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In remotely located boreal forest watersheds, monitoring nitrogen (N) export in stream discharge often is not feasible
because of high costs and site inaccessibility. Therefore, modelling tools that can predict N export in unmonitored
watersheds are urgently needed to support management decisions for these watersheds. The hydrological and
biogeochemical processes that regulate N export in streams draining watersheds are complex and not fully
understood, which makes artificial neural network (ANN) modelling suitable for such an application. This study
developed ANN models to predict N export from watersheds relying only on easily accessible climate data and
remote sensing (RS) data from the public domain. The models were able to predict the daily N export (g/km

 

2

 

/d) in
five watersheds ranging in size from 5–130 km

 

2

 

 with reasonable accuracy. Similarity indices were developed between
any two studied watersheds to quantify watershed similarity and guide the transferability of models from monitored
watersheds to unmonitored ones. To demonstrate the applicability of the ANN models to unmonitored watersheds,
the calibrated ANN models were used to predict N export in different watersheds (unmonitored watersheds in this
perspective) without further calibration. The similarity index based upon a rainfall index, a peatland index and a RS
normalized difference water index showed the best correlation with the transferability of the models. This study
represents an important first step towards transferring ANN models developed for one watershed to unmonitored
watersheds using similarity indices that rely on freely available climate and RS data.
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Introduction

 

Water quality modelling in lakes and streams involves
understanding physical, geochemical and biological
processes in the surrounding watershed, which in turn
are regulated by interrelated factors, such as vegetation,
soils, geology, weather conditions and anthropogenic
disturbances in the watershed. However, relationships
between water quality parameters and watershed
features and processes are complex, not deterministic,
and currently are not fully understood. Artificial neural
network (ANN) models are capable of modelling
complicated and non-linear processes; therefore they
have gained popularity in water quality modelling
applications over the past decade [1]. Additional
features of ANN models that contribute to their utility
for surface water quality modelling are: (1) they are
capable of identifying relationships between inputs and
outputs without fully understanding the mechanistic
principles behind them; (2) they can work well even

when the training data set contains noisy data; and (3)
they are relatively easy to learn and use.

ANN models have demonstrated strengths over
conventional statistical and mechanistic models, espe-
cially when only sparse, gapped data are available for
model training [2,3]. Conventional statistical time
series modelling approaches (e.g., autoregressive
moving average model) assume that the time series is
stationary and develop equations to describe the prob-
lem to achieve statistical optimality. In contrast, ANN
practitioners do not need to make such assumptions [4].
ANN models have also proven to be superior to conven-
tional statistical time series models by a number of case
studies [5–8] because they can handle non-linear prob-
lems and non-stationary data sets [5,7]. Compared with
mechanistic models, ANN models can provide compa-
rable modelling accuracy but are more applicable in
practice when professional expertise and data are
limited. Case studies selected ANN models because
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they can satisfy the modelling objectives by using only
routine monitoring data [9–11].

Nitrogen (N) is one of the most significant water
quality parameters that affect ecological health. Factors
that change the availability and cycling of N in forest
ecosystems include climate gradients and variations,
atmospheric N deposition, soil types, vegetation cover,
hydrologic pathways and landscape disturbance [12].
The export of N from a watershed to its drainage
streams is very complex due to the interaction between
N export and the factors above. It is very difficult to
mathematically represent these factors, because they are
non-linearly related, spatially distributed on a water-
shed scale and exhibit temporal variation. The complex-
ity of the system makes ANN modelling a suitable
alternative for N export modelling.

Feed-forward multilayer perceptron (MLP) trained
with the error back-propagation (BP) algorithm is the
most widely used neural network for water quality
modelling [13,14]. MLP has been used to model a
variety of water quality parameters such as sediment
loads [15–17], phosphorus concentrations [7,10],
microbial contamination [9,18,19], and phytoplankton
communities [20–22]. In terms of N modelling, MLP
has been applied to simulate nitrate leaching in agri-
cultural drainage effluent [23], forecast nitrate loads
on an agricultural watershed based on historical data
[24], predict total and inorganic N concentrations in
927 streams in the United States from features in
mixed-use (forested, agricultural and urban) water-
sheds [25] and simulate annual total N export from 15
predominantly forested river basins in Atlantic Canada
over a 10-year period using climate data and water-
shed features [26].

However, there are limited applications of ANNs in
modelling N export in surface waters draining forest –
and particularly boreal forest – watersheds at a daily
time scale. Monitoring N export in these watersheds is
often logistically unfeasible due to the associated high
costs and the relative inaccessibility of many of these
sites. Therefore, the use of modelling tools that can
predict N in unmonitored watersheds is urgently needed
to support decision making in watershed management in
the boreal forest. ANN modelling of N in unmonitored
watersheds relies on transferring calibrated models
based on other watersheds to the unmonitored ones of
interest. The more similar each pair of watersheds is, the
higher the probability of success in model transferabil-
ity. Thus, it is important to develop indices that can
quantify watershed similarity, which can potentially
guide the transferability of models from one watershed
to the other. There is limited literature available for
water quality model transfer indices. For hydrological
model transfer, the median Euclidean distance worked
out from annual water budget, greenness fractions, and

physical distances have been used to measure watershed
hydrologic similarity [27].

The Forest Watershed and Riparian Disturbance
(FORWARD) project has been monitoring streamflow,
water quality and weather in boreal forest watersheds in
the Swan Hills of Alberta, Canada since 2001 [28,29].
The objectives of this study were to use N export data
collected as part of the FORWARD project from five of
these watersheds to: (1) develop ANN models that can
predict daily N export in stream channels draining each
of the studied watersheds based on easily accessible
climate and remote sensing (RS) data; (2) develop
watershed similarity indices for these watersheds using
the same climate and RS data; (3) apply the five devel-
oped models from one watershed to the other water-
sheds, without further calibration, and evaluate the
performance of model transfer; and (4) relate indices of
watershed similarity to model performance to determine
the optimal similarity index, which can then be used to
guide model transfer to unmonitored watersheds. This
research provides an important first step toward using
climate and RS data to model N export in unmonitored
watersheds.

 

Study area and database

 

The study area is located in the Swan Hills, northwest
of Edmonton, Alberta, Canada. The five watersheds
under study range in size from 5.1–129.4 km

 

2

 

 (Table 1,
Figure 1). The peatland and riparian cover data
summarized in Table 1 have been previously docu-
mented [30].

 

Figure 1. Study area: the watersheds under study and the weather stations.

 

Rainfall and temperature data were acquired from
seven public-domain weather stations and fire towers
close to the study area (Figure 1). Satellite-derived
vegetation indices (e.g., enhanced vegetation index
(EVI) and reflectance values at certain desired wave-
lengths) were acquired from Moderate Resolution
Imaging Spectroradiometer (MODIS) through the
National Aeronautics and Space Administration
(NASA) from the years 2001 through 2005. Data
acquired from MODIS were exported using the soft-
ware Geomatica V9.1 [31]. The exported MODIS
images were then loaded into ArcGIS 9.2 [32], over-
laid by the watershed shape files, and the correspond-

 

Table 1. Area and soil coverage in the studied watersheds.

Watershed Peatland, % Riparian, % Area, km

 

2

 

1A 25.2 0 5.1
Cassidy 4.8 0.6 5.9
Thistle 10.5 4.6 8.5
Two Creek 17 2.4 129.4
Willow 10 3.4 15.6
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ing data for each watershed were extracted and
averaged over the watershed area using ArcGIS spatial
analyst tools. Streamflow (m

 

3

 

/s) and total dissolved N
(TDN) concentration (

 

µ

 

g/L) data were obtained from
the FORWARD database for monitoring stations situ-
ated at each watershed outlet during the open water
season (typically from April to October). For details of
streamflow gauging and water sample collection in
FORWARD streams, see Prepas 

 

et al.

 

 [30]. The areal

TDN export (TDN

 

E

 

) (g/km

 

2

 

/d) for each watershed was
calculated as indicated by the following equation: 

where 

 

Q

 

 is the daily average streamflow in m

 

3

 

/s, 

 

TDNc

 

is the daily average TDN concentration in 

 

µ

 

g/L and 

 

A

 

 is
the area of watershed in km

 

2

 

.

TDN
Q TDN

AE
C= × × × ×





24 60 60

1000
1( )

Weather stations

Figure 1. Study area: the watersheds under study and the weather stations.
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MLP model development

 

To ensure adequate model performance, all models
were systematically developed following procedures
that are commonly used for ANN model building in
environmental science and engineering: input determi-
nation, data pre-processing, data division, determina-
tion of model internal parameters, selection of the
model training algorithm and stopping criterion, and
model evaluation [1,14].

 

Input determination

 

To develop a robust ANN model, it is critical to care-
fully select a representative and significant set of input
variables. Inclusion of correlated, noisy or non-signifi-
cant inputs only serves to increase the computational
complexity, make training more difficult, and affecting
the generality of the developed models [8,33]. This
study focused on developing a data-driven modelling
approach for daily TDN export predictions. The mech-
anisms governing N export from watersheds can be
found in detail in the literature [34,35]. Generally
speaking, TDN export is highly correlated with time
and has seasonal fluctuation. Also, the influence of
factors such as rainfall on TDN export exhibits a time
delay effect. Therefore, model inputs were divided into
cause/effect inputs, inputs reflecting the seasonal
cyclic nature of the modelled variable and time-lagged
inputs. These inputs were determined based on a
combination of 

 

a priori

 

 knowledge of the system
being modelled and trial-and-error screening by
ANNs. Since this study aims at developing models for
unmonitored watersheds, the selected model inputs
should be easily accessible and obtainable without on-
site measurements.

In general, daily TDN export is influenced by the
available sources of N in the watershed and the momen-
tum for N release from the watershed. The latter is
correlated to streamflow, which is mainly controlled by
rainfall and snowmelt [36–38]. In North America, rain-
fall information is widely available from public domain
weather stations and fire towers. Daily snowmelt can be
estimated by the temperature-index approach, because a
linear function of daily snowmelt and average air
temperature exists, given that the air temperature
exceeds a base temperature. The cumulative degree
days (

 

dd

 

), as represented by the following equation, can
serve as an integrated measure of heat energy available
to melt snow and can act as a surrogate to the tempera-
ture-index snowmelt approach: 

where 

 

dd

 

 is the total degree days at time 

 

t

 

 in 

 

°

 

C day, 

 

T

 

avg

 

is the daily average air temperature in 

 

°

 

C, 

 

T

 

b

 

 is a base
temperature typically set at 0

 

°

 

C, 

 

N

 

 is the number of
days during which 

 

T

 

avg

 

 

 

≥

 

 

 

T

 

b

 

 and (

 

t

 

i

 

+1

 

 – 

 

t

 

i

 

) is typically
taken as 1 day.

Air temperature is another climatic parameter that
can be accessed from public weather stations and is
correlated with N export. Increases in air temperature
with decreases in precipitation lead to large decreases in
runoff and hence N export [26], particularly, in the
study area [30].

The recent rapid development of RS technology and
the reduced cost of acquiring RS data now make it
possible to take into consideration vegetation phenol-
ogy, one of the most important factors affecting the N
cycle. Forest vegetation can affect N cycling in a water-
shed and act as a temporary sink for N taken up as a
nutrient [36]. In many cases, a major portion of the
annual N export occurs during spring snowmelt because
N mineralization has occurred under the snowpack
during winter [39] and the uptake of N moving with
snowmelt runoff by forest vegetation is minimal [40].
The MODIS sensor on board Terra launched by NASA
in December 1999 has greatly improved scientists’ abil-
ity to measure plant growth on a global scale, with
moderate spatial (250m 

 

×

 

 250m pixel size) and tempo-
ral resolution. The RS EVI provided by the MODIS
Land Group has shown a high correlation with vegeta-
tion conditions [41–43]. EVI is a relatively new data
product developed by the MODIS Science Team to
improve upon the quality of its predecessor, the normal-
ized difference vegetation index (NDVI), for forested
ecosystems. The successful application of EVI to vege-
tation dynamics indicates that it has the potential for
reflecting vegetation dynamics and soil/vegetation
interactions during N model construction. The EVI
makes use of an atmospheric resistance term by adding
information from the blue wavelength and two
constants, 

 

C

 

1

 

 and 

 

C

 

2

 

. In addition, it uses a canopy
adjustment term to minimize the effect of the changes
of optical properties of soil background by introducing
a constant, 

 

L

 

. EVI is formulated by: 

where 

 

G

 

 = 2.5, 

 

C

 

1

 

 = 6, 

 

C

 

2

 

 = 7.5, and 

 

L

 

 = 1. The terms

 

ρ

 

Blue

 

, 

 

ρ

 

Red

 

, and 

 

ρ

 

NIR

 

 represent the reflectance at the blue
(0.45–0.52 

 

µ

 

m), red (0.6–0.7 

 

µ

 

m) and near-infrared
(0.7–1.1 

 

µ

 

m) wavelengths, respectively.
Based on an understanding of the processes

involved in N modelling, the most significant cause/
effect factors that can be obtained from public-domain
databases for unmonitored watersheds are rainfall (

 

R

 

), a
dd T T t tavg i b i i i

i

i N

= −( ) ⋅ −( )+
=

= −

∑ ( ) ( ) ( )1
0

1

2

EVI G
C C L

NIR Red

NIR Red Blue

= × −
+ − +

ρ ρ
ρ ρ ρ1 2

3( )
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snowmelt indicator (

 

dd

 

), average air temperature
(

 

T

 

mean

 

), and a vegetation growth indicator (

 

EVI

 

).
Among those factors, rainfall and snowmelt has a time
delay impact on N export [11]. In turn, the time lags of
rainfall and snowmelt were determined for the N export
model.

The seasonal periodicity of the modelled parameter
was accounted for by assigning Julian day of the year to
each daily record. To account for the long-term cyclic
nature, a year index taking the value of either ‘

 

−

 

1’ or
‘+1’ was added to the vector of inputs. A year was given
a value of ‘

 

−

 

1’ if the total rainfall in the open water
season of that year was lower than the 30-year-average
rainfall sum; otherwise, the year index was given a
value of ‘+1’. Assigning a time index to each data
record has proven to be successful in helping the ANN
to identify the periodicity of data series in other appli-
cations [44–46].

 

Data pre-processing

 

Daily EVI values were calculated from the original
MODIS 16-day interval EVI data using linear interpo-
lation. The daily rainfall values at the location of the
studied watersheds were interpolated from the daily
rainfall data acquired at the surrounding Environment
Canada weather stations and fire towers using inverse
distance weighted (IDW) interpolation. The IDW inter-
polation assumes that the closer objects are more alike
than those far apart, which mean that rainfall values at
closer weather stations to the modelled location have
greater impact on the predicted rainfall at that location.
The IDW rainfall calculations were carried out using
the following equations: 

where (

 

x, y

 

) is the coordinate of the location where the
rainfall is to be estimated, 

 

i

 

 and 

 

j

 

 is the weather station
number, 

 

n

 

 is the number of weather stations to be used
in estimation, 

 

w

 

i

 

 is the weight of rainfall at the weather
station 

 

i

 

, 

 

R

 

i

 

 is the measured rainfall at station 

 

i

 

 and 
is the estimated rainfall.

 

Data division

 

Data division is also an important step in ANN model
development, because model performance can be
significantly affected by the representativeness of
subsets. A Self-organizing Mapping (SOM) network
was implemented using NeuroShell 2 [47] to divide the
available data into five clusters, from each of which
data sets for training, testing and validation were
sampled at a ratio of 3:1:1. The data set development
using SOM has been demonstrated to effectively
improve a model’s performance and generality [48,49].
After data division, Kolmogorov–Smirnov tests were
performed using MATLAB R2007a [50] to verify that
the three data subsets represented the same population,
since TDN export in the study streams was not normally
distributed. The training data set was used to calibrate
the model by updating the network connection weights.
The testing data set was used to determine when to stop
training attempting to avoid model overfitting. The vali-
dation data set, which the model had never seen, was
then used to test model generality.

 

Model architecture

 

At this step, it is important to determine the number of
hidden layers, the number of nodes in the hidden layers,
the type of activation function(s), learning rate, momen-
tum, and initial weights. The developed models have
one hidden layer because a typical MLP ANN with a
single hidden layer can approximate any functions given
sufficient degrees of freedom [14]. The optimal number
of nodes in the hidden layer was determined through a
constructive algorithm [14,51]. This algorithm is based
on the fact that the performance of the ANNs on training
and testing data sets increases with the addition of more
nodes until a critical point, where there is no improve-
ment on the training data whereas the prediction accu-
racy on testing data decreases. The optimal number of
hidden nodes is determined at the point where the
trained networks’ performance on testing data started to
decrease. However, the single hidden layer with only
one activation function did not produce acceptable N
export results during preliminary model. This is because
N export is highly correlated to streamflow, which is
influenced by snowmelt in spring and by rainfall in
summer and autumn. A previous study indicated that
one hidden layer with three activation functions was
able to capture the different driving forces for stream-
flow in the study area [7]. Thus, the same architecture
was used in this application as well. The designed BP
architecture has three slabs in the hidden layer. Different
activation functions can be applied to hidden layer slabs
to detect different features in a pattern processed
through a network [47]. The designed network used a
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Gaussian function on one hidden slab to detect features
in the mid-range of the data and used a Gaussian
complement in another hidden slab to detect features
from the upper and lower extremes of the data. Using the
logistic function in the third slab was helpful to map the
irregularity in the data and simulate the patterns that are
not captured by the other Gaussian functions.

The weight modification during calibration is the
learning rate times the error plus the momentum times
the previous weight change. Thus, the larger the learn-
ing rate is, the larger the weight changes and the faster
the calibration will proceed. However, too large a learn-
ing rate may result in oscillation or non-convergence.
To allow faster training without oscillation, a portion of
previous weight change that is determined by momen-
tum is added into the current weight change. The default
values of learning rate, momentum as well as initial
weights provided in the Neuroshell 2 package were
used and were demonstrated to be effective.

 

Model training

 

During ANN model training, the connection weights are
initially assigned arbitrary small values. As training
progresses, the mean squared error (MSE) between the
target output and the network output is calculated, and
the weights are updated systematically. Weight adjust-
ments are made based on an objective function that
reduces MSE, attempting to reach a global minimum in
the error surface. The training process stops when a
prescribed stopping criterion is reached. The NeuroShell
2 software package was used to train the models [47].
The important principle for model training is to find the
balance between convergence and generalization.
Therefore, a test data set that represents the system being
modelled, but that does not contain the same patterns as
the training data set, is used to determine when to stop
training (typically termed ‘the early stopping technique’
in the literature). The MSE for the training data set typi-
cally gets smaller as the network weights are updated
based on model’s prediction accuracy on training data
set. As the training proceeds, the model reads the test
data set and computes its prediction MSE. The MSE for
the test data set gets smaller as model training progresses
until an optimal point is reached, after which MSE starts
to increase, reflecting a state when the model is starting
to memorize the training data set. Thus, in all developed
models, training was stopped when the model performed
best on the test data set, that is, when the MSE for the
test data set was smallest.

 

Model evaluation

 

There is no single statistical measure that can evaluate
the performance of all models. Correlation-based

measures have been widely used to evaluate model
performance, but they are oversensitive to extreme
values and insensitive to additive and proportional
differences between observations and model predic-
tions [52]. Therefore, in this study, correlation-based
measures (Equations (7) and (8)) were supplemented
with other error measures including mean absolute error
(MAE) (Equation (9)), root MSE (RMSE) (Equation
(10)) and graphing of observations and predictions to
provide better evaluation of model prediction ability.
The correlation-based measures that were used are the
coefficient of determination (

 

r

 

2

 

) (Equation (7)) and
Nash Sutcliffe coefficient (

 

E

 

) (Equation (8)). Higher 

 

r

 

2

 

and 

 

E

 

 values indicate better agreement between the
observations and model predictions. 

where 

 

P

 

i

 

 and 

 

O

 

i

 

 are the predicted and the measured
TDN export at time 

 

i

 

, respectively; 

 

[Omacr ]

 

 is the mean of the
measured TDN export for the entire time period and; 

 

N

 

is the number of data points for the study period. The 

 

r

 

2

 

is one of the most commonly used measures and only
evaluates linear relationships between observations and
predictions, whereas 

 

E

 

 provides an improvement over

 

r2 because it is sensitive to proportional and additive
differences between the observed and predicted means
and variances. Generally, RMSE is equal to or greater
than MAE and the degree to which RMSE exceeds
MAE can indicate the extent to which outliers exist in
the data [52]. MAE is preferred over RMSE in this
study because of the existence of extreme values and
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the intrinsic large variation in the magnitude of the
range of the modelled parameter. The r2 and RMSE
were still used as they are commonly used to measure
model performance in the literature. In addition to these
four measures calculated for each training, testing and
validation data set, the time series of observed and
modelled profiles along the modelling period were plot-
ted to examine when poor predictions occurred.

Model performance

The daily TDN export of five watersheds was modelled
using the above noted ANN modelling algorithm. Table
2 summarizes the incorporated model inputs for each
modelled watershed. The inputs generally include
causal inputs (R, Tmean, dd and EVI), time-lagged
inputs (Rt-1, Rt-2, etc., and ddt-1, ddt-2, etc.) and the inputs
reflecting seasonal (Julian day) and annual (Year index)
cycles of TDN export. The optimal ANN model archi-
tecture and internal parameters for all modelled water-
sheds are presented in Table 3. A single hidden layer
with three activation functions (logistic, Gaussian and
Gaussian complete) having the same number of nodes

produced the best simulation for the studied watersheds.
The training algorithm for Cassidy and Two Creek
models was back-propagation and that for Willow and
Thistle was back-propagation with a batch update.

The performance of the developed models was
evaluated by statistical measures of goodness-of-fit
(Table 4) and by examining the time series plot of the
measured and modelled TDN export profiles. The E
and r2 values of the validation data set exceeded 0.72
for all watersheds, except Thistle. For all studied water-
sheds, the values of TDN export were in the ranges of
zero g/km2/d to thousands of g/km2/d (Figure 2). The
MAE values for all data subsets were small compared
with the peaks of TDN export. The peaks of TDN
export occurred in spring during snowmelt and in
summer during heavy rainfall events (Figure 2). The
time series plot of measured and predicted results
showed that the models successfully predicted the
seasonal and annual variation of TDN export for the
studied watersheds. Most of the peaks were predicted
with a reasonable accuracy. The peaks for the Willow,
Cassidy, Two Creek and Thistle watersheds in the year
2002 were poorly predicted. This is likely because the

Table 2. Summary of all model inputs.

Model Inputs

1A Rt, Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Tmean, ddt, ddt-1, ddt-2, EVI, Julian Day, Year index
Cassidy Rt, Rt-1, Rt-2, Rt-3, Rt-4, Tmean, ddt, ddt-1, ddt-2, EVI, Julian Day, Year index
Thistle Rt-1, Rt-2, Rt-3, Rt-4, Tmean, ddt-1, ddt-2, ddt-3, EVI, Julian Day, Year index
Two Creek Rt-1, Rt-2, Rt-3, Rt-4,Tmean, ddt, ddt-1, ddt-2, EVI, Julian Day, Year index
Willow Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Tmean, ddt-2, ddt-3, EVI, Julian Day, Year index

Note: Rt, Rt-1, Rt-2, Rt-3, Rt-4, Rt-5 is rainfall in mm at lags of 0, 1, 2, 3, 4 and 5 days, respectively; Tmean is mean daily air temperature in degree C;
ddt, ddt-1, ddt-2 and ddt-3 are cumulative degree days at lags of 0, 1, 2, and 3 days, respectively; EVI is the MODIS enhanced vegetation index; Year
index is assigned value at either −1 or +1 (if the total rainfall of a year from April to October is lower than the 30-year average, that year is assigned
−1; if the total rainfall of a year from April to October is higher than the 30-year average, that year is assigned +1).

Table 3. Summary table showing optimum ANN models’ architecture and ANN internal parameters.

Willow Model Cassidy Model Two Creek Model Thistle Model 1A

Data division
(TS:SS:VS)

3: 1: 1 3: 1: 1 3: 1: 1 3: 1: 1 3: 1: 1

Scaling function <−1, 1> <−1, 1> <−1, 1> <−1, 1> <−1, 1>
Optimum network
(I-[H-H-H]-O)

11L-[4LO-4GC-
4G]-1LO

12L-[4LO-4GC-
4G]-1LO

11L-[4LO-4GC-
4G]-1LO

11L-[4LO-4GC-
4G]-1LO

13L-[4LO-4GC-
4G]-1LO

Training algorithm BP-BU BP BP BP-BU BP
Learning rate 0.1 0.1 0.1 0.1 0.1
Momentum coefficient 0.1 0.1 0.1 0.1 0.1
Initial weight range [− 0.3, + 0.3] [− 0.3, + 0.3] [− 0.3, + 0.3] [− 0.3, + 0.3] [− 0.3, + 0.3]
Epoch size 500 500 500 500 500
Stopping criterion On best test set On best test set On best test set On best test set On best test set

Note: I and O are input and output layers, respectively; [H-H-H] represents a single hidden layer with different activation functions; L, is the
linear scaling function; G, GC, and LO are the Gaussian, Gaussian complement, and logistic activation functions, respectively; TS, SS, and VS
are the training, testing and validation data sets, respectively; and < > means a open interval; BP is a typical gradient descent back-propagation
algorithm; BP-BU is a back-propagation algorithm with a batch update.
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training data set did not contain enough similar data
patterns as the ones to be predicted (2002 was the driest
of the five study years) to let the models learn and iden-
tify the occurrence of these peaks. Thus, the models did
not predict the peaks well due to the nature of these
data-driven models. The overall performance of the
models was fairly good, given that the models were
constructed with only readily available public domain
input data.
Figure 2. Time series plot of measured versus modelled daily TDN export for (A) Willow, (B) Cassidy, (C) Two Creek, and (D) Thistle watershed.

Modelling N export in unmonitored watersheds

The devised TDN export models produced reasonable
prediction accuracy, highlighting the possibility of
predicting TDN export in unmonitored watersheds
where such information is available at no cost. A critical
step for water quality modelling in unmonitored water-
sheds is to determine how to transfer calibrated models
to unmonitored watersheds.

Watershed similarity measurement

Model transferability from one watershed to other
watersheds is a very hard task due to the inherent vari-
ability in many watershed factors, including climate and
watershed characteristics (e.g., topography, vegetation,
land use and surficial geology). This study used the
composite information on soil types, rainfall and vege-
tation conditions to investigate watershed similarity.
The soil types of concern to this case study were peat-
land and riparian, which can be identified through RS
imagery [53,54]. Peatlands store precipitation and
surface water. The chemical and biological processes of
nitrification, denitrification and anaerobic ammonium
oxidation occur in peatland water and soils, such that
the amount and form of N differs between water enter-
ing and water leaving the peatland. In general, forested
peatlands contribute to high N export [55] and peatland
cover was positively associated with ammonium (a
fraction of TDN) export in the study watersheds [30].
Riparian soils also theoretically play an important role
in regulating N export to surface waters. The role of

riparian systems in Canada’s boreal forest is complex
due to the spatial variation in weather, soils, vegetation
cover, slope, accumulation of organic matter,
geographic location and relief [56]. In general, riparian
areas have the potential to reduce excess N export into
surface water [57,58]. Rainfall was also considered
because of its known contribution to N export.

Watershed vegetation dynamics, coverage and
disturbance can be easily monitored using satellite data.
In addition to the abovementioned EVI, the RS normal-
ized difference water index (NDWI) is a surrogate for
vegetation health in terms of leaf water content and
chlorophyll content [59]. The NDWI was calculated
using the near- (λNIR) and mid-infrared (λMIR) frequency
ranges downloaded from MODIS: 

To develop a representative index of watershed
similarity, the usefulness of the following indices (indi-
vidual or combined) in reflecting the success of model
transferability was examined: peatland index, riparian
index, rainfall index, EVI and NDWI. These indices
were calculated and plotted against the prediction accu-
racy of transferred models in terms of E. The relation-
ships between the E values and the calculated indices
were analysed, attempting to develop an index that can
correlate to the success of model transferability.

To normalize the variation of the indicators used (not
to bias the higher magnitude parameters), the original
data were first standardized by applying the following
relation: (original data – minimum value) / (maximum
value – minimum value). The standardized data were
then used to compute the indices based on the Euclidean
distance principle as follows: 

NDWI NIR MIR

NIR MIR

= −
+

λ λ
λ λ

( )11

Peatland Index Peatland Peatlandi j_ ( )= −( )2
12

Riparian Index Riparian Ripariani j_ ( )= −( )2
13

Table 4. Statistical measures of performance for the calibrated models.

Willow Model Cassidy Model Two Creek Model Thistle Model 1A

Measures TS SS VS TS SS VS TS SS VS TS SS VS TS SS VS

E 0.89 0.74 0.73 0.85 0.81 0.72 0.71 0.80 0.75 0.87 0.67 0.59 0.71 0.77 0.70
r2 0.89 0.75 0.74 0.85 0.82 0.72 0.75 0.81 0.75 0.87 0.67 0.66 0.72 0.79 0.72
MAE 112 143 134 144 141 165 221 225 243 116 183 181 251 312 287
RMSE 231 326 317 279 244 330 341 359 378 238 447 419 522 852 562

Note: TS, SS and VS are training data set, testing data set, and validation data set, respectively; MAE is mean absolute error in g/d/km2; RMSE
is root mean squared error in g/d/km2.
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Figure 2. Time series plot of measured versus modelled daily TDN export for (A) Willow, (B) Cassidy, (C) Two Creek, and
(D) Thistle watershed.
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where i and j represent two different watersheds and k
represents a day within the studied n days. The calcu-
lated indices between any two studied watersheds are
presented in Table 5.

Application of calibrated models to unmonitored 
watersheds

The calibrated models on Willow, Thistle, Cassidy and
Two Creek watersheds were applied to other water-
sheds (unmonitored watersheds in this context) from
which the models have never seen the data. The statis-
tical measures of model performance when the cali-
brated models were transferred to different watersheds
were calculated (Table 6). Among all the model transfer
cases, applying the Willow model to Thistle watershed

resulted in the best performance, with E = 0.62 and r2 =
0.63. The seasonal and annual periodicity of TDN
export in Thistle watershed was simulated well using
the Willow TDN export model (Figure 3A). These two
watersheds are adjacent to one another and have the
most similar soil properties in terms of peatland and
riparian cover in the watershed (Table 1). They are also
very similar in terms of rainfall and vegetation dynam-
ics (Table 5).
Figure 3. Time series plot of measured versus modelled daily TDN export (A) when Willow model applied to Thistle, and (B) Willow model applied to 1A.Applying the Willow model to watershed 1A gener-
ated the poorest performance, with E = 0.42 and r2 =
0.44. The 1A watershed has the largest range of TDN
export (0 to >10,000 g/km2/d TDN) (Figure 3B), prob-
ably because of its high percentage of peatland cover-
age (Table 1), which leads to retention of N in normal
weather conditions but to excess releases during spring
snowmelt or large storm events. The differences of
TDN export regimes between these two watersheds
result in the poor performance on transferring Willow
model to 1A watershed. However, the overall model
transferring results are very promising, since five years
of data were predicted fairly well, without being trained
with any watershed-specific data points.

Relationships between watershed similarity indices
and model transfer performance in terms of the E are
summarized in Figure 4. Among the individual water-
shed indices, rainfall_index explained the most variation
in E (r2 = 0.71, P ≤ 0.05), followed by NDWI (r2 = 0.69,

Rain Index Rain Raini k j k
k

n

_ ( ), ,= −( )
=

∑ 2

1

14

EVI Index Evi EVIi k j k
k

n

_ ( ), ,= −( )
=

∑ 2

1

15

NDWI Index NDWI NDWIi k j k
k

n

_ ( ), ,= −( )
=

∑ 2

1

16

Table 5. Summary of watersheds similarity indices.

Watersheds Peatland_Index Riparian_Index Rain_Index EVI_Index NDWI_Index

Willow – Cassidy 0.21 0.61 0.16 1.30 0.81
Willow – Thistle 0.02 0.26 0.01 0.58 0.64
Willow – 1A 0.61 0.74 0.39 2.84 2.79
Willow – Two Creek 0.28 0.22 0.55 1.69 2.73
Thistle – Cassidy 0.23 0.87 0.16 1.58 0.99
Thistle – 1A 0.59 1.00 0.39 2.58 2.75
Thistle – Two Creek 0.26 0.48 0.55 1.50 2.65
Cassidy – 1A 0.82 0.13 0.54 3.84 2.66
Cassidy – Two Creek 0.49 0.39 0.70 2.63 2.40
Two Creek – 1A 0.33 0.52 0.21 1.79 1.22

Note: the lower the similarity index, the more similar are the watersheds.

Table 6. Statistical measures of the model performance when the calibrated models were applied to other watersheds.

Measures

Willow 
applied to 
Cassidy

Willow 
applied to 

Thistle

Willow 
applied to 

1A

Willow 
applied to 
Two Creek

Thistle 
applied to 
Cassidy

Thistle 
applied to 

1A

Thistle 
applied to 
Two Creek

Cassidy 
applied to 

1A

Cassidy 
applied to 
Two Creek

Two Creek 
applied to 

1A

E 0.50 0.62 0.42 0.43 0.52 0.43 0.43 0.45 0.40 0.46
r2 0.52 0.63 0.44 0.52 0.54 0.45 0.57 0.48 0.60 0.49
MAE 187.26 150.49 366.90 303.89 215.41 360.03 272.97 303.77 250.13 321.08
RMSE 446.03 403.82 901.60 526.45 465.28 896.45 528.69 630.59 411.59 872.08
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P ≤ 0.05). Peatland_index and EVI were related to E,
with r2 values of 0.45 (P ≤ 0.05) and 0.44 (P = 0.06),
respectively. The riparian index was examined here
because the conducted literature review demonstrated
that the riparian systems generally have impact on N
export from watersheds. However, the riparian index did

not provide an important measure of watershed similar-
ity in this study. One possible reason is that the riparian
coverage in the selected watersheds is in the range of
0%–4.6%, which may be not large enough to address the
differences among the watersheds in terms of riparian
variations.

Figure 3. Time series plot of measured versus modelled daily TDN export (A) when Willow model applied to Thistle, and (B)
Willow model applied to 1A.
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Figure 4. Plot of model transferability performance measure E versus watershed similarity indices.The combined effects of two most important indi-
vidual indices, rainfall and vegetation conditions,
displayed a stronger relationship than either of them
alone with E (r2 = 0.73, P ≤ 0.05) (Figure 4F). If the
three most important factors were considered, their
contribution to the variation in E was marginally
improved to r2 = 0.74 (P ≤ 0.05) (Figure 4G).

The proposed measures of watershed similarity
make use of public domain rainfall and RS information
that can be easily calculated for unmonitored boreal
forest watersheds. Initial results from the current study
can be used to predict the expected success of model
transferability as follows: (1) to predict N export in an
unmonitored watershed j, select several monitored

Figure 4. Plot of model transferability performance measure E versus watershed similarity indices.
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watersheds; (2) calculate watershed similarity index
between any monitored watershed i and the unmoni-
tored watershed j: Peatland_Indexi-j+ Rain_Indexi-j +
NDWI_Indexi-j; (3) select the most similar monitored
watershed k to the unmonitored watershed, which has
the lowest similarity index (the more similar are two
watersheds, the lower the value of similarity index
between them); and (4) apply the calibrated model k to
the unmonitored watershed.

In regards to predicting N export from watersheds,
there are mechanistic alternatives to ANNs such as Soil
and Water Assessment Tool (SWAT) and Generalized
Watershed Loading Functions (GWLF). The SWAT
model is a physically based distributed watershed
model and operates on a daily time step. It was devel-
oped to predict the impact of watershed management on
water, sediment, nutrients (N and phosphorus), and
agricultural yields in large basins for a long simulation
period [60]. GWLF is considered to be a GIS-based
distributed and lumped parameter watershed model and
has the ability of simulating monthly sediment and
nutrient loadings [61]. For execution, GWLF requires
transport-, nutrient-, and weather-related data [61]. The
transport data define the necessary parameters for each
source area to be considered (e.g., area size, curve
number, etc.) and global parameters (e.g., initial stor-
age, sediment delivery ratio, etc.) that apply to all
source areas. The nutrient data specify the various
loading parameters for the different source areas identi-
fied (e.g., number of septic systems, urban source area
accumulation rates, manure concentrations, etc.). The
weather data contain daily average temperature and
total precipitation values. Compared with ANN models,
SWAT and GWLF models take considerations of
spatial variations and the physical processes of nutrient
exports in further details. However, ANN models have
less data requirements and do not need specific
transport-related data such as sediment delivery ratio,
which make them practically applicable in physically
inaccessible watersheds.

The results obtained suggest that the key to obtaining
good model predictions on unseen data is the availabil-
ity of representative data for model training (including
wet, dry and normal conditions), and the key for
successful model transferability is watershed similarity.
Further investigations are needed to rigorously test and
to expand on the proposed watershed similarity indices.

Conclusions

The current study proposed a MLP algorithm that uses
low-cost, readily available meteorological and satellite
data to model TDN export in boreal forest watersheds.
The IDW interpolation technique was used to generate
the rainfall data at studied watersheds by using

surrounding Environment Canada weather station data.
The temperature index approach was used to account
for snowmelt. The MLP algorithm was applied to five
watersheds to model N export. The performance of the
models was evaluated using statistical measures of
model performance, as well as examining the time
series plots of measured versus modelled TDN profiles.
Although the modelled parameter had a wide range of
values (i.e., the peak values were over thousands of the
low values), it was simulated fairly well. The best MLP
architecture for all the developed models had a single
hidden layer with three activation functions. The appli-
cation of the devised algorithm to five watersheds rang-
ing from around 5–130 km2 in area demonstrated the
success of the ANN modelling approach in predicting
daily TDN using only public-domain and readily avail-
able data, indicating its potential application to unmon-
itored watersheds.

To demonstrate the applicability of the developed
models to unmonitored watersheds, the calibrated
models were used to predict TDN export in other water-
sheds (unmonitored watersheds in this perspective)
without further calibration. The results of transferring
the calibrated models to other unmonitored watersheds
were promising, with E and r2 values in the range of
0.40–0.62 and 0.44–0.63, respectively. The transferred
models managed to predict the seasonal and annual
periodicity of N export, even though some peak values
were not well predicted.

In an effort to quantify watershed similarity to
potentially guide the transferability of models from one
watershed to the other, five similarity indices were
developed and tested. The relationship (in terms of r2)
between the proposed indices and model transfer
performance (E) was then calculated for all proposed
indices. The best watershed similarity index was found
to be the combined (Rainfall_Index+ Peatland_Index+
NDWI_Index), with r2 = 0.74. Initial results from the
current study can be used to predict the expected
success of model transferability in unmonitored boreal
forest watersheds. Although the proposed indices are
not mature enough to have a meaningful threshold
above which the models should not be transferred from
one watershed to the other, this initiative is innovative
in expanding and refining watershed similarity indices
relies on free-of-cost RS information.

The advantage of using ANNs in watershed model-
ling is that they can model complex N transfer and stor-
age processes without extensive data requirements and
are applicable in unmonitored watersheds. On the other
hand, the users of ANN models should be aware of their
limitations, which result from the nature of data-driven
models. The ANN models should be re-trained if there
are significant changes of the watershed characteristics
based on which they are originally calibrated.
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