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[1] The limits of phosphorus (P) removal from the 18,120 ha Stormwater Treatment Areas
(STAs) for Everglades restoration depend largely on the performance of submerged aquatic
vegetation (SAV) wetlands, as SAV treatment cells now provide final stage treatment for
85% of the STA project. A long-term internal P profile in STA-2 cell 3 (STA2C3), one of
the longest-running and best performing SAV cells, demonstrated no further net removal in
the back quarter of the cell once total P (TP) levels approached 15 �g L�1. Inflow-outflow
performance data from STA2C3 were analyzed at monthly and annual scales and were
pooled with data from an additional eight STA SAV treatment cells. The pooled data
allowed inference of background TP concentrations in SAV treatment cells using existing
Bayesian methods. Results showed a central tendency of 16 �g L�1 (13 –17, 90% bounds),
insensitivity to P loads less than �1.7 g m�2 yr�1, and interannual variability outside these
bounds. Internal data from the STA2C3 profile provided validation. Background P
concentrations of 7 and 6 �g L�1 were identified for dissolved organic and particulate P
fractions in the data pool, respectively, again similar to values in the STA2C3 gradient.
Existing simulation modeling approaches for STA evaluations were identified as ineffective
at or near background TP concentrations. Instead, we use an empirical and probabilistic
approach based on full-scale data from STAs that produces annual risk of exceedance
statistics and is easy to update. The current analysis suggests tangible risks for exceeding
proposed annual discharge criteria from the STAs in the range of 16–20 �g L�1.
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1. Introduction
[2] The Everglades Construction Project was initiated

in the 1980s to reduce phosphorus (P) concentrations in
waters flowing into the Everglades Protection Area in
southern Florida [Goforth, 2001; Chimney and Goforth,
2001]. The project was one important aspect of larger
efforts focused on restoration of the greater Everglades
ecosystem as mandated by the state of Florida in the Ever-
glades Forever Act [Perry, 2004]. The South Florida Water
Management District (SFWMD) has managed the design,
construction, and maintenance of six constructed wetlands,
known as Stormwater Treatment Areas (STAs), as a cor-
nerstone of this project. The scale and scope of this con-
structed wetlands project is huge and unprecedented in
terms of size, cost, and scientific challenges. To date, the
six STAs have cost over $1 billion in capital expenditures,
occupy over 18,000 ha of effective treatment area, and

have retained over 1000 metric tons of P since 1994 that
would have otherwise entered the Everglades Protection
Area [Pietro et al., 2008].

[3] Each STA is typically divided into three or four paral-
lel treatment or process trains, and each process train is typi-
cally divided into two or three serially connected treatment
cells. Research has shown that the type of vegetative com-
munities in STA treatment cells has crucial influence on the
P removal performance of the STAs. In subscale, prototype,
and full-scale systems, submerged aquatic vegetation
(SAV) wetlands have demonstrated higher P removal rates
and lower outflow P concentrations than conventional emer-
gent vegetated wetlands [Dierberg et al., 2002; Nungesser
and Chimney, 2001; Juston and DeBusk, 2006]. Research
as to why SAV cells outperform emergent vegetation cells
in the STAs is ongoing, but at least some differences seem
to be attributable to the formation of calcium-rich marl sedi-
ments by SAV that may be more effective for P sequestra-
tion than muck soils that underlie conventional emergent
vegetation wetlands [Dierberg et al., 2002]. Inflow waters
to the STAs are generally calcium rich, and in-column pho-
tosynthesis in SAV communities tends to elevate pH, which
in turn mediates calcium carbonate precipitation.

[4] As of this writing, SAV-dominated treatment cells
occupy approximately 9900 ha, or approximately 55%, of
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the net STA area [Pietro et al., 2008]. The remaining STA
areas are emergent-dominated treatment cells plus a few
small prototype cells for testing a periphyton-based treat-
ment technology. Eleven of the existing 19 STA flow paths
incorporate the conceptual design of sequential treatment
through an emergent-dominated front end followed by an
SAV-dominated back end. One motivation for this layout
has been to provide reduced inflow P concentrations to the
downstream SAV communities so that they operate in a P
regime where they are more ecologically competitive.
There are three additional single-cell SAV flow paths in the
STAs that have historically received lower inflow P con-
centrations. In total, SAV cells are now in the effluent-pro-
ducing position in 14 of the 19 treatment paths. These 14
treatment paths occupy approximately 85% of the existing
STA area, so another perspective is that SAV cells provide
final stage treatment for 85% of the STA project.

[5] The regulatory criterion for discharge P concentra-
tions from the STAs remains contentious among the numer-
ous vested stakeholders, as noted by Rizzardi [2001]. A
legal limit has not yet been specified, but there are indica-
tions the STAs will be regulated with a not-to-exceed out-
flow limit of 16 –17 �g L�1 as an annual flow-weighted
mean (FWM) [Payne et al., 2005]. Modeling and analysis
tools based on annual and longer scales are required to sup-
port these objectives.

[6] A discharge criterion in this range requires the STAs
to operate in a domain of the lowest reported P outflows
from constructed wetlands [Kadlec, 1999a]. At these levels,
the background P concentrations in wetlands are a serious
concern and possible constraint. Background P (C*) is
achieved when there is no further net removal or conversion
of the chemical constituent [Kadlec and Wallace, 2008].
Processes that contribute to apparent background P concen-
trations include atmospheric P deposition, internal hydraulic
patterns, and an effective balance in the biogeochemical
cycle between P removal and recycle [Kadlec, 1999a]. The
net effect is an apparent lower floor in outflow P concentra-
tions, independent of increasing wetland sizes or decreasing
loading rates. Given the current state of knowledge in
wetlands, C* is considered an empirical and stochastic pa-
rameter [Kadlec, 1999a; Kadlec and Wallace, 2008].

[7] Juston and DeBusk [2006] analyzed 15 years of out-
flow P data pooled from four full-scale STA cells to estimate
a central tendency in C* in SAV systems of 16 �g L�1.
This assessment was based on a limited data set and did not
investigate stochasticity. As the C* in SAV cells largely
determines the C* from the STAs, the C* in SAV cells
remains a critical issue for Everglades restoration, with
considerable regulatory and practical implications [Riz-
zardi, 2001]. A more thorough treatment with alternate per-
spectives is warranted. We present new field-collected data
of the internal P gradient in STA-2 cell 3 (STA2C3),
including a breakdown of P speciation. This treatment cell
is arguably the most important in operation for this investi-
gation as it is among the longest continually operating STA
cells and also has regularly produced some of the lowest
observed outflow P concentrations from the STAs. We
revisit an expanded annual-scale data pool that is about
double the size of that of Juston and DeBusk [2006], this
time also including new perspectives on P speciation. We
model these data using an approach similar to the probabil-

istic risk assessment of Qian and Richardson [1997]. We
cross-reference data from the STA2C3 internal profile to
these stochastic model calibrations from inflow-outflow
data for validation and more robust assessments. Further-
more, we illuminate problematic issues with dynamic simu-
lation approaches at the lower limits of P concentrations
from SAV cells, including evaluation of the Dynamic
Model for Stormwater Treatment Areas (DMSTA), the
principal design tool used for simulating STA performance
for design and regulatory purposes. We demonstrate that
the stochastic model calibrated herein can provide useful
alternative perspectives on outflow P expectations from the
STAs and to protected waters.

2. Methods
2.1. Study Sites

[8] The STAs are situated between Lake Okeechobee
and the Everglades Agricultural Area to the north and the
Everglades Protection Area to the south (Figure 1). To
varying degrees, inflow waters to the STAs have been a
mixture of managed lake releases and agricultural runoff.
STA inflows are controlled by pumps and/or flow control
structures in regional canals but still generally follow a
pulsed pattern dictated by the May– October wet season.
Occasionally, the wet season includes tropical storms and/
or hurricanes. On an annual scale, pumped inflow volumes
generally exceed rainfall by an order of magnitude or two.
There currently exist 17 SAV treatment cells in six STAs
(Figure 1).

[9] We have conducted extensive field research in
STA2C3, which occupies approximately 920 ha, with flow
passing from north to south (Figure 2). The southeast cor-
ner of the cell, occupying approximately 25% of the sur-
face area, is remnant mixed marsh from a historic wetland
in the region. The remainder of the cell was previously
farmed and has been managed by SFWMD for open water
to encourage a viable SAV community.

2.2. STA2C3 Internal P Gradient Data

[10] Internal phosphorus concentrations were field
sampled in STA2C3 28 times from May 2004 through July
2008 (Figure 3). The internal grid for P sampling consisted
of nine longitudinal transects (Figure 2). Grab samples
were collected at five stations along each of nine internal
transects (labeled A – I in Figure 2) and at inflow and out-
flow locations. Samples were analyzed separately for indi-
vidual stations along transects A, C, E, G, and I for 20
sample dates and were field composited for transects B, D,
F, and H. Samples were field composited along all transects
on the remaining eight sample dates. Total P (TP) was
measured using rigorous quality methods [U.S. Environ-
mental Protection Agency (EPA), 1983] with a minimum
detection limit of 3 �g L�1. Constituent P fractions of solu-
ble reactive P (SRP), dissolved organic P (DOP), and par-
ticulate P (PP) were also assessed on 25 of the 28 sample
dates. Soluble reactive P analyses were performed using
the ascorbic acid –molybdenum blue method. Total P and
total soluble P (TSP) analyses included persulfate digestion
and neutralization prior to the colorimetric procedure (EPA
365.2) [EPA, 1983]. Using the approach reported by
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Dierberg et al. [2002], PP, DOP, and SRP fractions were
calculated as PP ¼ TP – TSP and DOP ¼ TSP – SRP.

[11] Transect means were calculated for the non –field
composited transects (A, C, E, G, and I). There was no evi-
dence of stationary bias in the time series of residuals rela-
tive to transect mean values. Two sampling events were
screened from the data set, both of which occurred within
10 days of extremely disruptive tropical storms (Hurricanes
Jeanne and Wilma in 2004 and 2005, respectively). A sin-
gle representative profile for long-term average conditions
in STA2C3 was calculated by flow weighting the 26 sam-
ples according to averaged daily inflow rates from a
2 week period preceding each longitudinal profile sampling
date. Similar methods were used for an impacted zone in
the Everglades Protected Area by Walker [1995]. Inflow
and outflow P concentrations from this approach and effec-
tive flow and loading rates were within 10% – 15% of val-
ues derived from the continuous long-term data record
maintained by SFWMD, thus suggesting good representa-
tion. Uncertainties in the weighted mean values were esti-
mated with a similar flow-weighting procedure based on
standard deviations in grab sample data along transects A,
C, E, G, and I.

2.3. SAV Inflow-Outflow Data Pool

[12] Daily flow and weekly or biweekly water quality
data (e.g., TP, SRP, TSP, and calcium) for all STA treat-
ment cells are collected by SFWMD personnel and are pub-
licly available through the SFWMD online data portal,
DBHYDRO. Following methods detailed by Juston and
DeBusk [2006], monthly and annual-scale FWM inflow
and outflow P concentrations and P mass loading rates
(MLR) were estimated from these raw data for the treat-
ment cells and data years of interest to this study. Addition-
ally, similar series were calculated for SRP, TSP, and
calcium (Ca) constituents. P fractions were calculated in
the same way described for transect data.

Figure 2. STA-2 cell 3 and the internal sampling grid
that was used for sampling P gradients and vegetation. Sat-
ellite image is from January 2007. Darker areas indicate
open water areas suitable for submerged aquatic vegetation
(SAV). Lighter areas indicate remnant emergent aquatic
vegetation from a historic wetland in the region.

Figure 1. Locations of six Stormwater Treatment Areas (STAs) for Everglades restoration. This map
represents an ~6200 km2 region of southern Florida in southeast USA.
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[13] The treatment cells and data years of interest were
defined as all STA cells managed for SAV that were past
start-up and that did not include periods of extensive reha-
bilitation, vegetation management, and/or construction
activities. Rehabilitation and other management activities
are well documented in annual reports produced by
SFWMD [e.g. Pietro et al., 2008]. We operationally
defined start-up as the initial 2.5 year period after flooding
on the basis of vegetation cover surveys (personal observa-
tions). As a result of data screening, data from nine SAV
treatment cells provided 28 net data years of information
for analysis (Table 1). There were an additional eight SAV
cells that were in various phases of start-up and were not
included in this study. Two treatment cells provided half of
the annual-scale data used here, while the remaining six
cells provided the other half (Table 1).

[14] For additional quality control on data usage, we
monitored vegetation patterns in these nine SAV cells with
Landsat satellite imagery and airboat surveys of SAV com-
munities along internal grids. Spatial analysis of one clear-
sky Landsat image per year was used for annual monitoring
of open water fractions in SAV-managed cells (Table 1).
Open water fractions vary between cells and over time

because of SFWMD management strategies regarding
emergent vegetation. Regular airboat surveys were also
conducted in most SAV cells in this study along extensive
internal grids (see Figure 2) to quantify that SAV was,
indeed, occupying open water areas in at least 80% of inter-
nal grid stations visited (Table 1).

2.4. Statistical Analyses

[15] Relationships between time series of water quality
constituents were assessed using least squares regression.
The slopes of regressions were checked against zero using
single-tailed t tests and a 95% probability level for rejecting
the null hypothesis (slope ¼ 0).

2.5. Modeling Approaches

[16] Two modeling approaches were evaluated at differ-
ent time scales: (1) simulation modeling of the STA2C3
inflow-outflow time series at monthly scale using concep-
tual mass balance approaches and (2) empirical modeling
of outflow P relations to inflow mass loads at annual scale
based on the SAV data pool. The utility of these
approaches for eliciting and reproducing C* behavior
in SAV systems was compared with predictions of the

Figure 3. Seven year history of monthly total phosphorus loading rates and flow-weighted mean out-
flow P concentrations from STA-2 cell 3 (STA2C3). Sampling dates of longitudinal P gradients in
STA2C3 are shown relative to monthly PLR pulses. Two months had two sampling dates, and these are
shown with a second dot above the first. Total P (TP) observations and simulated DMSTA (case 1) val-
ues are monthly flow-weighted means. Gaps in DMSTA time series are for months when the model
simulated no outflow.

Table 1. Characteristics of SAV Treatment Cell Data Poola

STA Cell Area (km2) Position Data Interval Data Years Percent Open Airboat Surveys

STA-1E 4N 2.6 middle 2008 1 88 2/1
4S 3.0 back end 2008 1 93 2/1
6 4.2 back end 2008 1 88 2/1

STA-1W 4 1.4 back end 1997– 2003 7 84 3/1
5b 9.3 back end 2002– 2008 4 83 6/3

STA-2 3 9.2 single 2002– 2008 7 81 18/6
STA-3/4 2b 11.7 back end 2007– 2008 2 86 1/1

3b 9.8 back end 2007– 2008 2 79 0
STA-5 1b 4.9 back end 2003– 2008 3 96 0

aPosition refers to the location along a Stormwater Treatment Area (STA) flow path. Data interval column indicates span of post start-up operation.
Data years indicate number of years used in data pool after screening. Percent open indicates mean open water fraction from spatial analysis of annual
Landsat imagery. Airboat surveys indicates total airboat surveys over number of years (not all years surveyed) that quantitatively confirmed submerged
aquatic vegetation (SAV) coverage in open water areas.
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long-term P profile in STA2C3. The observed data for the
internal P profile were effectively an independent data set,
excepting data from the outflow station, and were used for
validation and to move beyond black box inflow-outflow
perspectives.

2.6. Dynamic Mass Balance Models

[17] A two-compartment model structure was investi-
gated for dynamic simulations based on conceptual P re-
moval, recycle, and burial processes (Figure 4). Models of
this type have been successfully applied to P dynamics in
eutrophied lakes [e.g., Chapra and Canale, 1991; Seo and
Canale, 1996; Ruley and Rusch, 2004]. Several variants of
model flux representations were investigated (Table 5).
One variant warrants detailed description, as it was devel-
oped explicitly for analyses of Stormwater Treatment Areas
for Everglades restoration by consultants of the U.S.
Department of the Interior and U.S. Army Corps of Engi-
neers [Walker and Kadlec, 2008]. In recent years the
Dynamic Model for Stormwater Treatment Areas has been
a cornerstone of most major considerations of STA per-
formance evaluations [Goforth, 2007; Goforth and CH2M
Hill, 2008], modifications [Burns & McDonnell, 2003], and
interim regulations (e.g., G. Goforth et al., Technical sup-
port document for the STA-2 TBEL, 2007; available at
http://www.garygoforth.net/technical%20reports.htm). One
purpose of our investigation was to assess constraints to
using the model at or near the background P levels in SAV
systems. DMSTA and variants were tested with calibration
to a 7 year time series of outflow P from STA2C3. The
STA2C3 time series and internal P profile are the best exist-
ing data sets for this assessment.

[18] DMSTA maintains dynamic water balance, hydrau-
lic routing, and P cycle routines (Figure 4). The model was
conceptualized as a dynamic extension of a steady state set-
tling rate model with background concentration [Kadlec
and Wallace, 2008]. P removal from the water column is
posed as autobiotic [Kadlec, 1997], in that removal is pro-
portional to the product of water column P and labile P
storage (Figure 4). The labile pool represents P storage in
wetland vegetation and sediments. The P recycle flux in
DMSTA is posed as quadratic to the labile pool. Phospho-
rus removal to permanent burial is first order from labile
storage. It can be shown that long-term predictive trends
from DMSTA (on the order of decades) are almost exactly

reproducible (R2 ¼ 0.99; J. M. Juston, unpublished data,
2009) with the steady state NKC* settling rate model of
Kadlec and Wallace [2008].

[19] The model has three key rate constants (K1, K2, and
K3) that scale P removal, recycle, and burial fluxes (Figure
4). These are the principal fitting parameters for calibration
to historic data. Following the convention of the developers
[Walker and Kadlec, 2008], these parameters were linearly
transformed to a different parameter space (K, C0, and C1),
where K was defined as the net settling rate at steady state,
C0 was the water column concentration at zero labile stor-
age (S ¼ 0 in Figure 4), and C1 was the water column con-
centration when labile storage equaled 1 g m�2. The
interested reader is referred to model documentation source
materials [Walker and Kadlec, 2008] for more details on
these transformations and other aspects of DMSTA. We
used six tanks in series in the model’s hydraulic routine
(Figure 4), which was consistent with tracer study results in
STA2C3 (DB Environmental, unpublished data, 2004) as
well as the physical compartmentalization in the cell (Fig-
ure 2). DMSTA algorithms were coded exactly and vali-
dated against ‘‘official’’ code with numerous case studies.

[20] The model was run at daily scale, and results were
aggregated to monthly FWM concentrations. Model param-
eters were calibrated to STA2C3 time series at monthly
scale to maximize a model efficiency index while also con-
straining <10% mass balance error. The model efficiency
index (Reff) was given by [Nash and Sutcliffe, 1970]

Reff ¼ 1� �2
residuals

�2
observations

: ð1Þ

[21] Reff has a value of 1.0 for perfect model fits and has
negative values for model fits with greater variance (i.e.,
less efficient) than the observed mean. In this way, the util-
ity of dynamic simulation was evaluated within the con-
straint that the model should reasonably (within 10%)
reproduce the long-term flow-weighted mean concentration
(17.4 �g L�1). The parameter space was searched with ran-
dom Monte Carlo sampling using large sample sizes (n �
20,000). Parameter and predictive uncertainties were gener-
ated but are not presented. A single ‘‘best’’ simulation was
chosen as representative. Three additional performance
indices were calculated for the best solution, including
root-mean-square error, mean absolute error, and the

Figure 4. Schematic diagrams of key routines in dynamic P storage models evaluated in this study. The key governing
equations for DMSTA [Walker and Kadlec, 2008] are shown in the bottom right of the P cycling routine.
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coefficient of determination (R2), all evaluated at monthly
scale. A long-term longitudinal P profile was calculated
from model results as the flow-weighted mean concentra-
tion in each tank in series (Figure 4). This was used for
comparison to the observed longitudinal P profile in the
cell.

2.7. Empirical Model of SAV Data Pool at Annual
Scale

[22] Following Qian and Richardson [1997], a piecewise
linear model was used to investigate relations between
inflow MLR and annual FWM outflow P in the SAV data
pool (Figure 5). From here forward, we refer to this as the
PLR model. An alternate consideration for this task would
be the steady state NKC* model [Kadlec, 1999a]. Prelimi-
nary investigations with the NKC* model (not reported
here) to the same SAV data pool suggested C* estimates
consistent with the PLR model results reported in detail.
The PLR model has six parameters (Table 2): four that
define the piecewise linearity and two stochastic parame-
ters. Separate calibrations were conducted for outflow TP,
SRP, DOP, and PP data in the SAV data pool.

[23] Model parameters were estimated with uncertainty
analysis. Markov chain Monte Carlo (MCMC) analysis was
used to simulate the posterior of Bayesian inference using
formal statistical likelihoods. This method was first applied
to environmental models in the 1990s [Qian and Richard-
son, 1997; Kuczera and Parent, 1998]. The application
here is by now fairly routine and straightforward. The Me-
tropolis-Hastings algorithm was used for generating Mar-
kov chains. This algorithm and its use with Bayesian
inference has been well described elsewhere [Chib and
Greenberg, 1995; Gelman et al., 2003].

[24] Data and PLR model predictions were log trans-
formed. The variance in the error model was specified as
stepwise in correspondence to observed scatter in data
above and below the apparent mass load breakpoint
(Figure 5). Qian and Richardson [1997] used a similar
approach. The combined effect of these two measures was
to stabilize the normality and homoscedasticity of standar-
dized residuals, as verified with visual diagnostics of the
posterior. Error variances were treated as calibration parame-
ters (Table 2) and inferred directly within the MCMC analy-
sis. Uniform prior distributions were used for all parameters
(Table 2). Thus, inferences were based on information in the
data only. Following Gelman et al. [2003], warm-up chains
were conducted to separate burn-in effects and to provide in-
formation for tuning the jump distribution in the final chains.
Final chains were initiated in the region of highest probabil-
ity identified in the warm-up chain. Covariance structure in
parameter jump distributions were tuned for posterior accep-
tance rates between 25% and 45%. Final chains were run
for 200,000 steps.

[25] Posterior distributions for model parameters were
calculated from every tenth sample of the second half of
the final chain (n ¼ 10,000). Two categories of predictive
uncertainty were estimated from PLR calibration. Model
uncertainty is uncertainty in predictions due to uncertain
model parameters. Total uncertainty adds to this the sto-
chastic element from calibrated error variance parameters.
Thus, model uncertainty represents an uncertainty in the
central tendency of response while total uncertainty reflects
probabilities for what actually might be observed at a par-
ticular instance in time, here at annual scale.

3. Results
3.1. STA2C3 Performance Data

[26] Inflow TP loads to STA2C3 pulsed seasonally over
the 7 year history studied (Figure 3). Inflow P loads varied
between 0.0 – 0.9 g m�2 month�1 at a monthly scale and
0.8 – 2.1 g m�2 yr�1 at an annual scale and had a 7 year av-
erage of 1.46 g m�2 yr�1. Inflow P loads were significantly
correlated to inflow flow rates and TP, PP, and SRP constit-
uents (Table 4). Inflow TP (not shown) varied between
15 –217 �g L�1 at a monthly scale and 56 –144 �g L�1 at
an annual scale and had a 7 year FWM of 99 �g L�1. On
average, inflow TP consisted of approximately 70% SRP,
8% DOP, and 21% PP (Table 3).

Figure 5. Piecewise linear model (PLR model) used to model annual outflow P relationship to P mass load. See Table 2
for parameter definitions.

Table 2. Parameters for the Piecewise Linear PLR Model

Parameter Units Description
Prior

Range

b mg L�1 y intercept of first segment 0 – 25
lbp g m�2 yr�1 P load breakpoint 0 –5
m1 mg L�1 (g m�2 yr�1)�1 slope of first line segment �0.5– 5
m2 mg L�1 (g m�2 yr�1)�1 slope of second segment 0 – 30
�1 dimensionless log-transformed error

variance in lower range
0 –5

�2 dimensionless log-transformed error
variance in upper range

0 –5
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[27] Outflow TP from STA2C3 varied between 10 –43
�g L�1 at a monthly scale (Figure 3) and 14 –27 �g L�1 at
an annual scale and had a 7 year FWM of 17 �g L�1. Dy-
namics in outflow TP at a monthly scale had no significant
relationship to inflow P loading rate (R2 ¼ 0.02), TP (R2 ¼
0.01), SRP (R2 ¼ 0.00), DOP (R2 ¼ 0.00), or Ca (R2 ¼
0.03) (see Table 4). Outflow TP exhibited a significant neg-
ative correlation to water flow rates (i.e., stagnation condi-
tions tended to produce elevated outflow TP; R2 ¼ 0.09)
and a positive correlation to inflow PP (R2 ¼ 0.06), but nei-
ther relation had substantial explanatory power.

[28] The internal TP profile in STA2C3 appeared to flat-
ten about three fourths of the way through the cell (Figure
6). TP concentrations decreased steadily until reaching an
apparent plateau just above 15 �g L�1, according to the
aggregated internal profile data. The coefficient of variation
from weighted transect means and standard deviations was
0.25 at transect A (Figure 2) and �0.14 at transects G and
I, suggesting that TP values in the flattened tail were
observed with more certainty than in the gradient. SRP, PP,
and DOP fractions also appeared to individually flatten in
internal profiles (Figure 6). SRP had the highest inflow
fraction and lowest outflow fractions and was effectively
removed to 3 �g L�1, just above the analytical detection
limit. Together, DOP and PP represented about 80% of out-
flow TP in the profile data.

3.2. Simulation Modeling to STA2C3 at Monthly Scale

[29] Results with DMSTA are presented first, followed
by alternative model configurations (Table 5). Following
Walker and Kadlec [2008], we initially reduced the dimen-
sionality of DMSTA calibration by fixing the C0 (3 �g
L�1) and C1 (22 �g L�1) parameters. We refer readers to
source documentation for the rationale for this approach
[Walker and Kadlec, 2008]. The net effect was that the cali-
bration problem was reduced to seeking a single K value to
minimize the sum of log errors for monthly simulations.

[30] Modeling the dynamics of the STA2C3 monthly P
time series was not successful with this approach (Figure
4). The best fit simulation with DMSTA had K ¼ 42 m
yr�1. The coefficient of determination for the simulated TP
time series was zero (R2 ¼ 0.0) and the Nash-Sutcliffe
model efficiency was negative (Reff ¼ �0.35), suggesting
the model fit was a worse predictor than the long-term
mean of the data. We experimented with releasing con-
straints on C0 and C1 and calibrating all three DMSTA pa-
rameters to STA2C3 time series. Here results were
somewhat improved (Table 5, trial 2), but performance
indices were still unacceptably low (R2 ¼ 0.28, Reff ¼
0.27). Variations on flux equations in the two-compartment
model provided no further improvement in performance
(Table 5). A final calibration trial using input-output cal-
cium time series from STA2C3, rather than TP, was satis-
factory and much more successful than any of the TP
simulations (Table 5, trial 6). In this simulation, monthly
FWM calcium concentrations varied between 38 and 108
mg L�1 and were generally well above background concen-
trations for this constituent.

[31] All trials exhibited problematic validations to the
STA2C3 internal P profile (Figure 6). If the calibration tar-
gets for DMSTA were changed from the input-output time
series (Figure 4) to the internal profile data (Figure 6), then
reasonably good simulations to the internal data could be
achieved. This is sensible given DMSTA collapses to the
NKC* model at steady state, and it is established that
NKC* is suited to modeling longitudinal profiles in treat-
ment wetlands [Kadlec and Wallace, 2008]. However,
when the dynamic model (DMSTA) was tuned to the long-
term steady state profile, its dynamic behavior worsened
substantially (e.g., Reff � �1.0). This suggested a funda-
mental incompatibility with the model structure and these
multiple objectives. Although results are not presented in
detail here, site-specific calibration of the simpler steady

Table 3. Summary of Inflow Water Quality to SAV Treatment Cells, Calculated as Long-Term Flow-Weighted Means Over Data
Years Used in This Studya

STA Cell
Data
Years

HLR
(cm d�1)

TP
(mg L�1)

SRP
(mg L�1)

DOP
(mg L�1)

PP
(mg L�1)

Ca
(mg L�1)

P Load
(g m�2 yr�1)

STA-1E 4N 1 14 108 68 13 19 69 5.4
4S 1 15 27 7 8 7 59 1.5
6 1 7 145 75 19 35 85 4.1

STA-1W 4 7 15 98 35 10 37 82 4.5
5b 4 7 153 101 12 40 81 3.9

STA-2 3 7 4 99 70 8 21 101 1.5
STA-3/4 2b 2 4 23 4 8 11 92 0.3

3b 2 5 19 2 8 8 98 0.3
STA-5 1b 3 5 143 98 13 27 56 2.7

aHLR, hydraulic loading rate; TP, total P; SRP, soluble reactive P; DOP, dissolved organic P; PP, particulate P.

Table 4. Coefficient of Correlation (R) for Monthly Average
Water Quality Parameters in STA2C3 Waters From 7 Year Time
Series Dataa

Inflow Waters

PLR Flow Ca SRP DOP PP TP

PLR x 0.90 0.53 0.86 0.12 0.22 0.80
Flow 0.84 0.96 0.48 0.68 �0.03 0.10 0.60
Ca 0.50 0.49 0.63 0.61 �0.03 0.30 0.59
SRP 0.30 0.42 0.53 0.35 0.22 0.36 0.97
DOP �0.44 �0.50 �0.76 �0.45 �0.30 0.01 0.31
PP �0.26 �0.18 �0.30 �0.11 �0.05 0.14 0.56
TP �0.08 �0.23 �0.17 0.04 0.05 0.24 0.11

aCells with italic values show correlations between inflow constituents
(constituent names in the first column represent the same inflow waters).
Cells that do not contain italic values indicate correlations between inflow
and posttreatment outflow time series (constituent names in the first col-
umn represent outflow waters). Bold values are statistically significant.
Only 2 years of data were used for relations to outflow SRP and DOP due
to a change in SFWMD analytical detection limits in 2007 (4 �g L�1

before, 2 �g L�1 after).
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state NKC* model to these data (Figure 6) yielded a proba-
bility density for C* with 90% limits of 9– 16 �g L�1 when
fitted to all data points in the profile and 11 –17 �g L�1

when fitted to focus on reproducing the tail only (last seven
points in Figure 6).

[32] It is interesting to consider additional aspects of this
model’s predictive capability. Simulated monthly P outflow
concentrations in DMSTA trial 1 (Table 5) were signifi-
cantly correlated to monthly inflow P loading rates (R2 ¼
0.64) in comparison to no correlation in the observed data
(R2 ¼ 0.01; Figure 7). Similar trends have been observed

with DMSTA predictions at an annual scale (Goforth et al.,
technical support document, 2007). As a point of compari-
son, correlations between inflow Ca mass loads and outflow
Ca concentrations were evident in the STA2C3 data (R2 ¼
0.47), and this time series was rather successfully simulated
with similar model structure (Table 5, trial 6). At the P lev-
els in the STA2C3 time series, a predictive relationship
between P load and outflow TP breaks down (Figure 7). It
appears the conceptual framework of DMSTA is not suited
to a ‘‘near-background concentration’’ domain (i.e., there is
no near-linear information in these data to effectively

Figure 6. (a) Estimated long-term average longitudinal TP and P species gradients in STA2C3 based
on 26 sampling events over a 6 year period and (b) model-produced P profiles. Error bars indicate esti-
mated measurement uncertainties for TP. The DMSTA-produced profile resulted from calibration to
STA2C3 inflow-outflow data at monthly scale (trial 2 in Table 5). Other calibration trials to monthly
scale data (Table 5) exhibited similar nonflattened response in the back end as the case shown. The PLR-
produced profile (shown without model uncertainty bands) resulted from calibration to the annual-scale
cross-platform data pool.

Table 5. Summary of Calibration Trials for Dynamic Simulation of STA2C3 Outflow Time Series at Monthly Time Scalea

Trial Model Calibration Parameters

Model Flux Representation Model Performanceb

Removal Recycle Burial Reff RMSE MAE R2

1 DMSTA K autobiotic second order first order �0.35 8.4 6.6 0.02
2 DMSTA K, C0, C1 autobiotic second order first order 0.27 6.4 4.8 0.28
3 K-C* K, C* first order zeroth order - 0.01 6.9 5.2 0.03
4 CC1 k1, k2, k3 first order first order first order 0.28 6.5 5.1 0.29
5 CC2 k1, k2, k3, zero-order term first order first plus zeroth orders first order 0.28 6.4 5.0 .29
6 calcium k1, k2, k3 first order first order first order 0.71 11.6 9.8 0.71

aThe first five trials modeled TP, and the sixth modeled calcium. Model flux representations refer to Figure 4. Trial 4 (CC1) used a model structure sim-
ilar to Chapra and Canale [1991]. Trial 5 (CC2) added to that a zero-order recycle flux. Performance indices are the best identified, with the goal of max-
imizing Reff while constraining <10% mass balance error. For reference, long-term FWM outflow concentrations were 17 �g L�1 for P and 73 mg L�1

for calcium.
bRMSE, root-mean-square error; MAE, mean absolute error.
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inform the model). As a consequence, the long-term mass
balances in these approaches were calibrated at a point but
were not constrained or accurate at other points. This is
clearly evident in internal P gradients simulated with
DMSTA (Figure 6b). If the simulated P profile from
DMSTA were extended to the right (e.g., in Figure 6b),
effectively decreasing the P loading rate to the system, it
would eventually reach an asymptote below 5 �g L�1, or a
concentration approximately 10 �g L�1 lower than has
been observed in the field. Similarly, at higher mass loads
(effectively moving to the left along the x axis in Figure
6b), DMSTA simulations were not accurate compared to
long-term average data at internal stations. This would
remain the case even if the model were calibrated with
probabilistic methods. Taken together, these characteristics
demonstrate that using DMSTA or similar model structures
for predictions at the lowest limits of P concentration in
SAV cells is problematic.

3.3. SAV Data Pool

[33] Inflow water quality varied within the broader SAV
data pool (Table 3). In general, the fraction of inflow SRP
decreased with decreasing inflow TP concentrations. The
lowest observed annual FWM outflow TP from any SAV
cell to date has been 14 �g L�1, of which there have been a
total of five occurrences among four different SAV cells.

[34] Annual outflow TP in the SAV data pool demon-
strated an apparent breakpoint relationship to inflow P
loading rates (Figures 8a and Figures 8b). This was con-
firmed with calibrations of the piecewise PLR model to
these data. The MCMC calibration algorithm was allowed
to explore possible breakpoints between 0 and 5 g m�2

yr�1 (Table 2). A breakpoint of�1.7 g m�2 yr�1 was identi-
fied in two variations of treatment for the independent vari-
able (i.e., annual mean and biennial mean P load, Figure 9b).
Both of these treatments excluded one data year from
STA2C3 because of documented extensive internal damage
to SAV communities following Hurricane Wilma in 2005
(Figure 8b). Below the �1.7 g m�2 yr�1 breakpoint, the
slope of the first line segment tended toward zero (Figure
9c), which implied a C* in SAV treatment cells in the range
of 13–17 �g L�1 (90% limits, Figure 9a) and a most likely
value of�16 �g L�1. We consider this a more robust finding

than the site-specific estimate from section 3.2, which was
complementary, as it represents additional information at very
low P loads and from a multiplatform data pool (Figure 8b).

[35] The PLR model response was validated against the
internal P profile in ST2C3. Effective P loads were pre-
scribed to TP values from the nine internal transects in
STA2C3 and plotted in the context of the inflow-outflow
data pool and PLR model uncertainty bands (Figure 8b).
Similarly, PLR model predictions were plotted as a func-
tion of longitudinal position within the uncertainty esti-
mates of the long-term average P profile in STA2C3
(Figure 6b). Breakpoint and leveling behavior identified
with Bayesian MCMC calibration of the PLR model to
inflow-outflow data in the SAV data pool were well
matched to trends in the longitudinal P profile of STA2C3.

[36] There were 11 net years of data with biennial mean
P loads less than �1.7 g m�2 yr�1, including five annual
values from STA2C3. Among these data (n ¼ 11), there
were no significant correlations between annual outflow TP
to inflow P loads (annual or biennial mean), hydraulic load-
ing rate, or annual inflow SRP, DOP, PP, TP, or Ca
constituents.

[37] Outflow P fractions in the SAV data pool (Figures
8c–Figures 8e) generally confirmed observations from in-
ternal gradients in STA2C3 (Figure 6a). The lowest
observed annual outflow DOP and PP constituents from
any SAV treatment cell have been 5 and 4 �g L�1, respec-
tively. The PLR model structure was calibrated to these
data for deeper insights. Breakpoints were not clearly iden-
tified in all of these calibrations (Figure 9b); however,
ranges for lowest achievable concentrations (the b parame-
ter in Figure 5) were. Calibrations of the PLR model sug-
gested most likely values of 2, 7, and 6 �g L�1 for SRP,
DOP, and PP, respectively, for the lowest observed values
of these constituents in SAV systems as annual FWM val-
ues (Figure 9a).

[38] It is interesting to compare and contrast the perform-
ance of an STA treatment cell that is not in the SAV data
pool. STA-2 cell 1 is an emergent-vegetated treatment cell
that was a remnant fragment of a historic wetland before it
was incorporated in the STA-2 footprint (Figure 1). It lies
approximately 2 km east of STA2C3. Results from Juston
and DeBusk [2006] demonstrated significantly lower out-
flow P concentrations from emergent STA treatment cells
that were historic wetlands in comparison to those con-
structed on recently farmed soils. Indeed, STA-2 cell 1 had
a 5 year interval wherein it was consistently flooded and
produced annual outflow P concentrations in the range of
8–11 �g L�1 with annual P loads ranging from 0.9 to 1.7 g
m�2 yr�1. The most discernable difference between the
performance of cell 1 during those years and the SAV data
pool was in PP removal (Figures 8c– 8e). Mean outflow PP
was typically 2– 3 �g L�1 from STA-2 cell 1 during those
years compared to the lowest calculated value of 4 �g L�1

in the SAV data pool and a more typical value of 6 �g L�1

(Figure 9a).

3.4. Probabilities for Exceeding Outflow Criteria

[39] Probabilities for exceeding several hypothetical
not-to-exceed annual criteria were explored using the cali-
brated stochastic parameters in the PLR model. Qian and
Richardson [1997] produced risk assessments from a

Figure 7. Correlations in observed and simulated P con-
centrations to dynamic P loads at monthly scale in STA2C3.
DMSTA values were from the trial 1 calibration (Table 5).
A similar trend in the STA2C3 data is evident at annual scale
in the cross-platform data pool (Figure 8b).
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probabilistic piecewise linear model in the same fashion.
Following that approach, probabilities were generated for
exceeding various annual outflow P thresholds for several
scenarios of the recent MLR history of SAV cells (Figure

10). Calculations represent total uncertainties in PLR model
prediction on the basis of adding interannual stochasticity to
model parameter uncertainties. For instance, there is a 44%
risk of exceeding a 17 �g L�1 limit if all final stage SAV

Figure 8. Annual P data as a function of total phosphorus loading rate in the STA SAV data pool. (a)
TP as a function of both annual and biennial average loading rates plotted on log linear scale (x axis cut
off at 10 g m�2 yr�1, one annual mean data point not shown). Annual outflow (b) TP, (c) soluble reactive
P (SRP), (d) dissolved organic P (DOP), and (e) particulate P (PP) as a function of biennial loading, with
the legend shown in Figure 8b. Dotted lines indicate 90% confidence intervals of model uncertainty
from PLR model calibrations with Bayesian inference. Data from STA-2 C1 and STA2C3 P profiles
(from Figure 6) are shown for reference but were not used for model fitting. STA-2 C1 is a historic emer-
gent vegetation wetland and is not an SAV treatment cell.
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treatment cells were loaded at 1.0 g m�2 yr�1. Risk of exceed-
ance increased with the inclusion of the hurricane-influenced
data year in the analysis. There appeared to be a benefit in
using a longer-term (2 year) perspective on mean P loads to
SAV cells (Figure 10), as risks were somewhat reduced.

4. Discussion and Conclusions
[40] A probability density of background phosphorus

concentration in SAV treatment cells for Everglades resto-
ration has been identified and has 90% bounds of 13 –17

Figure 10. Risk of exceedance of STA effluent criteria based on loading conditions to back-end SAV
treatment cells. Risks of exceeding two criteria are shown (17 and 20 �g L�1), each representing a hypo-
thetical not-to-exceed annual flow-weighted mean. The effects of including data from the year following
Hurricane Wilma are also depicted for the 17 �g L�1 criterion.

Figure 9. Posterior marginal distributions for PLR model parameters. (a) Background concentration
(b) breakpoint, (c) slope of the first segment, and (d) log variance of the first segment. SRP not shown in
Figures 9b– 9d as much of the SRP data set was at the 2 �g L�1 detection limit.
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�g L�1 and a most likely value of 16 �g L�1. This was
assessed with modeling analysis of a pooled database of an-
nual inflow-outflow data from all existing full-scale SAV
treatment cells in Everglades Stormwater Treatment Areas.
Strong corroborative evidence was collected by sampling
water quality transects in one of the longest-running and
best performing SAV treatment cells (STA-2 cell 3). These
internal data were independent from the data pool used for
model calibration and demonstrated no further removal in the
back quarter of the cell as P levels approached 15 �g L�1.
Data on P fractionations along this transect were also corrob-
orative of trends observed in the data pool between inflow
mass loads and outflow P fractions and predicted by model-
ing. In combination, these analyses pointed toward what
appears to be a robust assessment of C* and associated
threshold behavior in the SAV systems.

[41] Previous analysis of an SAV data pool of ‘‘natural’’
Florida aquatic systems seemed to suggest a floor in annual
outflow TP of around 25 �g L�1, with some scatter below
[Knight et al., 2003], but those natural systems had gener-
ally higher hydraulic loads and lower SAV densities than
the engineered systems in the STAs. Performance of exper-
imental SAV mesocosms, comprising over 50 data years,
demonstrated minimum annual outflow P concentrations of
13 –20 �g L�1 over a broad range of P loading rates (DB
Environmental, unpublished data, 2009). Earlier analysis of
STA data suggested a C* of 16 �g L�1 in full-scale SAV
cells [Juston and DeBusk, 2006], and those results were
largely confirmed by the analysis here. The critical differ-
ence is that the present approach is now at a level appropri-
ate for decision support for Everglades restoration. SAV
treatment cells are the effluent-producing treatment tech-
nology in most of the current STA flow ways, and the esti-
mated range of C* (13 –17 �g L�1) lies directly in the
middle of annual not-to-exceed regulatory criteria that are
being considered for STA discharges. The current analysis
suggests tangible risks for exceeding possible annual dis-
charge criteria in the range of 16 –20 �g L�1 from the
STAs. (Figure 10).

[42] The internal P speciation profile in STA2C3 (Figure
6a) demonstrated that SRP was reduced to the analytical
detection limit (2 �g L�1) at a location approximately three
quarters along the fractional cell length, while PP and
DOP attained background concentrations of approximately
6 �g L�1 at 0.8 of the length of the cell. Soluble reactive P
is known to be sequestered rapidly and completely in SAV
wetlands [Dierberg et al., 2002], and this was borne out by
the internal STA2C3 transect data. The higher background
levels and more modest removal rates of PP and DOP may
be due to the incomplete removal of recalcitrant constitu-
ents in the inflow waters. The wet prairies and sloughs of
the downstream Everglades commonly attain 10 �g L�1

and lower TP water concentrations, as their biota have the
ability to hydrolyze labile and moderately recalcitrant or-
ganic P compounds [Wright and Reddy, 2001]. However,
the taxonomic composition of SAV-dominated back-end
STA cells differs markedly from that of native Everglades
communities, and these SAV wetlands may not support the
organisms capable of hydrolyzing the more recalcitrant or-
ganic P forms [Pant et al., 2002]. An alternative explana-
tion may lie in the internal generation of both PP [Dierberg
and DeBusk, 2008] and DOP [Pant et al., 2002] within the

SAV community. It is possible, for example, that SAV cells
have inherently higher levels of water column particulate
matter than natural, emergent marshes. Dierberg and
DeBusk [2008] noted a difference in both concentration
and composition of particles in the outflows of C3 (SAV)
and C1 (emergent) flow paths of STA2. Research is
ongoing in this area.

[43] This study also raised issues about the utility of
dynamic mass balance models, including DMSTA, a prom-
inent STA design tool, at near-background levels for the
constituent of interest. DMSTA and variants were generally
not successful in reproducing outflow time series of
STA2C3 (Table 5), nor did they capture the observed inter-
nal concentration gradients in this cell (Figure 6b). We
have doubts as to whether more complicated wetland P
models [e.g., Wang and Mitsch, 2000] would do better
given no explicit representation of C* phenomena and a
paucity of data on internal fluxes and states in SAV wet-
lands that might aid with more detailed process descrip-
tions. We found the use of complementary data on internal
constituent profiles extremely valuable in moving past
black box inflow-outflow perspectives in this assessment.
We also found it very useful to compare modeling results
for P and Ca constituents (one near background, one not;
Table 5), and we recommend that this approach be
extended to modeling efforts of other data sets in the STAs
and elsewhere for validation of these principles.

[44] Modeling at annual scale provided an alternate per-
spective and was important for regulatory considerations. It
also aggregated removal, recycle, and burial dynamics that
were difficult to capture at monthly scale. We induced an
empirical piecewise linear model at annual scale from the
SAV data pool, in a fashion similar to Richardson et al.
[1997], and calibrated model parameters within a stochastic
framework as suggested by Qian and Richardson [1997].
The efforts of Qian and Richardson [1997] occurred before
benefits of SAV communities for P removal were fully
documented, so their focus was on the performance of
emergent vegetated wetlands for future STAs. They com-
bined information from a cross-sectional database of wet-
lands across North America and site-specific data from the
P gradient in Water Conservation Area 2A (Figure 1) to
assess a C* of 18– 24 �g L�1 and a P load threshold of
�1.0 g m�2 yr�1 for the assimilative capacity in future
STAs. Kadlec [1999b] criticized Qian and Richardson
[1997] partly for their use of the cross-sectional data, which
consisted of vastly different wetlands. Here the SAV data
pool we have used (Table 1) consisted of largely similar
wetlands that are located in close proximity, situated on
previously farmed muck soils, contained very similar veg-
etation communities, and have been closely monitored and
frequently surveyed to assure representation in our analy-
sis (Table 2). It is our belief that the results from this
pooled data analysis are the best current basis for predict-
ing the behavior in individual SAV cells at or near back-
ground concentrations. As more data become available,
Bayesian hierarchical mixed models may be appropriate to
refine stochastic predictions for individual cells [e.g., Stow
et al., 2009].

[45] It is important to note that the results presented are
based on currently available data and can and should be
regularly updated. Furthermore, SAV-dominated STA cells
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occupy massive footprints and can be adversely impacted
by periodic large-scale weather events such as hurricanes
and severe droughts. Such phenomena will most likely
increase the long-term mean outflow P levels over the 13–
17 �g L�1 noted above. Finally, the identified breakpoint in
performance at �1.7 g m�2 yr�1 applies to SAV cells only
and not to the STAs as a whole. Most SAV treatment cells
have emergent-vegetated front-end cells, and it is the com-
bination of the two that delivers net STA performance.
Clearly, our results provide insights on what performance
is required from front-ends cells to enable optimal SAV
back-end performance, but more work is also required to
generate integrated probabilistic perspectives for the STAs.
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