
REGULAR ARTICLE

Heterotrophic microbial activities and nutritional status
of microbial communities in tropical marsh sediments
of different salinities: the effects of phosphorus addition
and plant species

Barbora Pivničková & Eliška Rejmánková &

Jenise M. Snyder & Hana Šantrůčková

Received: 31 October 2009 /Accepted: 13 May 2010 /Published online: 4 June 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Oligotrophic, phosphorus (P) limited her-
baceous wetlands of northern Belize are being
impacted by P loading from fertilizer runoff. P
enrichment causes a shift in autotroph communities
from a microphyte (cyanobacterial mats, CBM) to
macrophyte (Eleocharis spp., Typha domingensis)
dominated system. To document potential effects of
P, salinity, and macrophyte species on the heterotro-
phic microbial community nutritional status (repre-
sented especially by specific phospholipids fatty acids
and specific respiration rate), biomass and activities,
we took soil samples from established P enrichment
plots in replicated marshes of two salinity levels. P
addition increased microbial biomass carbon (C),
nitrogen (N) and P, as well as soil nutrient transfor-
mation rates (nitrogenase activity, N mineralization
and immobilization, methanogenesis). The effect of
plant species (Eleocharis vs Typha sites) was gener-

ally lower than the effect of P addition (CBM vs
Eleocharis sites) and was most evident at the low
salinity sites, where Eleocharis dominated plots had
enhanced nitrogenase activity and P microbial immo-
bilization. Salinity reduced the overall rates of
microbial processes; it also weakened the positive
effect of both P addition and plant species on
microbial activities. Lastly, the amount of N stored
in microbial cells, likely in form of osmoprotective
compounds, was enhanced by salinity.
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Abbreviations
CBM Cyanobacterial mats
NA Nitrogenase activity
DEA Denitrification enzyme activity
PLFAtot Amount of phospholipid fatty acids
TBFA Terminally branched fatty acid
SRB Sulfate reducing bacteria
MBC Microbial biomass carbon
MBN Microbial biomass nitrogen
MBP Microbial biomass phoshorus
Pox Oxalate extractable sediment P
C avail Available carbon
QCO2 Specific respiration rate
MUFA/
STFA

Monounsaturated/saturated fatty acids
ratio
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Introduction

In aquatic and wetland systems, microorganisms are
the most abundant and important biological compo-
nent involved in organic matter turnover (Pomeroy
and Wiegert 1981). Organic matter is used by
microbes as a growth substrate and nutrient supply;
it is the location, quantity, and quality of organic
matter that determine microbial abundance and
production (Cunha et al. 2000; Boschker et al. 1999).

In marsh sediments, microbial production is gen-
erally high and strongly influenced by organic matter
released from primary producers’ exudates and/or
decomposing litter (Moriarty and Pollard 1981).
Carbon from the organic matter is assimilated into
the microbial biomass or rapidly transformed to CO2

(Créach et al. 1999). The size, composition, and
activity of the heterotrophic microbial pool are all a
reflection of the dominant plant species’ partitioning
of resources and growth (Semenov et al. 1999).
Among the possible mechanisms, plants regulate
nutrient availability by competing with microorgan-
isms for nutrient resources and control sediment
aeration by consuming or releasing oxygen to the
rhizosphere.

Plant production is determined by a wide range of
environmental factors, among which, nutrient avail-
ability often plays a major role, especially in
oligotrophic wetlands. While macrophyte community
changes following nutrient loading have been
reported for various types of wetlands (Childers et
al. 2003; Wolin and Mackeigan 2005), it is not clear
how the changes in macrophytes, in turn, affect the
sediment microbial communities (Ravit et al. 2006;
Francoeur et al. 2006). The effect of macrophytes on
heterotrophic microbial activity, as well as on rhizo-
spheric bacterial composition may be species specific
(Bagwell et al. 2002; Burke et al. 2002). The presence
of plant species with distinct growth patterns and
resource allocation can lead to differences in the
proportion of modified bulk soil, and, thus, result in
different populations and/or degrees of soil microbial
activities (Semenov et al. 1999).

Wetlands can vary widely in salinity level, with
high salinity posing a potential stress to plants as well
as microbial growth. In saline environments, bacteria
have to cope with ionic stress, which is balanced by
intracellular osmoprotective compounds, many of
which are sugars (Welsh and Herbert 1999) or contain

N (amino acids and their derivatives; Csonka 1989;
Galinski and Trüper 1994). Even under moderate
increases in salinity, bacteria may modify the chem-
ical composition of their cell membranes, synthesiz-
ing and altering the patterns of proteins, lipids, fatty
acids and polysaccharides (Zahran 1997).

This study focuses on a wetland site in northern
Belize that is well suited to assess the impact of
different plant species on sediment microbial com-
munities. The site includes marshes of a wide range of
salinities with a well established system of nutrient
enriched plots, which are dominated by only a few
macrophyte species (Rejmánková et al. 2008). Under
natural un-impacted conditions, all of these wetlands
are dominated by benthic cyanobacterial mats with
scattered macrophytes, mainly Eleocharis cellulosa
and E. interstincta, and are strongly P limited. The
region is experiencing increasing nutrient inputs from
fertilizer runoff due to the expansion of sugar cane
cultivation and its impact, specifically the expansion
of Typha domingensis, has been documented in some
of the marshes (Johnson and Rejmánková 2005). In
2001, we initiated a long term manipulative experi-
ment using these wetlands as a model system, to
obtain a mechanistic explanation for an ecosystem
level response to increased nutrient input across a
salinity gradient. We have already confirmed that P
addition leads to almost total elimination of cyano-
bacterial mats due to the expansion of Eleocharis
cellulosa, and, eventually, the replacement of Eleo-
charis by Typha domingensis (Rejmánková et al.
2008).

Both Eleocharis and Typha are rhizomatous per-
ennials, but while Eleocharis is a good example of a
stress tolerator adapted to P limitation stress, Typha
behaves as a competitor (sensu Grime 2001) and is
able to outcompete Eleocharis once the P-limitation
has been removed (Macek and Rejmánková 2007). We
expected that due to their different biomass produc-
tion, nutrient uptake, and resorption (Rejmánková
2005), these two macrophytes will provide organic
material of contrasting amounts and quality to the
sediments and, consequently, they will differentially
impact the microbial activities in the respective
sediments.

The aim of this paper is to document how
microbial biomass and activities (nitrogen and carbon
mineralization, denitrification enzyme activity and
nitrogenase activity) in wetland sediments are impact-

50 Plant Soil (2010) 336:49–63



ed by the addition of a limiting nutrient (P) and the
accompanied changes in macrophyte species and
production. Based on previous results on macrophyte
growth and plant tissue composition in P enriched
wetlands, we expect that the functioning of sediment
microflora will be positively impacted by a greater
input of organic carbon through plant litter and root
exudates and by more favorable C/P ratio of the plant
litter (Fig. 1). Using wetlands of two contrasting
salinity levels allows us to interpret the data in the
salinity context.

We hypothesize that:

1. The nutrient content (N and P stoichiometry) in
microbial biomass will be enhanced either direct-
ly by the removal of P limitation, or indirectly by
increased available C from macrophyte exudation
and a litter.

2. Plant species will differ in quality (C, N, P
favorable stoichiometric ratio) and quantity of a
litter thus affecting microbial biomass and activity.

3. An enhanced microbial N demand will be
reflected in faster N transformations.

4. The rate and direction of the changes in microbial
activities and biomass will be salinity dependent.

Materials and methods

Study site

Our study area is located in the lowlands of northern
Belize, Central America within a 50 km radius of 18°9′
58″ N and 88°31′28″. A detailed description has been
provided elsewhere (Černá et al. 2009; Rejmánková
et al 2008). Briefly, the limestone geology and
occasional intrusion of seawater result in diverse range
of water conductivities (0.2–7 mS) with large differ-
ences in sulfate, bicarbonate and chloride. The climate
of the region is tropical wet–dry. The majority of
wetlands in the study area remain flooded or water
saturated year round, although the total flooded area
may vary as water levels rise and fall.

The main primary producers in these systems are
several species of emergent macrophytes (Eleocharis
cellulosa, E. interstincta, Cladium jamaicense and
Typha domingensis) and species rich communities of
microphytes represented mostly by cyanobacteria
(Rejmánková et al. 2004). Both the macro- and

microphytes in these wetlands are generally P limited
(Rejmánková 2001; Rejmánková and Komárková
2000). No nitrogen limitation has been detected in
any of the reported studies.

Treatment plot history

Fifteen marshes of diverse salinities, all dominated by
sparse macrophytes (Eleocharis spp.) and cyanobacte-
rial mats (CBM), have been studied as a part of a project
aimed at assessing the ecosystem response to nutrient
addition along a salinity gradient (Rejmánková et al.
2008). In August of 2001, four 10×10 m plots were
established in each marsh, with one representing a
control, and the remaining three receiving N, P and N &
P additions in August 2001, August 2002 and March
2005. N was added as ammonium nitrate and P as triple
super phosphate in amounts corresponding to 20 and
10 g m−2 y−1, respectively. In March 2003, one
individual of Typha domingensis was planted in each
plot. While the Typha plant did not survive in the
majority of controls and N addition plots, it grew and
spread vigorously in the P enriched plots, and out-
competed Eleocharis. In January of 2005 to current, the
P addition plots in six of the 15 marshes have been
manipulated and maintained to be half dominated by
Eleocharis and half dominated by Typha (Fig. 2). In
March 2007, four of these six marshes, two from the
low and two from the high salinity categories, were
sampled to dually measure the impact of P addition and
macrophyte dominance on the microbial activities and
community composition. For the general characteristics
of these marshes see Table 1.

Soil sampling

During the time of sampling, all plots were flooded
and the water depth ranged from 25 cm to 70 cm. At
each marsh, samples were collected from (1) control
plots with sparse growth of Eleocharis (low-phos-
phorus Eleocharis, LP/E), (2) P-addition plots dom-
inated by Eleocharis cellulosa (high-phosphorus
Eleocharis, HP/E) and (3) P-addition plots dominated
with Typha domingensis (high-phosphorus Typha,
HP/T); for experimental design and sampling strategy
see Fig. 2. Recently deposited, readily distinguishable
plant detritus on the soil surface was gently removed
before sampling. Eight randomly located sediment
samples were collected with a 5.5 cm diameter sharp
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edge PVC corer to a depth of approximately 30 cm.
The upper section (1–10 cm) representing mostly the
rhizosphere, was used for the analyses. Samples were
placed in ziplock bags and transported on ice. Large
plant debris, roots and shells were removed and
samples were homogenized. Nitrogenase activity and
N–NH4 and N–NO3 contents in sediment were
measured immediately. Samples for the remaining
analyses were divided into two parts. One part was
stored in sealed bags for a maximum of 1 month at
4°C and the other was oven dried at 105°C to a
constant weight for determination of the gravimetric
water content and elemental composition (C, N,
reactive P) of the soil. All the subsequent analyses
were conducted in triplicate.

Plant biomass and tissue analyses

For Eleocharis, plant height was measured and shoots
were counted in ten randomly selected 20×20 cm

subplots in each plot. Ten mature stems from each
plot were collected and their length measured before
drying (80°C) and weighing to calculate the specific
stem weight (g cm−1). The biomass was expressed as
a product of the average number of stems × average
height × specific stem weight. The same dried plant
material was ground on a Wiley mill and used for
nutrient analysis. To assess the nutrient content of
litter, representative samples of recently senescent
leaf/stem tissue were collected, dried, ground and
analyzed. For Typha, the number of leaves and
average leaf length were measured on 8–10 randomly
selected individuals in each plot and the number of
individuals was counted in 8–10 random square m.
The biomass was expressed using the correlation
between total leaf length and dry mass. The annual
primary production was expressed as biomass multi-
plied by the turnover rate (2.6 and 3 for Eleocharis
and Typha, respectively; calculated from plant lon-
gevity, see Rejmánková et al. 2008). The annual
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Fig. 1 Conceptual diagram of microbial processes in (a) P
limited and (b) P loaded wetlands. P enhances the role of
sediment microorganisms (indicated by extended arrows) in
nutrient transformation processes due to an increase of organic

C input through plant litter and root exudates and by the
elimination of cyanobacterial mats. Extracel PA = extracelular
phosphatase activity
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Fig. 2 Schematics of the experimental design and sampling
strategy. Eight soil cores were randomly collected (black dots)
from control plots (white) and P-enriched plots dominated by

Eleocharis (light gray) and Typha (dark gray). To avoid the
discrepancy in plot size; only 5×10 m area (indicated by dotted
line) was sampled in controls
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primary production and litter nutrient content from
2006 were used to characterize the impact of macro-
phytes on the sediment microorganisms.

Root primary production was assessed in two
marshes (high and low salinity) using mesh in-
growth cores (Steingrobe et al. 2000). Each in-
growth core (4.3 cm diameter, 20 cm length) was
constructed from 2×3 mm flexible mesh screening
and filled with root-free soil taken from each plot to
match the mean bulk density of plot soils (N=3). In
each plot, three in-growth cores were inserted into
cored holes and were left to incubate for 3 months.
After this time, the cores were carefully removed and
rinsed with marsh water. Roots protruding from the
exterior were cut and the contents of each mesh core
were sequentially washed through a 1 mm and
0.5 mm sieve. Living and dead roots were then
separated from each sample using a two-phase
decanting technique in Ludox TM-50, originally
developed for mangrove roots (Robertson and Dixon
1993). As with the aboveground plant material, the
separated roots were dried, weighed and ground. Due
to the relatively small size of each sample, the ground
roots were pooled by plots and then analyzed for
nutrient content. From the remaining two marshes,
roots were also non-quantitatively collected and
analyzed for nutrient content. To gain annual root
production rates, this process was repeated every
three months throughout 2007.

Chemical analyses

Soil and plant total organic carbon (TOC) and total
nitrogen (TN) were analyzed on a Carlo-Erba series
5,000 CHN-S analyzer. Soil samples were pretreated
with 0.1 M HCl to remove carbonates. Available C
was measured as organic C in 0.5 M K2SO4 extract
(Ettema et al. 1999) using an organic C analyzer

(Shimadzu total organic carbon analyzer TOC-
5050A). Total phosphorus (soil P) was analyzed using
ascorbic acid reduction of phosphomolybdate com-
plex after acid digestion (McNamara and Hill 2000).
Oxalate extractable sediment P (Pox) was analyzed
using ascorbic acid reduction of phosphomolybdenate
complex in oxalate extracts (Owens et al. 1977). The
N–NH4 and N–NO3 concentrations in 0.5 M KCl
extract were analyzed by flow injection analyzer
(FIAstar 5012, Foss Tecator, Sweden).

Nutrients in microbial biomass

We used two fumigation extraction procedures to
determine microbial biomass carbon (MBC), nitrogen
(MBN) and phosphorus (MBP) within 10-g of the
refrigerated soil subsamples. MBC and MBN were
calculated after subsequent 0.5 M K2SO4 extractions
(Vance et al. 1987) as the difference in K2SO4-
extractable C and N between the fumigated and
unfumigated samples (Shimadzu total organic carbon
analyzer TOC-5050A) and corrected by extraction
efficiency factors of kEC=0.37 and kEN=0.54, respec-
tively. The MBP was calculated after subsequent
NaHCO3 extraction and quantification of P by the
molybdophosphate complex method (Olsen and
Sommers 1982). All biomass values were expressed
per gram soil dry weight.

Nutritional status of microbial community

Phospholipid fatty acids (PLFA) were analyzed in 2 g
of the refrigerated soil according to Frostegård et al.
(1993). Phospholipids were separated, quantified and
identified by gas chromatography (HP 6890 with
flame ionization detector, FID). PLFA were identified
by comparing the retention times of the sample with
FAME standards (Supelco, Larodan Fine Chemicals

Marsh # Area ha Conductivity
mS cm−1

Sediment type Soil P
mg cm−3

Soil
N mg cm−3

Low salinity

F10 4.7 0.231 (0.068) Peaty clay 0.09 (0.01) 3.88 (0.68)

F12 11.3 0.658 (0.164) Marly clay 0.09 (0.01) 3.31 (1.01)

High salinity

F6 63.4 6.671 (1.479) Marl 0.10 (0.03) 2.16 (0.50)

F7 18.2 5.667 (1.328) Marl 0.10 (0.01) 1.54 (0.03)

Table 1 Characteristics of
the selected marshes from
August 2001, before the
beginning of the nutrient
addition experiment. Values
represent means of four 10×
10 m plots in each marsh for
water conductivity, and soil
total P and N. Standard
deviations are given within
the parentheses
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AB). The mol% of terminally iso- and anteiso-
branched fatty acids was combined into terminally
branched fatty acids group (TBFA; Haack et al. 1994)
indicating the presence of amino acids in the
environment as primers for TBFA formation (Kaneda
1991). The ratio of monounsaturated to saturated FAs
(MUFA/STFA) was examined as it can change due to
membrane changes in response to environmental
stresses; where an increasing ratio signifies an
increase in carbon (energy) availability (Kieft et al.
1997). Since the quantity of microbial PLFA is a
function of microbial biomass (Zelles et al. 1992), we
used the total amount of all bacterial PLFA identified
in the samples as an index of live microbial biomass
(PLFAtot). The specific respiration rate (CO2 per unit
microbial biomass; QCO2) was also calculated. Higher
specific respiration rates indicate increasingly stress-
ful environmental conditions to the microbial com-
munity (Anderson and Domsch 1990).

Microbial nutrient transformation

Nitrogen mineralization

Three week incubations of 10 g fresh soil subsam-
ples in 100 mL flasks covered with perforated
parafilm at 25°C in the dark were used for measuring
net N mineralization rate (Ste-Marie and Paré 1999;
Šantrůčková et al. 2001). Net mineralization rate was
calculated as a difference between final (21 days)
and beginning (7 days) concentrations of N–NH4,
divided by the number of days.

Carbon mineralization

Soil subsamples (30 g) were slowly stirred with
20 mL of physiological salt solution (0.9% NaCl) in
tightly closed 100 mL bottles incubated at 25°C in the
dark. Incubations were conducted under both aerobic
and anaerobic conditions. Aerobic respiration (aero-
bCO2) was measured under an atmosphere of 21% O2

after 24 h. Anaerobic conditions were achieved by
bubbling the water phase of the samples with helium
gas for 10 min. Samples for anaerobic respiration
(anaerobic CO2) and CH4 production (methanogene-
sis) were incubated for 14 days and gas production
was measured using HP 5,890 gas chromatograph
(Agilent, USA), with a thermal conductivity detector
for CO2, and FID for CH4.

Denitrification enzyme activity (DEA)

Denitrification enzyme activity was measured using
an acetylene-inhibition technique (Balderston et al.
1976). Ten grams of fresh weight soil were incubated
in 100 mL flasks with 15 ml of nutrient solution
containing excess nitrate (0.5 g l−1 KNO3, 1 g l−1

glucose). At the start of experiment, 10% of the gas
phase of the samples was replaced with acetylene.
The production of nitrous oxide was taken (0.2 ml)
and measured from the headspace at time zero and
after 30 and 60 min using a HP 6,890 gas chromato-
graph equipped with an electron capture detector.

Nitrogenase activity (NA)

To measure potential nitrogenase activity, we used a
modification of the acetylene reduction assay method
(Hardy et al. 1968). Glucose (0.184–0.696 mg C g−1)
was mixed into the 50 g of fresh soil and sealed in
100 mL glass bottles, which were equilibrated to
atmospheric pressure. From each bottle, 30 ml of the
headspace was removed and subsequently replaced
with 20 ml of N2 gas to lower the partial pressure of
oxygen. Ten mL of acetylene, freshly prepared from
CaC2, were added to each bottle, which were then
vigorously shaken for 1 min, and incubated under
dark conditions at 28°C. Bottles were shaken again
after 12 h and at the end of the incubation. After 24 h,
approximately 15 ml of headspace were withdrawn
and analyzed using a Shimadzu 14 gas chromato-
graph, equipped with FID. Controls run with samples
without acetylene as well as blanks showed no
endogenous ethylene production. Rates of acetylene
reduction were expressed as nmol of acetylene
reduced per gram dry mass of sample per day of
incubation.

Data analysis

Two-way ANOVAs, with Neumann-Keuls Post Hoc
tests, were used (STATISTICA version 7.0) to evalu-
ate: (1) the effect of P addition and salinity comparing
LP/E and HP/E plots at the high and low salinity sites;
and (2) the effect of plant species and salinity
comparing HP/E and HP/T at the high and low salinity
sites on sediment characteristics and microbial com-
munities and processes. We could not use a 3-way
ANOVA due to the unbalanced design (there is no
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combination of low P and Typha). Root production
data were Box-Cox transformed to meet the assump-
tions of normality and homoscedasticity. Root tissue
nutrients could not be statistically tested, as the
samples were pooled for each plot, but data were
correlated to shoot tissue.

Results

P addition and salinity effect

P addition significantly increased aboveground bio-
mass production (NPPshoot; Table 2a&b). It also
significantly increased P content and slightly in-
creased N content of live tissue (data not shown, but
see Rejmánková et al. 2008), and because live and
dead tissue nutrient content is closely correlated, the
same increase was observed in the senescent tissue
(litter) (Table 2a&b). The increase of shoot P content
was much higher than that of N leading to highly
significant changes in shoot nutrient ratios, especially
C/P and N/P, which decreased up to more than five-
fold (Table 2a). There was no, or marginal effect of
salinity on litter nutrients with the exception of C/P
ratio which was lower at high salinity marshes
(Table 2a&b). Neither P addition, nor salinity had a
significant effect on root production (Table 2b).
However, the ratios of roots to shoots dramatically
decreased in response to P (Table 2a&b). Senescent
root nutrient content, specifically P and C/P were
closely correlated with senescent shoot nutrient
contents (R2=0.877; P=0.02; N=6, and R2=0.848;
P=0.09; N=6 for tissue P and C/P, respectively; data
not shown).

From measured chemical parameters of the sedi-
ment, P addition positively affected mainly Pox,
whose concentration increased by about an order of
magnitude over LP, and also TOC and TN contents
(Table 3a&b). C avail increased with P addition, but
only in the low salinity plots (Table 3a&b). The
nitrate content was significantly lower in the high
salinity than in the low plots (Table 3a&b). The
nitrate content increased in the P-added plots only for
the high salinity sites while it decreased in the low
salinity sites (Table 3a). Nutrient and C contents were,
in general, lower at high salinity (Table 3a). Ammo-
nium content was not significantly affected by P or
salinity (Table 3a, b).

Microbes responded to the altered nutrient avail-
ability in the sediment of the P-added plots with a
significant increase of MBC, MBN, MBP, while
microbial biomass, indicated by PLFAtot, did not
significantly change (Table 4a&b). The increase in
MBC and MBP was salinity dependent with signifi-
cantly higher values at the low salinity sites
(Table 4a&b). Similar to plant C/P ratios, microbial
MBC/MBP significantly decreased at the HP plots,
and the ratio was lower at high salinity (Table 4a&b).
Similar to plant C/N, MBC/MBN was not affected by
P addition (Table 4a&b). MBC/MBN was significant-
ly lower, however, in high salinity marshes. Both
MBN and MBC were lower at high salinities, while
PLFAtot was higher at high salinity (Table 4a&b).

The effect of P addition on microbial community
nutritional status was indicated by an increase of
MUFA/STFA ratio and by a decrease of PLFAtot/
MBC (Table 5a&b). While the response of PLFAtot/
MBC to P was salinity dependent, the response of
MUFA/STFA and QCO2 were not. Salinity per se
negatively affected MBC/TOC and enhanced all other
parameters related to the nutritional status of micro-
bial community (PLFAtot/MBC, QCO2, and TBFA).

Nitrogen mineralization, denitrification enzyme
activity, nitrogenase activity and methanogenesis
were enhanced by P addition, while aerobic and
anaerobic respiration were not significantly affected
(Table 6a&b). Salinity decreased N mineralization,
denitrification enzyme activity and methanogenesis
and weakened the positive effect of P addition on
these processes (Table 6a&b).

Plant species and salinity effects

Eleocharis and Typha had similar shoot and root
production (NPPshoot, NPProot, respectively) at the
high salinity sites, but Eleocharis had a higher
production at the low salinity sites (Table 2a&c).
Shoot litter of Typha, as compared to Eleocharis, had
slightly but significantly higher C content and similar
P content. Shoot litter N content was slightly greater
at high salinity sites, but there were no significant
differences in C and P of litter. Both species had
similar root N content that was comparable with shoot
N, but Typha had always almost two times higher root
P content than Eleocharis (data not shown). Eleocha-
ris also had higher ratios of root to shoot biomass
compared to Typha (Table 2a).
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The effect of plant species on chemical and
microbial characteristics of the sediment was gener-
ally lower than the effect of P addition, which was
mainly evident at the low salinity sites (Tables 3b&c,
4b&c, and 5b&c). As compared to Eleocharis plots,
Typha plots were significantly higher in Pox content at
both salinity levels and in TOC at only low salinity
(Table 3a&c). Other sediment nutrients were unaf-
fected by plant species (Table 3c). The contents of
TOC, TN and Pox were generally lower at high
salinity sites (Table 3a).

In Typha plots, MBN and microbial biomass,
indicated by PLFAtot, were higher, but MBC/MBN
ratio was lower than in Eleocharis plots (Table 4a).
Conversely, phosphorus immobilization in microbial
cells, indicated by higher MBP and lower MBC/MBP,
was enhanced in Eleocharis plots. All the above
differences were more distinctive at the low salinity
sites (Table 4a). High salinity weakened plant species
effect in all cases but PLFAtot.

Microbial community nutritional status was not
affected by plant species (Table 5c). It was negatively

influenced by high salinity, as indicated by lower
MBC/TOC ratio and higher PLFAtot/MBC, QCO2 and
proportion of TBFA groups (Table 5a&c).

Impact of plant species on microbial processes was
not consistent and was largely insignificant (Table 6c).
The exception was NA and SRB; NA was significant-
ly higher while the mol% of the SRB biomarker was
lower in the soil from the Eleocharis plots (Table 6a).
Typha supported denitrification enzyme activity and
respiration (both aerobic and anaerobic), and reduced
methanogenesis at the low salinity sites, while its
influence was opposite at the high salinity sites
(Table 6a&c). High salinity mostly reduced the rate
of the microbial processes (Table 6a).

Discussion

P addition effect

In the studied marshes, P addition significantly
increased aboveground production and ratio of shoot

Table 2 Aboveground primary production (NPPshoot, data from 2006), root production (NPProot) and litter carbon (C), nitrogen (N)
and phosphorus (P) contents, for low and high salinity marshes and three different treatments: P unenriched sites dominated by
Eleocharis cellulosa (LP/E) and P enriched sites dominated either by E. cellulosa (HP/E) or Typha domingensis (HP/T). NPP values
are averages of N=4 (two marshes and two sampling dates, February and August 2006) except for root production, which was
measured only in two marshes, from high and low salinity each. Nutrient data are replicates from two marshes. Section 2a refers to
treatment means; section 2b refers to p-values of P addition and salinity effect; section 2c refers to p-values of plant species and
salinity effect; “ns” means P>0.05 (ANOVA)

Salinity NPProot NPPshoot Root/Shoot Litter nutrients (% dry mass)

g m−2 y−1 g m−2 y−1 C N P C/N C/P N/P

2a Treatment means

LP/E Low 260 120.1 2.8 43.3 0.46 0.007 95.2 6,404.5 68.1

HP/E Low 516 481.3 0.7 44.4 0.56 0.033 86.6 1,865.5 19.9

HP/T Low 148 217.9 0.5 47.4 0.47 0.031 103.1 1,554.8 15

LP/E High 251 88.4 2.2 43.7 0.55 0.012 80.6 3,644.9 46.7

HP/E High 167 237.5 1.1 43.3 1.05 0.053 42.3 819.1 20.2

HP/T High 176 377.8 0.7 46.1 0.59 0.05 75.5 950.2 13.7

2b p-values—effect of P addition and salinity

P effect ns 0.006 ns ns 0.018 ns 0.004 0.015

Salinity effect ns 0.043 ns ns ns ns 0.04 ns

P Salinity ns ns ns ns ns ns ns ns

2c p-values—effect of plant species and salinity

Plant effect ns ns 0.006 ns ns ns ns ns

Salinity effect ns ns ns ns ns ns ns ns

Plant × salinity ns ns ns ns ns ns ns ns

Table 2 Aboveground primary production (NPPshoot, data from
2006), root production (NPProot) and litter carbon (C), nitrogen
(N) and phosphorus (P) contents, for low and high salinity
marshes and three different treatments: P unenriched sites
dominated by Eleocharis cellulosa (LP/E) and P enriched sites
dominated either by E. cellulosa (HP/E) or Typha domingensis
(HP/T). NPP values are averages of N=4 (two marshes and two

sampling dates, February and August 2006) except for root
production, which was measured only in two marshes, from high
and low salinity each. Nutrient data are replicates from two
marshes. Section 2a refers to treatment means; section 2b refers
to p-values of P addition and salinity effect; section 2c refers to
p-values of plant species and salinity effect; “ns” means P>0.05
(ANOVA)
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Table 3 Chemicalparametersinthesediment(1–10cm)forlowandhighsalinitymarshesandthreedifferenttreatments:PunenrichedsitesdominatedbyEleocharis
cellulosa (LP/E) and P enriched sites dominated either by E. cellulosa (HP/E) or Typha domingensis (HP/T). Values are averages of N=6 (three replicates from
twomarshes). Section 3a refers to treatment means; section 3b refers to p-values of P addition and salinity effect; section 3c refers to p-values of plant species and
salinity effect; “ns” means P>0.05 (ANOVA)

Salinity TOC TN C avail Pox NH4–N NO3–N

3a Treatment means

LP/E Low 110.20 9.16 43.0 0.76 2.75 1.88

HP/E Low 195.0 11.51 238.6 7.30 3.25 0.70

HP/T Low 219.9 12.98 250.3 16.11 1.50 0.45

LP/E High 145.50 5.08 185.3 0.93 2.47 0.03

HP/E High 165.4 6.87 172.2 6.17 2.84 0.20

HP/T High 163.8 7.26 111.0 9.03 2.06 0.16

3b p-values—effect of P addition and salinity

Phosphorus effect 0.0001 0.016 0.0001 0.0001 ns 0.027

Salinity effect ns 0.0001 ns ns ns 0.0001

Phosphorus × Salinity 0.0001 ns 0.0001 0.029 ns 0.006

3c p-values—effect of plant species and salinity

Plant effect 0.032 ns ns 0.0001 ns ns

Salinity effect 0.0001 0.0001 0.0001 0.0001 ns ns

Plant × salinity 0.017 ns ns 0.0001 ns ns

TOC, TN total organic carbon and total nitrogen in mg g−1 ; C avail available carbon, Pox oxalate extractable phosphorus, NH4–N,
NO3–N ammonium and nitrate nitrogen, all in µg g−1

Table 4 Microbial biomass and microbial biomass nutrients in low and high salinity marshes and three different treatments: P
unenriched sites dominated by Eleocharis cellulosa (LP/E) and P enriched sites dominated either by E. cellulosa (HP/E) or Typha
domingensis (HP/T). Values are averages of N=6 (three replicates from two marshes). Section 4a refers to treatment means; section 4b
refers to p-values of P addition and salinity effect; section 4c refers to p-values of plant species and salinity effect; “ns” means P>0.05
(ANOVA)

Salinity MBC MBN MBP MBC/MBN MBC/MBP PLFAtot

4a Treatment means

LP/E Low 2,601 81.8 2.71 31.8 959.8 94.4

HP/E Low 4,583 146 32.60 31.4 140.6 131.2

HP/T Low 5,390 240 7.70 22.5 700.0 224.3

LP/E High 657.0 56.0 2.39 11.7 274.9 218.5

HP/E High 1,117 121 18.80 9.2 59.4 212.0

HP/T High 1,202 153 4.65 7.9 258.5 221.7

4b p-values—effect of P addition and salinity

Phosphorus effect 0.0001 0.0001 0.0001 ns 0.0001 ns

Salinity effect ns 0.012 0.027 0.0001 0.0001 0.0001

Phosphorus × Salinity 0.0001 ns 0.034 ns 0.0001 ns

4c p-values—effect of plant species and salinity

Plant effect ns 0.0003 0.0001 0.028 0.0001 0.0083

Salinity effect 0.0001 0.0001 0.0107 0.0012 0.0001 0.037

Plant × Salinity ns 0.0413 0.087 ns 0.0029 0.0275

MBC, MBN, and MBP microbial carbon, nitrogen, and phosphorus, respectively, in μg g−1 ; PLFAtot total amount of phospholipids
fatty acids in nmolPLFA g−1

Table 3 Chemical parameters in the sediment (1–10 cm) for low and
high salinity marshes and three different treatments: P unenriched
sites dominated by Eleocharis cellulosa (LP/E) and P enriched sites
dominated either by E. cellulosa (HP/E) or Typha domingensis (HP/

T). Values are averages of N=6 (three replicates from two marshes).
Section 3a refers to treatment means; section 3b refers to p-values of
P addition and salinity effect; section 3c refers to p-values of plant
species and salinity effect; “ns” means P>0.05 (ANOVA)

Table 4 Microbial biomass and microbial biomass nutrients in
low and high salinity marshes and three different treatments: P
unenriched sites dominated by Eleocharis cellulosa (LP/E) and P
enriched sites dominated either by E. cellulosa (HP/E) or Typha
domingensis (HP/T). Values are averages of N=6 (three

replicates from two marshes). Section 4a refers to treatment
means; section 4b refers to p-values of P addition and salinity
effect; section 4c refers to p-values of plant species and salinity
effect; “ns” means P>0.05 (ANOVA)
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Table 6 Parameters related to nutrient mineralization and transformation processes for low and high salinity marshes and three
different treatments: P unenriched sites dominated by Eleocharis cellulosa (LP/E) and P enriched sites dominated either by E.
cellulosa (HP/E) or Typha domingensis (HP/T). Values are averages of N=6 (three replicates from two marshes). Section 6a refers to
treatment means; section 6b refers to p-values of P addition and salinity effect; section 6c refers to p-values of plant species and
salinity effect; “ns” means P>0.05 (ANOVA)

Salinity Nmin DEA NA AnaerobCO2 AerobCO2 CH4 SRB

6a Treatment means

LP/E Low −441.3 36.70 1.12 12.10 193.90 0.055 10.5

HP/E Low 75.60 68.70 1,158.0 15.90 160.60 2.70 8.13

HP/T Low 76.40 87.30 154.30 20.10 281.90 1.84 13.1

LP/E High −225.3 25.20 1.18 14.40 150.30 0.034 9.39

HP/E High 61.90 39.20 816.0 15.70 230.10 0.073 9.78

HP/T High 73.70 23.80 73.0 12.40 132.90 0.195 10.7

6b p-values—effect of P addition and salinity

Phosphorus effect 0.0001 0.0001 0.0001 ns ns 0.0002 ns

Salinity effect 0.0001 0.0005 ns ns ns 0.0002 ns

Phosphorus × salinity 0.003 0.012 ns ns ns 0.0002 ns

6c p-values—effect of plant species and salinity

Plant effect ns ns 0.0001 ns ns ns 0.034

Salinity effect ns 0.0001 0.0001 0.043 ns 0.0001 ns

Plant × salinity ns 0.046 ns ns 0.0005 ns ns

Nmin nitrogen mineralization rate, ng N–NH4 g−1 d−1 ; DEA denitrification enzyme activity, ng N2O g−1 d−1 ; NA nitrogenase activity,
nmol C2H4 g−1 d−1 ; AnaerobCO2 anaerobic respiration rate and AerobCO2 aerobic respiration rate in µg CO2 g−1 d−1 ; CH4

methanogenesis, µg CH4 g
−1 d−1 ; SRB sulfate reducing bacteria, mol%

Table 5 Parameters related to the status of microbial community for low and high salinity marshes and three different treatments: P
unenriched sites dominated by Eleocharis cellulosa (LP/E) and P enriched sites dominated either by E. cellulosa (HP/E) or Typha
domingensis (HP/T). Values are averages of N=6 (three replicates from two marshes). Section 5a refers to treatment means; section 5b refers
to p-values of P addition and salinity effect; section 5c refers to p-values of plant species and salinity effect; “ns” means P>0.05 (ANOVA)

Salinity MBC/TC PLFAtot/MBC QCO2 MUFA/STFA TBFA

5A Treatment means

LP/E Low 0.023 0.036 0.060 0.605 16.01

HP/E Low 0.023 0.029 0.037 0.759 17.26

HP/T Low 0.024 0.042 0.059 0.866 17.13

LP/E High 0.004 0.333 0.231 0.657 22.80

HP/E High 0.006 0.189 0.211 0.847 21.61

HP/T High 0.007 0.184 0.112 0.802 22.30

5b p-values—effect of P addition and salinity

Phosphorus effect ns 0.0001 ns 0.0002 ns

Salinity effect 0.0001 0.0001 0.0001 0.033 0.001

Phosphorus × salinity ns 0.0001 ns ns ns

5c p-values—effect of plant species and salinity

Plant effect ns ns ns ns ns

Salinity effect 0.0001 0.0001 0.0001 ns 0.0014

Plant × salinity ns ns 0.0049 ns ns

MBC microbial carbon; TOC total sediment carbon; PLFAtot/MBC active/total biomass in nmolPLFA µg−1 C; QCO2 specific respiration
rate in d−1 ; MUFA/STFA ratio of Monounsaturated and Saturated fatty acids; TBFA terminally branched fatty acids in mol%

Table 5 Parameters related to the status of microbial community
for low and high salinity marshes and three different treatments:
P unenriched sites dominated by Eleocharis cellulosa (LP/E) and P
enriched sites dominated either by E. cellulosa (HP/E) or Typha
domingensis (HP/T). Values are averages of N=6 (three replicates

from two marshes). Section 5a refers to treatment means; section 5b
refers to p-values of P addition and salinity effect; section 5c refers
to p-values of plant species and salinity effect; “ns” means P>0.05
(ANOVA)

Table 6 Parameters related to nutrient mineralization and
transformation processes for low and high salinity marshes and
three different treatments: P unenriched sites dominated by
Eleocharis cellulosa (LP/E) and P enriched sites dominated
either by E. cellulosa (HP/E) or Typha domingensis (HP/T).

Values are averages of N=6 (three replicates from two marshes).
Section 6a refers to treatment means; section 6b refers to p-
values of P addition and salinity effect; section 6c refers to p-
values of plant species and salinity effect; “ns” means P>0.05
(ANOVA)
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to root; the increased shading led to the elimination of
cyanobacteria (see also Rejmánková et al. 2008). This
switch from microphyte to macrophyte dominated
autotrophic production gradually led to an increase of
total C and N contents and availability in soil, and
microbial nutrient contents. The same trend was also
observed in similar wetlands such as the Florida
Everglades (Davis 1991; DeBusk and Reddy 1998).

The addition of readily hydrolysable nutrients and
the increase of nutrient availability has been reported
to augment microbial growth (Anderson and Domsch
1985), increase organic matter turnover (Reddy et al.
1999), and accelerate the mineralization and release of
nutrients back to the environment. Plants are an
essential source of the organic carbon in soil. Any
increase in plant production increases the C supply for
microorganisms thus enhancing the development and
activity of the microbial community. The rate at
which this occurs further depends on plant material
quality and nutrient availability in soil. Accordingly,
we found that where plant production increased, there
was an increase in microbial biomass. The level of
microbial biomass C and N (MBC and MBN) was
similar to what has been reported from the Everglades
(Wright and Reddy 2001; Corstanje et al. 2007). In
accordance with our primary hypothesis, microbial
biomass C, N and P and microbial activities were
positively affected by P addition supporting the
assumption that P is the limiting nutrient to the
microbial biomass in unimpacted Belize marsh sedi-
ments. P limitation is further confirmed by decrease
of C/P ratio in microbial biomass (MBC/MBP) in P
enriched soils. Although P immobilization into
microbial biomass increased after P addition, MBP
was still an order of magnitude lower than what has
been found in the Everglades (Corstanje et al. 2007).
This discrepancy perhaps can be linked to the amount
of time P has been augmented within the systems.
While our experimental plots have been enriched for
only several years, the Everglades has been enriched
by P for several decades.

In the studied P enriched plots, N mineralization,
nitrogenase activity and denitrification enzyme activ-
ity were accelerated, which confirms our secondary
hypothesis. These processes were most likely accel-
erated by plants, which contributed higher quantity
and better quality biomass in P enriched plots. The
enhancement of heterotrophic microbial activity by P
additions or in high P soils has been well documented

(Bridgham and Richardson 1992; DeBusk and Reddy
1998; Bastviken et al. 2005). The increased input of
easily decomposable plant material and rhizodeposi-
tion (Kozub and Liehr 1999) and resulting lower
oxygen concentrations (Nielsen 1990) may have been
the main drivers for the recorded changes in N cycle
processes.

We also detected an increase in methanogenesis
within the P enriched plots. Methanogenesis and most
likely sulfate reduction are the major anaerobic
processes governing carbon cycling in wetland eco-
systems. Traditionally in highly reduced freshwater
wetlands with low sulfate input, methanogenesis is
considered the dominant carbon mineralization pro-
cess, while in marine and salt marshes with a higher
sulfate input, sulfate reduction is the dominant
process (Ward and Winfrey 1985). Sulfate reduction
was not measured in our study, but its occurrence was
suggested by the presence of sulfate reducing bacteria
(SRB, 10Me16:0 biomarker, Table 6a). The wetlands
in Belize generally have high sulfate due to a
significant proportion of gypsum in the underlaying
rock; high rates of H2S production have been
documented at these sites (Rejmánková and Post
1996). In contrast to results of Drake et al. (1996)
sulfate reduction potential (the distribution of SRB)
was not enhanced by P addition.

The anaerobic respiration (anaerobic CO2 produc-
tion rate) in our study was about 10% of the aerobic
respiration rate (Table 6a). DeBusk and Reddy (1998)
found anaerobic CO2 production rates to be 32% of
the aerobic rates in the Everglades soils, while Benner
et al. (1984) found values of 37%. Others have
reported values of 34–63% (Bridgham and Richard-
son 1992) and 64% (Wright and Reddy 2001). The
lower values of anaerobic respiration we found are
likely due to the lower organic matter content (supply
of electron donors) of Belizean soils and most likely
also by lower C availability as compared to more
peaty sediments studied elsewhere.

A great deal of energy is needed to support
microbial growth and activities. The biochemical
transformation of saturated fatty acids to monounsat-
urated fatty acids requires available energy and
oxygen (Fulco and Bloch 1964), which justifies using
the ratio of soil monounsaturated/saturated fatty acids
(MUFA/STFA) to identify increasing substrate avail-
ability in the system. A relationship between MUFAs
and high substrate availability was also identified by
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Zelles et al. (1992) in agriculture soil, and Bossio and
Scow (1998) found MUFA to increase with added
carbon in wetland conditions. We found this ratio to
increase in P enriched sites.

Plant species effect

Based on previous results (Rejmánková 2005;
Rejmánková et al. 2008) that showed different
biomass production, nutrient uptake and resorption
from senescing tissues of Typha and Eleocharis, we
expected different quality and quantity of their litter to
affect microbial biomass and activity. This assump-
tion has not been validated by this study. The
differences in biomass production between the two
species were not significant; largely because the
Typha plots were not fully established (the biomass
production of a well established Typha stand in the
Everglades is around 2,500 g/m2/y; Weisner and Miao
2004). In terms of nutrients in senescent biomass,
there were no differences between the species in N
and P, but Typha litter contained consistently more C.
The relatively weak plant species effect on microbial
biomass and processes corresponded to small differ-
ences in plant litter stoichiometry.

Regardless of plant litter similarities, plant species
significantly impacted the transformation of P, particu-
larly SRP, MBP contents and MBC/MBP ratio in the
sediment. This effect might be explained by the
macrophytes different life strategies with respect to P
use efficiency and allocation. Typha behaves as a
competitor (sensu Grime 2001). Accordingly, compared
to Eleocharis, Typha’s P use efficiency and P uptake
was lower (more inorganic P left behind in sediment,
see Table 3a). P resorption efficiency was also lower
(unpublished data and Rejmánková 2005). Moreover,
microbial P immobilization in Typha plots was lower,
even though more reactive P was in the sediment. We
also found that Typha released less extracellular
phosphatases than Eleocharis (Rejmánková and Macek
2008). The higher P use and resorption efficiency of
Eleocharis confirmed the status of this species as a
stress tolerator.

The higher MBN in Eleocharis plots was most
likely supported by the more N available due to an
order of magnitude higher nitrogenase activity com-
pared to Typha plots (Table 6a). The uptake of N by
macrophytes was comparable (see Table 2a), therefore,
it is likely that more available N within Eleocharis

plots was immobilized into microbial biomass. This
further bolsters the role of Eleocharis as a stress
tolerator, supporting microbial nutrient immobilization
to keep microorganisms in fast turnover.

Salinity effect

The rate and direction of the changes in microbial
activities and biomass were found, as hypothesized, to
be salinity dependent. In low salinity marshes, we
found a significant increase in microbial biomass and
microbial processes within P added plots. This
suggests that low salinity marshes are microbiologi-
cally more active, with a higher release of nutrients
back to the environment (higher ratio of MBC/MBN,
MBC/MBP). Lower activity at high salinity plots is
significant for lower N mineralization, denitrification
enzyme activity and methanogenesis. The other
measured processes (nitrogenase activity, aerobic
and anaerobic respiration) tended to be lower too,
but the difference was not significant.

In the high salinity marshes, the microbial growth
was limited, resulting in lower microbial biomass to
total C ratio (Table 5a). This ratio is an indicator of C
availability and the ability of microbes to utilize it;
lower ratios imply lower C availability (Anderson and
Domsch 1989). High salinity marshes also had
distinctly higher PLFAtot to MBC ratios (Table 5).
We suggest that high PLFAtot to MBC ratio indicates
higher proportion of membrane phospholipids in total
biomass due to lower bacterial size in high salinity
soils. According to Zahran (1997), the morphology of
the bacteria is usually modified with increasing
salinity of the environment; cells usually shrink and
change in cell and cytoplasm volume. Consequently, a
close correlation between microbial biomass MBC
and PLFAtot should not be expected (Calderon et al.
2001). Accordingly, we can speculate that even a
lower amount of microbial cells of smaller size, with a
lower C content, could have higher amount of
phosholipids in the membranes (Table 5a).

The chemical composition of membranes may also
be modified by salinity, as demonstrated by an
increased portion of TBFA in samples from high
salinity sites (Table 5a). To create TBFA, amino acid
precursors are required (Kaneda 1991). At the same
time, some amino acids are considered to be essential
osmolytes for bacteria to adapt to saline environments
(Imhoff 1986). From this, we speculate that micro-
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organisms need more nitrogen to balance the salinity
stress in high salinity marshes. This is supported by
the elevated microbial storage of N. The higher
recorded respiration per cell (QCO2) for the high
salinity sites reflects, as discussed above, a higher
cellular energy demand under salinity stress.

In conclusion, we found that nutrient in microbial
biomass and C, N and P turnover rates in Belizian
wetland sediments were impacted by P addition and
the accompanied increase in macrophyte production.
Microbial activities were affected differently based
somewhat on plant species stoichiometry. Perhaps
more important than litter stoichiometry are the
distinctly different nutrient usage strategies employed
by Eleocharis and Typha and the effect this has on
microbial nutrient availability. As a result, Eleocharis
supported a more balanced system with microorgan-
isms kept in fast turnover, while microorganisms in
Typha plots were more dependent on P addition. As
hypothesized, microbial activities were salinity de-
pendant. Salinity reduced the overall rates of micro-
bial processes, weakened the positive effect of both P
addition and plant species on microbial activities, and
enhanced the amount of N stored in microbial cells.
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