/B) had mean FWTP greater than 0.10,
but less than 0.30 mg L−1. The higher P concentrations in farms 01A
(0.75 mg P L−1) and 06A/B (0.30 mg P L−1) reflect the higher P fer-
tilizer rates required for vegetables and other crops compared to
sugarcane (Hochmuth et al., 2003; Gilbert and Rice, 2006). By com-
parison, annual FWTP concentrations from the EAA basin between
1994 and 2005 ranged from a high of 0.130 mg L−1 in 1995 to a low
of 0.069 mg L−1 in 2003 (Adorisio et al., 2006).

The UAL also reflects impacts of cropping. Except for farm 00A
(0.18 kg P ha−1 UAL), sugarcane farms (02A, 03A, 04A, 08A, and 09A)
had less than 0.07 kg P ha−1 UAL. Impacts of these environmental
and management variables on farm UAL are discussed in detail in
the next sections.

3.2. Relationships between parameters and factors

Simple correlation analysis can be used to identify the impor-
tant variables that may potentially be used to model farm P loads.
Spearman correlation analysis results showed that UAL correlated
with thirteen of the fifteen environmental and farm management
factors shown in Table 3. Even though UAL was calculated as prod-
uct of both FWTP and UAV, UAL showed a stronger correlation
with UAV (r = 0.86***) than with FWTP (r = 0.52***). This suggests a
greater effect of UAV than FWTP on UAL. The strong relationship
between UAL and UAV is further explained by the similarities in
how the other variables correlated with each of them. Both UAL
and UAV correlated with most of the variables measured. Both UAL

and UAV showed negative correlation with irrigation demand, and
positive correlation with irrigation P concentration. Both UAL and
UAV also showed positive correlations with rainfall, lag rainfall,
PTR, and PFFA. Rainfall and lag rainfall are expected to increase the
UAV, and hence UAL, and help explain the observed positive cor-
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relation between rainfall related parameters and UAL. The positive
correlation between UAL and PTR confirms that reducing pumping
volumes can lower farm P loads. Two variables that did not show
significant correlation with UAL and UAV are soil depth and out-
side head difference; interestingly however, soil depth did correlate
with FWTP.

The UAL was positively correlated with irrigation P concen-
tration, but negatively correlated with irrigation demand and
irrigation P load. Irrigation demand is directly linked to rainfall;
as irrigation demand increases drainage pumping decreases and
results in low monthly P load. This relationship explains the neg-
ative correlation between UAL and both irrigation demand and
irrigation P load. The FWTP was positively correlated with irrigation
water P concentration, but not with rainfall, irrigation demand, and
irrigation P load. This correlation indicates irrigation water quality
may impact farm drainage water P concentration.

Negative correlations of PSA acreage with UAL, UAV, and
FWTP are consistent with minimal drainage volume and lower
P loads that are expected from sugarcane farms than from other
mixed cropping farms. Sugarcane generally receives applications
of 20–50 kg P ha−1 year−1 compared to vegetable crops, such as let-
tuce, corn, and green beans which may receive 150 kg P ha−1 year−1

or more (Gilbert and Rice, 2006; Hochmuth et al., 2003).

3.3. Parameter and factor impacts on farm P loads

Since many of the variables correlated well with P load, step-
wise regression was conducted to explain which factors most
affected farm UAL, UAV, and FWTP. Variables identified by step-
wise regression that affect UAL, UAV and FWTP are reported in
Table 4. Pumping to rainfall ratio was a significant variable in all
the regression equations. Other variables that were shown to affect
UAL, UAV, and FWTP are canal head difference and irrigation P con-
centration. The relationship between canal head difference and UAL
indicates that greater canal head difference was associated with
higher UAL. Two of these variables (PTR and canal head difference)
are water management variables and point to the importance of
water management to reduce UAL. A recent study used three dif-
ferent Classification and Regression Trees (CART) models (single
regression trees, committee trees in Bagging, and ARCing modes)
to investigate the relationship between environmental factors and
P loads in the same ten EAA farms (Grunwald et al., 2009). Tree-
based models are distribution free (non-parametric) and make
no assumptions about regression variables of residuals (Breiman
et al., 1984). Multivariate regression models used in the current
study are parametric, and data was transformed to establish nor-
mal distribution. However, results reported in the current study
are in agreement with Grunwald et al. (2009), which indicated that
hydrologic/water management properties are the major control-
ling factors affecting UAL in the EAA.

Irrigation water P concentration is equally important in the farm
UAL regression equations. The regression analysis revealed that
irrigation P concentration and irrigation demand loads are impor-
tant in explaining farm P load. Irrigation water quality may be
negatively impacting farm P load, particularly on sugarcane farms
in the S5A sub basin. The three main inflow structures supplying
irrigation water differed in the quality of the irrigation water they
supplied. Of the three structures, the S-352, which supplies irri-
gation water to farms in the S-5A sub-basin via the West Palm
Beach Canal, delivered water with the highest P concentration from
1992 through 2002. In addition farm drainage water P concentra-

tions tended to be grouped into two distinctive areas. Drainage
water from farms in S-5A and S-6 sub-basins showed greater P
concentrations than from the S-7 and S-8 sub-basins (Table 1). Pos-
itive regression coefficients suggest increased UAL with increases
in irrigation water P concentration. Irrigation water for EAA farms
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originates from Lake Okeechobee. Thus, efforts to reduce lake water
P concentrations will complement farmers’ efforts to reduce farm P
loads. The finding adds additional weight for the need to decrease
P levels in Lake Okeechobee.

The effect of soil depth was significant on the UAL prediction
equations for the pooled farms and six sugarcane farms and indi-
cated that deeper soils have the potential to produce higher farm
UAL. The soil depth results are based on the ten farm dataset and
may not necessarily hold true for other EAA farms. However, this
analysis gives us an initial reference and suggests that soil depth
does affect P load. Specific management practices that target deeper
soils, e.g. higher water tables, are needed to offset soil depth effects
on UAL.

Crop rotation also affects farm UAL. It is evident from the regres-
sion equations that UAL has an inverse relationship with PSA;
as PSA increased, UAL decreased. This finding is not surprising
given the higher P fertilizer requirement and more intensive water
management that crops besides sugarcane need. An earlier study
(CH2MHill, 1978) reported greater P concentrations in drainage
water from vegetable farms (0.340 mg L−1,) than from a sugarcane
farm (0.126 mg L−1) in the EAA.

The relationship between flooding and UAL is not entirely clear,
because the effect of flooding could not be separated from fallowing
as earlier explained. It may be an indication that changes in land
use (less sugarcane acres and increases in other crop acres) might
increase farm P loads. This indicates a need for further investigation
on the impact of flooding on farm UAL.

Stepwise regression of UAL with the variables was also con-
ducted for each individual farm to further reduce the confounding
effects in the model. However, the results obtained (data not
shown) were similar to the pooled data and emphasized the
impacts of pumping, rainfall, and irrigation P on farm P loads. A
related study using tree-based CART models to investigate factors
affecting P load also suggested significant impacts of water man-
agements on P loads (Grunwald et al., 2009).

3.4. Principal Component Analysis

There were relatively few strong correlations among the 13 vari-
ables tested. Thus, Principal Component Analysis (PCA) was used to
account for the correlations between the explanatory variables. The
PCA is a powerful statistical technique that can transform a large
number of correlated variables into a smaller number of uncorre-
lated variables called principal components (PC) (Laaksoharju et al.,
1999). The PCA derives linear combinations (as PC) of a set of vari-
ables that retain as much of the information in the original variables
as possible. The PCA technique can identify and reduce dimension-
ality of dataset, determine meaningful underlying variables, and
minimize the effect of scatters on output (Smith, 2002). The PCA has
been extensively used on water quality datasets (Kim et al., 2000;
Simeonov et al., 2003; Chen et al., 2007; Halim et al., 2008), and is
also widely applied in exploratory data analysis and for generating
predictive models.

The PCA results including the loadings and eigenvalue of each PC
are summarized in Tables 5 and 6, and Table 7 for the pooled (ten)
farms, the sugarcane farms, and the mixed farms. There are sev-
eral criteria to identify the number of PCs to be retained in order to
understand the underlying data structure (Jackson, 1991). A com-
monly used rule is to retain PCs with eigenvalue greater than 1
and as such generally can account for 70–90% of the variance. Thus,
in this study, PCs with eigenvalue greater than 1 were retained,

and six independent PCs were extracted by PCA for each of the
three datasets (pooled, sugarcane, and mixed farms). The retained
PCs explained 78, 80, and 84% of the total population variance of
the pooled, sugarcane, and mixed farms, respectively (Tables 5–7).
This percentage can be considered large enough to give an ade-
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Table 5
The loadings of each variable, the Eigenvalue, and description for each of the six principal components obtained from principal component analysis of monthly UAL of the
ten farms.

Variables Principal componentsa

PC1 PC2 PC3 PC4 PC5 PC6

Inside Canal Head −0.36b −0.27 0.14 0.54 0.22 −0.07
Outside Canal Head 0.17 0.11 −0.08 0.64 0.44 0.01
Canal Head Difference 0.50 0.37 −0.21 0.08 0.21 0.08
Lag Rainfall −0.08 −0.13 0.00 −0.14 0.20 0.79
Farm Size 0.24 0.45 −0.07 0.23 −0.38 0.19
Soil Depth −0.07 0.27 0.18 −0.39 0.39 −0.05
Irrigation Demand 0.33 −0.14 0.57 0.11 −0.24 −0.05
Irrigation P Load 0.33 −0.05 0.61 −0.00 0.07 0.04
Irrigation P 0.07 0.09 0.10 −0.21 0.52 −0.31
Pumping: Rainfall Ratio 0.22 −0.38 0.05 −0.04 0.20 0.41
Percent Sugarcane −0.44 0.36 0.28 0.13 −0.06 0.19
Percent Fallow + Flood 0.20 −0.46 −0.33 −0.01 −0.07 −0.14

Eigenvalue 2.18 1.72 1.62 1.57 1.22 1.07
Eigenvalue Difference 0.46 0.09 0.06 0.34 0.15 N/A
% Variance explained 18 13 14 13 10 9
% Cumulative Variance 18 32 46 59 69 78
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Description Water Status Cropping Practices Irrigat

a Eigenvalue greater than 1.
b Values in bold have absolute values greater than 0.3 and are considered to have

uate representation of the data. Also, the PCA was able to reduce
he 16 variables to 6 for the pooled dataset and each of the farm
ypes.

The first component (PC1) has the highest eigenvalue and
xplains the largest percentage of variance. Later components have
ower eigenvalue and explain lower percentages of variance. For
ll ten farms, PCA analysis show that PC1 explains 18% of the total
ariance, and was heavily influenced by irrigation demand, canal
ead difference, and PSA, all of which are related to the field water
tatus. Component 2 (PC2) explains 13% of the total variance and
as related to land use variables such as PFFA, PSA, farm size, canal

levation difference. Component 3 (PC3) was related to irrigation
ater demand and quality and explained 14% of the total vari-
nce. Component 4 (PC4) which contrasts canal elevations with soil
epth can be described as a measure of seepage potential. Compo-
ent 5 and 6 (PC5 and PC6) explained 10% and 9% of total variance
nd were retained because they both have sufficient eigenvalue
greater than 1). The PC5 contrasts farm size with soil depth and

able 6
he loadings of each variable, the Eigenvalue, and description for each of the six principa
ix sugarcane farms.

Variables Principal componentsa

PC1 PC2 PC3

Inside Canal Head −0.29 0.42b 0.07
Outside Canal Head 0.30 0.42 −0.10
Canal Head Difference 0.58 −0.03 −0.16
Lag Rainfall −0.13 0.06 0.11
Farm Size 0.53 −0.12 −0.24
Soil Depth −0.08 0.02 0.18
Irrigation Demand 0.32 −0.07 0.59
Irrigation P Load 0.19 0.04 0.69
Irrigation P −0.17 0.22 0.15
Pumping: Rainfall Ratio 0.08 −0.14 0.06
Percent Sugarcane 0.10 0.53 −0.05
Percent Fallow + Flood −0.11 −0.52 0.00

Eigenvalue 2.26 2.05 1.67
Eigenvalue Difference 0.21 0.39 0.21
% Variance explained 19 17 14
% Cumulative Variance 19 36 50

Description Water Status Cropping Practices Irrigation w

a Eigenvalue greater than 1.
b Values in bold have absolute values greater than 0.3 and are considered to have influ
ater Seepage Potential Farm Specific constants Pumping Index

ence on the principal component.

also account for outside canal head and irrigation P concentration
while PC6 accounts for rainfall and pumping. The PCA of variables
from sugarcane and mixed farms differed little from the pooled
data and also summarized the variables into six principal compo-
nents (Tables 6 and 7). The cumulative variance explained by the
PCs increased from 78% (for the pooled data) to 80% (for sugarcane)
and 84% (for mixed farms). By categorizing the farms into sugarcane
and mixed farms, we only improved the variance accounted by 2
and 6% respectively compared to the pooled data. The cumulative
variance explained by the PCs increased from 78% (for the pooled
data) to 80% (for sugarcane) and 84% (for mixed farms).

Regression equations using the Principal Component Regression
(PCR) analysis were compared to stepwise multivariate regression

equations (Figs. 2 and 3). The PCs were not reduced (for the pooled
data) as we had hoped, which made the interpretations of the PC
analysis complicated. However, the variables were reduced to 5
and 4 for the sugarcane farms and the mixed farms respectively
(Fig. 3). Nevertheless, the PCA regression analysis results were in

l components obtained from principal component analysis of monthly UAL of the

PC4 PC5 PC6

0.48 0.11 −0.0
0.29 0.43 −0.02
−0.16 0.33 −0.02
−0.06 0.04 0.83
0.20 −0.18 0.08
−0.66 0.32 −0.19
0.09 −0.20 −0.08
0.11 0.01 0.03
0.03 0.41 −0.24
−0.09 0.43 0.44
−0.29 −0.30 0.07
0.28 0.28 −0.08

1.46 1.14 1.03
0.32 0.11 N/A
12 10 8
62 72 80

ater Seepage Potential Farm Specific constants Pumping Index

ence on the principal component.
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Table 7
The loadings of each variable, the Eigenvalue, and description for each of the six principal components obtained from principal component analysis of monthly UAL of the
four mixed farms.

Variables Principal componentsa

PC1 PC2 PC3 PC4 PC5 PC6

Inside Canal Head −0.40b −0.08 0.06 0.45 0.14 0.08
Outside Canal Head −0.05 0.07 0.50 0.57 0.23 0.09
Canal Head Difference 0.37 0.16 0.44 0.10 0.08 −0.01
Lag Rainfall −0.02 −0.02 0.04 −0.36 0.67 −0.43
Farm Size 0.48 −0.04 0.05 0.19 0.11 0.18
Soil Depth 0.52 −0.11 −0.08 0.13 0.14 0.14
Irrigation Demand −0.07 0.53 −0.36 0.29 −0.06 0.18
Irrigation P Load 0.07 0.61 −0.27 0.12 0.11 0.15
Irrigation P 0.32 0.21 0.06 −0.20 −0.11 −0.49
Pumping: Rainfall Ratio −0.15 0.22 −0.01 −0.18 0.58 −0.52
Percent Sugarcane 0.03 −0.42 −0.42 0.28 0.25 −0.04
Percent Fallow + Flood −0.25 0.16 0.41 −0.19 −0.13 −0.43

Eigenvalue 3.11 1.88 1.65 1.49 1.19 1.00
Eigenvalue Difference 1.23 0.23 0.15 0.31 0.34 N/A
% Variance explained 26 15 14 12 10 7
% Cumulative Variance 26 41 55 67 77 84

Description Farm Specific constants Irrigation water Cropping Practices Seepage Potential Pumping Index Flooding Status

a Eigenvalue greater than 1.
b Values in bold have absolute values greater than 0.3 and are considered to have influence on the principal component.

Fig. 3. Regression of Box-Cox transformed drainage water unit area P load (UAL)
and the predicted values (by principal components 1–6) for the (A) ten farms, (B)
sugarcane farms, and (C) mixed farms. PC1, PC2, PC3, PC4, PC5, and PC6 are Principal
component 1, 2, 3, 4, 5, and 6 respectively (see Tables 4–6 for descriptions of the
principal components).
agreement with the multivariate linear regression in identifying
factors affecting P loading.

4. Conclusions

Analysis of the long-term monitoring datasets of ten EAA farms
revealed insight on environmental and management variables that
affect farm P loading. Though a myriad of factors were surmised to
affect farm P loads, specific factors were identified that impact farm
P loading. Water management variables (PTR, IPL, IPC, rainfall, lag
Rainfall) were the dominant factors affecting UAL.

Management of these impact factors to improve BMP perfor-
mance on EAA farms is expected. For example, lowering drainage
volume (and pumping to rainfall ratio) may be achieved by improv-
ing internal drainage within a farm. Drainage volume reductions
are accomplished by installing water control structures (culverts
with riser boards) and land leveling. Water control improvements
reduce total drainage water discharge volume by eliminating the
need to over drain portions of a farm to adequately drain low
lying sections and by reducing the need to over irrigate to ade-
quately supply water to higher sections of a farm. The installation
of improvements (ditch deepening, canal cleaning, culvert instal-
lation, booster pumps, etc.) may temporarily suspend sediments
and increase loading for the next few drainage events. However,
after these initial spikes in drainage water P loads, the improved
control of water within the farm should result in decreased farm
P loads and improved crop production. The results of this study
show that additional farm P load reductions may be achieved with
improved water management; that increased P concentrations in
irrigation water are of concern for EAA drainage water quality; and
that water management research that targets farms with deeper
soils is recommended to achieve additional P load reductions.
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