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s u m m a r y

Restoration of degraded floodplain forests requires a robust understanding of surface water, groundwa-
ter, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seed-
ling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research
hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture
dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term
(4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida,
USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and
salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction
technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear
combinations of common trends (representing shared, but unexplained, variability) and explanatory vari-
ables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor mod-
els yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by
identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall–cumu-
lative evapotranspiration) as important explanatory variables. Strong and complementary linear relation-
ships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86,
p < 0.001), and between elevation and groundwater effects (slope = �0.71, R2 = 0.71, p = 0.001), while
the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05,
p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and sur-
face water effects on soil moisture that will be useful for refining monitoring plans and developing eco-
system restoration and management scenarios in degraded coastal floodplains.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction historical hydrological regimes and connections are reestablished
Ecosystem restoration is often undertaken with the goal of
returning a degraded (i.e., impacted, invaded, perturbed, altered,
etc.) plant community to an earlier, more ‘‘natural’’ state (e.g.,
Pottier et al., 2009). Hydrological regime is often the primary envi-
ronmental sieve (i.e., filter or barrier) (Harper, 1977) controlling seed
germination, seedling recruitment, and long-term maintenance of
plant species and communities, particularly in wetlands (van der
Valk, 1981). Accordingly, wetland restoration efforts are usually
built upon a foundation of hydrological restoration, whereby
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in order to provide well-timed freshwater flows (Middleton, 2002),
nutrients (Junk et al., 1989), and (where appropriate) the sediment
required for accretion (DeLaune et al., 1994). A robust understanding
of site hydrology is therefore vital for meeting restoration goals.

Hydrological monitoring and modeling efforts in support of
wetland restoration usually focus on surface water (e.g., Wang,
1987), and less frequently, groundwater (e.g., Jung et al., 2004),
but overwhelmingly overlook hydrological conditions in the va-
dose (unsaturated) zone, which largely dictate seed germination
and seedling survival for many wetland plant species (Middleton,
1999). In addition to surface water performance measures like
hydroperiod, restoration plans that rely on plant recruitment from
existing seed banks, extant populations, or re-seeding must also
ensure that restored areas experience the appropriate soil moisture
regime to facilitate germination of desired species. Given the spe-
cific life-cycle requirements of many wetland plant species (Burns
and Honkala, 1990; Conner, 1988; Conner et al., 1986; 1987; South
Florida Water Management District [SFWMD], 2006), the success
of floodplain forest restoration efforts relies on an accurate
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understanding of the relationships between vadose zone, surface
water, and groundwater hydrology. However, finding direct rela-
tionships between basic hydrological inputs can be difficult due
to interactions between surface water, groundwater, and pore-
water in variably saturated matrices with heterogeneous soils,
vegetation, and topography (e.g., Gardner et al., 2002; Langevin
et al., 2005). In particular, as noted by Rodriguez-Iturbe et al.
(2007), quantifying wetland soil moisture dynamics in humid re-
gions is especially vexing due to the complex interdependencies
of climate, soil, vegetation, and stochastic water table variation.

Collection of long-term, high-resolution data serves to describe
temporal soil moisture dynamics (i.e., magnitude, range, daily, sea-
sonal and interannual variation, etc.) and spatial variation (e.g.,
Kaplan et al., 2010a). However, the intrinsic stochasticity of hydro-
logical processes complicates the identification of hydrological
fluxes that contribute to this observed variation. On the other
hand, physically based models of the vadose zone (e.g., reviews
in Šimůnek et al. (2003) and Vachaud et al. (1993) are useful
exploratory tools to improve our understanding of these complex
hydrological processes (Ritter et al., 2009), but require extensive
parameterization and often rely on simplifying assumptions to
estimate model boundary (Kampf and Burges, 2010) and initial
conditions (Rocha et al., 2006).

Given these limitations, an alternative method for identifying
possible shared variation and explanatory relationships is required.
Dynamic factor analysis (DFA), a multivariate time series dimen-
sion reduction technique, provides the means to analyze complex,
non-stationary environmental systems and decomposes observed
times series variation into one or more common trends (which rep-
resent unexplained variation) and any number of explanatory vari-
ables. DFA is especially useful for assessing which explanatory
variables (if any) most affect the time series of interest. DFA was
initially developed for economic time series (Geweke, 1977), and
Fig. 1. The Loxahatchee River and surrounding area with experimental transect (T1
infrastructure. Distance from river mouth indicated by river kilometer, RK.
has been applied in ecology to identify factors affecting squid pop-
ulations (Zuur and Pierce, 2004), Atlantic bluefish (Addis et al.,
2008), and commercial fisheries (Erzini, 2005; Tulp et al., 2008).
In water resources, it has lately been applied to analyze groundwa-
ter dynamics (Kaplan et al., 2010b; Kovács et al., 2004; Ritter and
Muñoz-Carpena, 2006); groundwater quality trends (Muñoz-
Carpena et al., 2005; Ritter et al., 2007); and soil moisture
dynamics (Regalado and Ritter, 2009a,b; Ritter et al., 2009). DFA
produces alternative dynamic factor models (DFMs), driven by mea-
sured data. Since the DFMs are based on observed data, no a priori
information about the physical system being modeled is required.

Based on previous work on coastal floodplain hydrodynamics
(Kaplan et al., 2010a,b), this research hypothesizes that the com-
plex effects of surface water and shallow groundwater on soil
moisture dynamics in a coastal floodplain forest are spatially dis-
tributed and complementary. To test this hypothesis, the objec-
tives of this study were to identify the external hydrological
factors that explain observed variation in soil moisture dynamics
in a degraded coastal floodplain forest, and to quantify their spatial
distribution. This was accomplished through application of DFA to
12 long-term soil moisture datasets and other hydrological vari-
ables collected in and around the Loxahatchee River (Florida,
USA), a managed coastal river where watershed modifications
and management over the past century have led to reduced fresh-
water flow, inadequate hydroperiod, and a shift towards drier
plant communities (SFWMD, 2009).
2. Materials and methods

2.1. Study area

The Loxahatchee River is located on the southeastern coast of
Florida, USA (26� 590 N, 80� 90 W; Fig. 1) and is often referred to
), meteorological measurement locations (JDWX and S46), and major hydraulic
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as the ‘‘last free-flowing river in southeast Florida’’ (SFWMD,
2006). The upper watershed of the NW Fork is home to one of
the last remnants of bald cypress (Taxodium distichum [L.] Rich)
floodplain forest in southeast Florida, but modified watershed
hydrology and management threaten this resource (SFWMD,
2006). Hydrologic changes have led to inadequate hydroperiod
and soil moisture in the upstream riverine floodplain, which has
shifted the system towards drier plant communities (SFWMD,
2009). Similar changes in the composition of floodplain vegetation
as a result of reduced flooding frequency have been observed
regionally and globally (e.g., Darst and Light, 2008; Leyer, 2005).
Restoration of the Loxahatchee River is part of the Comprehensive
Everglades Restoration Project (CERP), the most expensive ecolog-
ical restoration project in history, with an initial budget of US$10
billion (SFWMD, 2006). Data collection and modeling efforts in
the Loxahatchee River have been underway for several years
(Muñoz-Carpena et al., 2008; SFWMD, 2002, 2006, 2009;
VanArman et al., 2005), and have been directed at developing sur-
face water management goals to maintain and restore the river’s
floodplain forest, but have largely overlooked groundwater and va-
dose zone hydrology in the floodplain. More recently, monitoring
in the vadose zone (Kaplan et al., 2010a) has supported the devel-
opment of initial relationships between surface water manage-
ment and vadose zone conditions. However, improved soil
moisture predictions are required to better assess the effects of
restoration implementation and to guide adaptive management.

2.2. Experimental site and setup

The experimental site is a freshwater, riverine area, 23.3 km up-
stream of the river mouth (T1 in Fig. 1) and is not impacted by daily
tides. Elevations range from 4.19 m to 1.66 m (Fig. 2; all elevations
are referenced to the National Geodetic Vertical Datum of 1929,
NGVD29). Soils on the higher elevation hydric hammock consist
of Winder fine sand (a fine-loamy, siliceous, superactive, hyper-
thermic Typic Glossaqualf; (Soil Survey Staff, 1981), transitioning
to sandy clay loam at depths of �90 cm (Mortl et al., 2011). In
the lower floodplain, soils are classified as fluvents – stratified
Distance from riv
75 50 

Fig. 2. Topographic cross-section of experimental transect with layout of vadose zone a
(T1) and distance from the river (m). Probe installation elevations (m, NGVD29) listed wi
(SWE) shows median, upper and lower quartile, and minimum/maximum values (no outl
exaggerated �10�.
entisols made up of interbedded layers of sand, clay, and organic
matter, typical of areas with frequent flooding and deposition –
with sand content increasing with depth (Mortl, 2006; Mortl
et al., 2011). Vegetation communities in this area consist of hydric
hammock at higher elevations and mature bald cypress floodplain
forest (average diameter at breast height, DBH = 49 cm) at lower
elevations (SFWMD, 2006). Low bald cypress recruitment and the
invasion of less flood-tolerant species into the hydric hammock
and riverine floodplain in this and other upstream areas have been
documented (SFWMD, 2009), indicating the ecological impact of
reduced moisture and shortened hydroperiod in the area.

Twelve coaxial impedance dielectric sensors (Hydra Probe,
Stevens Water Monitoring Systems, Beaverton, OR, USA) measur-
ing soil moisture, bulk electrical conductivity, and temperature
were installed at four locations and three depths along a previously
established vegetation survey transect perpendicular to the river
(Fig. 2). Each cluster of three probes was wired to a field data log-
ger (CR10/CR10-X, Campbell Scientific, Logan, Utah, USA), which
recorded data every 30 min. Every 2–4 weeks, system batteries
were changed and data were downloaded. Data collection began
in September 2004 and continued through September 2008.

The Hydra probe determines soil moisture by measuring soil
dielectric properties (Campbell, 1990). In this study, the tempera-
ture-corrected (25 �C) real portion of the dielectric constant was
used to calculate soil moisture (h) based on calibrations developed
specifically for the soils of the Loxahatchee River floodplain by
Mortl et al. (2011). When comparing h across soils, we used the
effective soil moisture, He [�], since the Winder fine sand and flu-
vent soils have substantially different hydraulic characteristics (Ta-
ble 2 in Mortl et al. (2011). He scales h from zero to unity and is
calculated by:

He ¼
h� hr

hs � hr
ð1Þ

where h is the actual (measured) soil moisture content [m3 m�3], hr

is the residual soil moisture content [m3 m�3], and hs is the satu-
rated soil moisture content [m3 m�3].
er (m)
25 0

nd groundwater monitoring instrumentation. Station names denote transect name
th each station. Box and whisker plot of estimated adjacent surface water elevation
iers less/greater than 1.5 times the interquartile range were observed). Vertical scale
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2.3. Dynamic factor analysis

Soil moisture time series were investigated using dynamic fac-
tor analysis (DFA) (Zuur et al., 2003b). DFA is a parameter optimi-
zation and dimension reduction technique that is useful for
identifying interactions between variables of interest and possible
explanatory factors. With DFA, temporal variation in a set of N ob-
served time series is modeled as a linear combination of one to M
common trends, zero to K explanatory variables, a constant inter-
cept parameter, and noise (Zuur et al., 2003b):

N time series ¼ M common trendsþ level parameter

þ K explanatory variablesþ noise ð2Þ

In this construction, the M common trends represent unexplained,
shared variation among the N measured time series, the level
parameter allows for relative shifts up and down, and the K are
additional observed time series that represent explained variation.
The goal of DFA is to identify one or more common trends in the
set of observed time series that represent latent (unexplained) var-
iation, minimizing the number of trends required to achieve a good
fit with measured data. Appropriate explanatory variables may im-
prove the model fit and point out which external factors most affect
the response variables, improving conceptualization of the physical
system that drives observed variation.

Mathematically, Eq. (2) may be written as:

snðtÞ ¼
XM

m¼1

cm;namðtÞ þ ln þ
XK

k¼1

bk;nmkðtÞ þ enðtÞ ð3Þ

amðtÞ ¼ amðt � 1Þ þ gmðtÞ ð4Þ
Table 2
Number of parameters, Nash–Sutcliffe coefficients of efficiency (Ceff), Akaike’s information c
Criteria (CIAC) for selected dynamic factor models (DFMs). The best DFM for each model typ
Model II: trends and explanatory variables; Model III: just explanatory variables).

DFM Explanatory variablesa No. of trends AIC

Model I 0 1 15,585
0 2 11,114
0 3 7459
0 4 4172
0 5 1292
0 6 �1949
0 7 �3625
0 8 �4603
0 9 �6214

Model II 2 (SWE, WTEj=3.10) 3 2587
3 (SWE, WTE, Rnet) 3 5796
3 (SWE, WTEj=3.00, Rnet) 3 2724
3 (SWE, WTEj=3.10, Rnet) 3 2408
3 (SWE, WTEj=3.20, Rnet) 3 2937

Model III 3 (SWE, WTEj=3.10, Rnet) 0 11,188

a SWE, surface water elevation at Lainhart Dam; WTE, water table elevation; WTEj=x,

Table 1
Hydrological time series used in the DFA.

Variable Series type No. of
series

Description

He Response 12 Effective soil moisture (–) in the floodplain roo
SWE Explanatory 1 Surface water elevation in the river (m, NGVD2
WTE Explanatory 1 Water table elevation (m, NGVD29) measured
SWEj Explanatory 8 Capped SWE (m, NGVD29), see explanation in
WTEj Explanatory 8 Capped WTE (m, NGVD29), see explanation in
Rnet Explanatory 1 Cumulative net recharge (cumulative rainfall–c

station in Jonathan Dickinson State Park (JDWX
where sn(t) is a vector containing the set of N time series being mod-
eled (dubbed ‘‘response variables’’); am(t) [same units as response
variables] is a vector containing the common trends; cm,n [dimen-
sionless] are weighting coefficients that represent the relative
importance of common trends to each response variable (dubbed
‘‘factor loadings’’); ln [same units as response variables] is a con-
stant level parameter that shifts series up or down; vk(t) [units vary]
is a vector containing the explanatory variables; and bk,n [inverse
units to convert vk(t) into response variable units] are weighting
coefficients for the explanatory variables that indicate the relative
importance of explanatory variables to each response variable
(dubbed ‘‘regression parameters’’). In this study, the response vari-
ables, sn(t), are the 12 He time series. The terms en(t) and gm(t)
[same units as response variables] are independent, Gaussian noise
with zero mean and unknown diagonal or symmetric/non-diagonal
covariance matrix. DFMs with diagonal matrices may include a
smaller number of model parameters than those with symmetric,
non-diagonal matrices, but may also require a larger number of
common trends to achieve adequate model fits (Zuur et al., 2003a).

Common trends, am(t), are modeled as a random walk (Harvey,
1989) and predicted with the Kalman filter/smoothing algorithm
and Expectation Maximization (EM) techniques (Dempster et al.,
1977; Shumway and Stoffer, 1982; Wu et al., 1996). The EM tech-
nique is also used to calculate factor loadings (cm,n) and level
parameters (ln), while regression parameters (bk,n) are modeled
by linear regression (Zuur and Pierce, 2004). The cm,n and bk,n

accompanying common trends and explanatory variables allow
us to identify the differential effects of common trends and explan-
atory variables on the soil moisture response variables. The signif-
icance of the bk,n were assessed using their magnitude and
associated standard errors to compute a t-value. Relationships
riteria (AIC), Bayesian Information Criterion (BIC), and Consistent Akaike’s Information
e are highlighted in bold and italics (i.e., Model I: trends and no explanatory variables;

BIC CIAC Ceff No. of parameters

16,140 16,215 0.61 75
11,736 11,820 0.79 84

8140 8232 0.83 92
4906 5005 0.85 99
2070 2175 0.90 105
�1135 �1025 0.91 110
�2781 �2667 0.93 114
�3736 �3619 0.95 117
�5333 �5214 0.97 119

– – 0.86 112
– – 0.84 122
– – 0.88 122
– – 0.90 122
– – 0.87 122

– – 0.79 40

water table elevation capped at j = x; Rnet, net recharge.

t zone
9) measured 0.45 km upstream of the experimental transect

on the experimental transect, 50 m from the river
text
text
umulative ET, mm) calculated from rain gauge at the S46 structure and weather
)
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between response and explanatory variables were deemed signifi-
cant for t-values >2 (Ritter et al., 2009). Relationships between
response variables and common trends, on the other hand, were
quantified with the canonical correlation coefficient (qm,n). Values
of qm,n close to unity indicated high association between the com-
mon trend and response variable. We classified the strength of
these correlations into four groups: ‘‘minor’’ (|qm,n| < 0.25); ‘‘low’’
(0.25 6 |qm,n| < 0.50); ‘‘moderate’’ (0.50 6 |qm,n| < 0.75); and ‘‘high’’
correlations (|qm,n| P 0.75) (after Ritter et al., 2009).

2.4. Explanatory variables: meteorological, surface water, and
groundwater data

Additional meteorological and hydrological variables were
measured across the watershed, and a total of 31 daily time series
(12 response variables and 19 candidate explanatory variables,
each with 1442 daily values) were investigated for use in this anal-
ysis (Table 1). Since multi-collinearity may exist between explana-
tory variables measured at nearby locations, not all candidate
explanatory variables could be used simultaneously. To assess
the severity of multi-collinearity, we used the variance inflation
factor (VIF) of each set of explanatory variables (Zuur et al.,
2007), avoiding combinations of explanatory variables that re-
sulted in VIF > 5 (Ritter et al., 2009).

Average annual precipitation in the Loxahatchee River wa-
tershed is 1550 mm year�1, with approximately two-thirds falling
during the wet season from May to October (Dent, 1997). Average
annual evapotranspiration (ET) losses are 1140 mm year�1 in
southern Florida (SFWMD, 2002). For this study, rainfall data were
recorded at the S46 hydraulic structure on the Southwest Fork and
ET data were recorded at the JDWX weather station in JDSP (Fig. 1).
These data are publicly available and were downloaded from the
SFWMD online environmental database, DBHYDRO (accessed at
http://my.sfwmd.gov/dbhydroplsql/; stations S46_R and JDWX)
and converted to daily means. Note that soil moisture data are
autocorrelated (i.e., He at time t is dependent on He at t � 1), while
this is not true for rainfall and ET. To make these data potentially
useful to the DFA, the difference between cumulative rainfall and
cumulative ET was used to calculate a net recharge time series
such that:

Rnet;t ¼
Xt

i¼1

Pi �
Xt

i¼1

ETi ð5Þ

where Rnet,t is the net recharge at time t [mm], P is precipitation
[mm] and ET is evapotranspiration [mm] (Ritter et al., 2009).

Breakpoint surface water elevation (SWE) was measured at a
SFWMD monitoring station (DBHYDRO station LNHRT_H) on the
headwater side of Lainhart Dam (0.45 km upstream of the study
area; Fig. 1) and converted to mean daily values. While SWE data
were not available directly adjacent to the experimental transect,
an available stage–discharge relationship between upstream SWE
at Lainhart Dam and SWE at the study site (SFWMD, 2006) allowed
us to estimate the range of inundation and drawdown in the flood-
plain (box-and-whisker plot in Fig. 2). SWE at Lainhart Dam is the
primary controlled variable in restoration planning (SFWMD, 2002,
2006), and its use in this analysis allows for direct application of
DFA results to proposed restoration scenarios.

Water table elevation (WTE) data were collected on T1 in a
groundwater well located 50 m from the river (Fig. 2) using a mul-
ti-parameter water quality probe (TROLL 9000/9500, In-Situ Inc.,
Ft. Collins, CO, USA). The well was constructed of slotted 5.08-cm
(nominally 2-in.) PVC pipe housed in a 20.32-cm (nominally 8-
in.) PVC pipe. The screen size was 0.254 mm (nominally 0.01-in.)
and the slotted section length was 0.61 m (nominally 2 ft), corre-
sponding to slotted elevations between 1.66 and 2.27 m. WTE
was measured every 30 min from September 2004 through January
2009 and converted to mean daily values. A full description of the
groundwater dataset and QA/QC procedure are available in Muñoz-
Carpena et al. (2008).

Unlike SWE and WTE, He time series are bound, by definition,
between zero and unity (corresponding to 0% and 100% saturation,
respectively; see Eq. (1)). Physically, this means that SWE and/or
WTE may continue to increase after He reaches unity, after which
the response variables lose dependence on these explanatory vari-
ables. To account for this, we calculated an additional set of
explanatory variables that capped measured SWE and WTE vari-
ables by excluding values greater than a fixed elevation (j [m,
NGVD29]) according to:

SWEj;t ¼minðSWEt ;jÞ ð6Þ

WTEj;t ¼minðWTEt ;jÞ ð7Þ

where SWEj,t and WTEj,t are surface water and water table eleva-
tions [m, NGVD29] capped at fixed elevations, j [m, NGVD29]. For
this analysis we investigated values of j ranging from the minimum
and maximum soil moisture monitoring elevations in the floodplain
(Fig. 2), i.e. 2.2–3.9 (in 0.1 m increments), to determine which capped
time series served as the best explanatory variables in the DFA.

2.5. Analysis procedure

DFA was implemented using the Brodgar v. 2.6.5 statistical
package (Highland Statistics Ltd., Newburgh, UK), which uses the
‘‘R’’ statistical software language, version 2.9.1 (R Core Develop-
ment Team, 2009). To compare the relative importance of common
trends and explanatory variables across response variables (Zuur
et al., 2003b; Zuur and Pierce, 2004), all series were normalized
(mean subtracted, divided by standard deviation). We carried out
the DFA in three distinct steps, resulting in three models. Model I
was developed by constructing a set of DFMs using an increasing
number of common trends until model performance was deemed
satisfactory according to goodness-of-fit indicators (Zuur et al.,
2003a). Model II was developed by incorporating explanatory vari-
ables into the DFA until a combination of common trends and
explanatory variables was identified that met or exceeded the
goodness-of-fit indicators from Model I without exceeding the
VIF criterion. The use of explanatory variables in Model II is in-
tended to reduce the amount of unexplained variability and im-
proved description of He in the floodplain. A final reduced model
(Model III) was explored by using the explanatory variables identi-
fied in Model II to create a multi-linear model (Model III) without
common trends. Model III was developed using a multiple regres-
sion procedure run in Matlab (2009b, The MathWorks, Inc., Natick,
MA, USA).

DFM goodness-of-fit was quantified with the Nash–Sutcliffe
coefficient of efficiency (�1 6 Ceff 6 1, Nash and Sutcliffe, 1970)
and Akaike’s information criterion (AIC; Akaike, 1974). Ceff com-
pares the variance between predicted and observed data about
the 1:1 line, with Ceff = 1 indicating that the plot of predicted ver-
sus observed data matches the 1:1 line. The AIC is a statistical cri-
terion that balances goodness-of-fit with model parsimony by
rewarding goodness-of-fit but including a penalty term based on
the number of model parameters. Generally, the DFM with the
largest Ceff and smallest AIC are preferred.

Finally, to assess whether model performance had been im-
proved through this analysis, DFMs were compared with the sig-
moidal model of floodplain soil moisture based solely on SWE
developed by Kaplan et al. (2010a) of the form:

He ¼
1

1þ e�ð
SWE�a

b Þ
ð8Þ

http://my.sfwmd.gov/dbhydroplsql/
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where SWE is measured at Lainhart Dam (m, NGVD29), and a and b
are local parameters. Underlying Eq. (8) is the fundamental rela-
tionship describing h as a function of soil water pressure head (w
(e.g., Brooks and Corey, 1964; van Genuchten, 1980). Under rela-
tively hydrostatic conditions (i.e., no inflow, outflow, or redistribu-
tion of soil water above the water table), w can be estimated as the
distance to the water table (Skaggs, 1991). Since SWE and WTE at
T1 are often coupled (see Section 3), directly linking h to SWE is con-
sistent with these fundamental relationships.
3. Results and discussion

3.1. Experimental time series

Fig. 3 shows hydrological time series collected on and near the
experimental transect (T1). Data collected during this 4-year
a

b

c

d

e

f

Fig. 3. Precipitation (a), evapotranspiration (ET) (a), surface water elevation (SWE) (b), w
around the experimental site. He series names indicate experimental transect 1 (T1), di
period represented a wide range of climatic conditions, including
four wet/dry seasons; 2 years with above-average rainfall and
hurricane-induced flooding (2004 and 2005); and the driest 2-
year period (2006–2007) on record in south Florida in more than
75 years (Neidrauer, 2009). Rainfall and ET (Fig. 3a) followed a
seasonal pattern, with wet season (May to October) rain account-
ing for 73–80% of yearly totals over the 4 years (mean 77%). SWE
and WTE (Fig. 3b) were closely correlated in wet seasons
(r = 0.92), but diverged during dry seasons when SWE remained
impounded at a relatively constant level behind Lainhart Dam
and WTE continued to decline – most notably in the summers
of 2006 and 2007.

SWE and WTE dynamics were reflected in He time series
(Fig. 3c–f). On the sandy hydric hammock (Fig. 3c and d), highest
elevation He series (e.g., T1–60 [3.90 m]) were the most dy-
namic, responding quickly to rainfall and promptly draining.
ater table elevation (WTE) (b), and effective soil moisture (He) (c–f) measured in and
stance from river (m) and installation elevation (m, NGVD29).
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Middle elevation soils (T1–60 [3.80 m] and T1–50 [3.71 m])
showed a similar, but damped response to hydrological fluxes
(rain, SWE, and WTE). Lowest elevation (i.e., deepest) soils
(T1–60 [3.60 m] and T1–50 [3.06 m]) remained saturated for sev-
eral months at a time, but all soils dried considerably during dry
seasons. The lower floodplain was periodically inundated during
the study period and He was at or close to saturation (i.e.,
He = 1) at all depths for long periods, however surface soils
(T1–30 [2.76 m] and T1–1 [2.71 m]) experienced considerable
drying during all dry seasons (most markedly in 2006 and
2007; Fig. 3e and f, dark lines), with very dry conditions at sur-
face of these highly organic and clayey soils. Lowest elevation
soils (T1–30 [2.76 m] and T1–1 [2.71 m]) remained saturated
for the entire study period (Fig. 3e and f, gray lines). As constant
values, these series had zero variance and were thus removed
from the DFA. Kaplan et al. (2010a) described these He datasets
in further detail.
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Fig. 4. The three most important trends from Model I (left) and their associated canonica
all response series; trend 2 (b) is most associated with middle and lower elevation se
negatively correlated with lower elevation series.
3.2. Dynamic factor analysis

3.2.1. Baseline DFA with no explanatory variables (Model I)
DFA was applied in three steps. First, different DFMs were ob-

tained using M = 1–9 common trends and no explanatory variables
to model the 10 response variables (time series for the two con-
stantly saturated, lowest elevation probes were removed from
the analysis). Initially, both diagonal and non-diagonal error
covariance matrices were explored to identify the number of
trends required to achieve a maximum Ceff and minimum AIC.
However, when using a diagonal error covariance matrix, we found
one or more common trends that exactly fit one or more of the re-
sponse variables. This can occur with highly variable and ‘‘noisy’’
datasets and is referred to as a Heywood case (Highland Statistics,
2000). Since the goal of the DFA is to identify shared variation, non-
diagonal error matrices were used in subsequent analyses to avoid
this occurrence.
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l correlation coefficients (right). Trend 1 (a) has high or moderate correlations with
ries; trend 3 (c) is positively correlated with the four highest elevation series and
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With a non-diagonal matrix, AIC continued to decrease and Ceff

to increase with up to nine trends (M = 9). As an alternative to the
AIC, we also examined the Bayesian Information Criterion (BIC;
Schwarz, 1978) and Consistent Akaike’s Information Criteria (CIAC;
Bozdogan, 1987), which penalize additional parameters more
strongly than the AIC. However, all metrics continued to decrease
with up to nine trends (Table 2). That more than nine trends (rep-
resenting unexplained information) were necessary to achieve the
best DFM of 10 response variables suggested that multiple latent ef-
fects influence the variability of He at different depths across the
floodplain. Since no inflection point in AIC, BIC, or CIAC was identi-
fied, we used Ceff and visual inspection as a measure of a model’s
goodness-of-fit. Though choice of a threshold Ceff is necessarily
arbitrary, it is common to choose an appropriate model based on
the reduction in model improvement with increased parameteriza-
tion (e.g., Regalado and Ritter, 2009b). This led to the selection of
the DFA with five common trends (M = 5; Table 2) as Model I, since
addition of an extra trend had minimal impact on model perfor-
mance. Model I had overall Ceff = 0.90 (0.46 6 Ceff 6 0.99) and
AIC = 1292. Based on this selection, the objective of the subsequent
DFA with explanatory variables (Model II) was to reduce the
amount of unexplained variability in the DFM by achieving similar
model performance using less than five common trends.

It is first instructive to examine common trends from Model I
and their associated canonical correlation coefficients (qm,n), since
Fig. 5. Observed (gray symbols) and modeled (black lines) normalized He for the 10 resp
and three explanatory variables.
high qm,n values indicate high correlation with response variables.
The three most important common trends from Model I (highest
average |qm,n| across the 10 response variables) are shown in
Fig. 4. Though only describing latent (unknown) variability at this
stage, these trends and their patterns of correlation are useful for
developing ideas about how He varies in the floodplain and where
to look for the most useful explanatory variables. For example,
common trend 1 (Fig. 4a, left panel) was highly (|qm,n| P 0.75) to
moderately (0.50 6 |qm,n| < 0.75) correlated with nine of the 10
He series (Fig. 4a, right panel), and appears to reflect large varia-
tion due to high water events associated with Hurricane Frances
and Jeanne (which passed over the study site in 2004) and ex-
tended dry periods in the summers of 2006 and 2007. In general,
correlations with common trend 2 (Fig. 4b, right panel) were weak-
er and positive, and highest for lower elevation He series. On the
other hand, common trend 3 (Fig. 4c, left panel) was most corre-
lated with He in higher elevation soils (Fig. 4c, right panel). This
topographic distribution of qm,n suggested it would be useful to
search for explanatory variables whose relative importance is split
across lower and higher elevation response variables.

3.2.2. DFA with explanatory variables (Model II)
Next, explanatory variables were added to the model to reduce

the number of common trends required while maintaining similar
goodness-of-fit metrics as those from Model I. By adding explained
onse variables obtained from multi-linear Model II using three explanatory variables
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variability in this step, we also aimed to reduce canonical correla-
tion coefficients and factor loadings of any remaining trends, indi-
cating reduced dependency on unknown variation. A total of 19
candidate explanatory time series were explored, including: sur-
face water elevation at Lainhart Dam (SWE); water table elevation
in well T1-W1 (WTE); SWEj and WTEj series calculated with
capped elevations (j) ranging from 2.2 to 3.9 m; and net recharge
calculated as the difference between cumulative rainfall and ET
series (Rnet) (Table 1). When two or more candidate explanatory
variables were collinear or multi-collinear (resulting in VIFs > 5),
the explanatory variable resulting in the best overall model fit
(highest Ceff and lowest AIC) was selected.

Approximately 50 DFMs were developed with different combi-
nations of common trends and explanatory variables. Results of se-
lected DFMs are shown in Table 2. Finally, the best DFM used three
Table 3
Constant level parameters (ln), canonical correlation coefficients (qm,n), factor loadings (cm

empirical sigmoidal model (Ceff,sig) of Kaplan et al. (2010a). Significant regression paramet

sn ln Canon. Corr. Coef. Factor loadings

q1,n q2,n q3,n c1,n c2,n

T1–60 (3.90 m) �0.03 0.38 0.27 �0.03 0.08 0.
T1–60 (3.80 m) �0.06 0.31 0.86 �0.01 �0.02 0.
T1–60 (3.60 m) �0.05 0.14 0.16 0.74 �0.04 0.
T1–50 (3.71 m) 0.03 0.30 0.46 �0.11 0.03 0.
T1–50 (3.41 m) �0.09 �0.32 0.48 0.17 �0.14 0.
T1–50 (3.06 m) 0.00 0.17 0.18 0.32 0.01 0.
T1–30 (2.76 m) 0.24 0.11 �0.07 0.57 0.01 �0.
T1–30 (2.51 m) �0.04 �0.13 �0.36 0.34 0.01 �0.
T1–1 (2.71 m) 0.07 0.48 0.12 0.46 0.06 0.
T1–1 (2.46 m) 0.09 0.24 �0.32 0.32 0.06 �0.
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Fig. 6. Regression parameters (a–c) and factor loadings (d) for Model II (three common tr
their standard errors, with black bars indicating significance. Note different y-axis scale
explanatory variables (K = 3; 1.28 6 VIF 6 1.66): SWE at Lainhart
Dam, WTEj calculated with j = 3.10 m, and net recharge (Rnet).
That the best DFM uses WTEj with j = 3.10 m is likely due to the
topography of the floodplain at T1 – when WTE is greater than
about 3.10 m, the lower floodplain is inundated and the WTE series
capped at 3.10 m does the best job of describing saturated condi-
tions. Also note that the median estimated SWE adjacent to T1 is
close to this elevation (see box-and-whisker plot inset in Fig. 2).
On the other hand, DFMs developed using WTEj with different val-
ues of j, capped SWE (SWEj), or only un-capped series did not per-
form as well (i.e., examples in Table 2). With these explanatory
variables the number of required common trends was reduced
from five to three (M = 3), reducing the unexplained variability in
the model while achieving performance similar to that of Model
I. This model (Model II) yielded an overall Ceff value of 0.90 across
,n), regression coefficients (bk,n), and coefficients of efficiency from Model II (Ceff,n) and
ers in bold.

Regression coefficients Ceff,n Ceff,sig

c3,n bSWE,n bWTE(j=3.1),n bRnet,n

02 �0.02 0.81 �0.16 �0.03 0.67 0.64
21 0.03 0.41 �0.13 0.18 0.98 0.72
02 0.15 0.24 0.50 0.08 0.99 0.78
07 �0.02 0.71 �0.10 0.24 0.87 0.77
04 0.03 0.50 0.20 0.29 0.97 0.82
03 0.03 �0.05 0.93 0.04 0.94 0.65
01 0.06 0.10 0.63 0.20 0.93 0.54
07 �0.03 �0.03 0.93 0.03 0.86 0.33
05 0.11 �0.02 0.63 �0.07 0.89 0.51
08 �0.02 0.11 0.76 �0.11 0.89 0.34

Overall: 0.90 0.68
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ends and three explanatory variables). Regression parameters (a–c) are shown with
on factor loadings panel (d).



Table 4
Constant level parameters (ln), model parameters, and coefficients of efficiency
(Ceff,n) from Model III (no trends, three explanatory variables) and empirical sigmoidal
model (Ceff,sig) of Kaplan et al. (2010a). Significant model parameters in bold.

sn ln Model parameters Ceff,n Ceff,sig

bSWEn bWTE(j=3.1),n bRnet,n

T1–60 (3.90 m) �0.04 0.80 �0.15 0.03 0.59 0.64
T1–60 (3.80 m) �0.11 0.78 0.00 0.20 0.76 0.72
T1–60 (3.60 m) �0.07 0.27 0.72 0.00 0.84 0.78
T1–50 (3.71 m) 0.03 0.86 �0.17 0.23 0.79 0.77
T1–50 (3.41 m) �0.09 0.69 0.21 0.13 0.77 0.82
T1–50 (3.06 m) 0.00 0.01 0.95 0.02 0.93 0.65
T1–30 (2.76 m) 0.26 0.05 0.72 0.27 0.90 0.54
T1–30 (2.51 m) �0.07 �0.22 1.06 0.06 0.82 0.33
T1–1 (2.71 m) 0.05 0.00 0.75 �0.05 0.73 0.51
T1–1 (2.46 m) 0.11 �0.17 0.83 0.02 0.78 0.34

Overall: 0.79 0.68
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the 10 He series (equal to the target of 0.90 from Model I) and an
AIC value of 2408 (higher than the 1292 target from Model I due to
an increase in the number of model parameters, but the lowest of
any DFM with explanatory variables). Comparisons between Model
II simulations and observed data are shown in Fig. 5.

Table 3 summarizes parameters obtained using Model II. Signif-
icant regression parameters (t-value > 2) are shown in bold. Canon-
ical correlations were reduced from Model I, indicating a reduced
dependence of the DFM on these latent series. While the trends
in Model I had five ‘‘high’’ and 13 ‘‘moderate’’ correlations with re-
sponse variables, trends in Model II had only two ‘‘high’’ and one
‘‘moderate’’ correlations. Model fits are fair to excellent
(0.67 6 Ceff 6 0.99). Model II also out-performed the empirical sig-
moidal model of Kaplan et al. (2010a) for all He series (Table 3),
although at the cost of more parameters (122 for Model II versus
20 for the sigmoidal model). Model performance is particularly
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Fig. 7. Common trends from Model II (left) and their associated canonical correlation coefficients (right).
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improved for He series in the lower floodplain (i.e., stations T1–30
and T1–1), where bald cypress seed germination will dictate the
success of proposed restoration and management scenarios.

The spatially distributed effects of the explanatory variables and
common trends on Model II are compared in Fig. 6. Fig. 6a shows
that SWE was most important in describing variability in high
and middle elevation soils on the hydric hammock, but had a re-
duced effect in lower elevation soils, particularly in the lower
floodplain. On the other hand, WTEj had strong effects on He in
lower elevation soils. This pattern follows from Model I, which
identified different common trends grouped around elevation.
Regression coefficients for the Rnet series were weaker and spread
across response variables, though generally positive and significant
(Table 3). Inclusion of explanatory variables in Model II reduced
factor loadings (Fig. 6d) slightly over those in Model I (overall aver-
age |cn| for the five trends in Model I was 0.08 ± 0.08 compared to
0.05 ± 0.05 in Model II). While these trends are important for
improving model fits for some response variables, this suggests
that the He patterns observed in the Loxahatchee River floodplain
may be adequately described using only the selected explanatory
variables (see section 3.2.3).

The remaining three trends in Model II and their associated qm,n

values are shown in Fig. 7. These common trends represent remain-
ing unexplained (latent) variability among the He. Trend 1 (Fig. 7a)
has low or minor correlations with all response series; trends 2
Fig. 8. Observed (gray symbols) and modeled (black lines) normalized He for the 10 respo
and no common trends.
and 3 (Fig. 7b and c) are each highly associated with just one
response variable, improving model fits for these series with little
effect on other series. No additional spatial or physical interpreta-
tions were clear from these three remaining trends, suggesting that
shared variation is being accounted for with explanatory variables.

3.2.3. Multi-linear regression model with no common trends (Model
III)

Finally, common trends were removed from the model to assess
model performance model using only explanatory variables. The
three explanatory variables identified in Model II were used to cre-
ate a multi-linear model of the response variables, Model III. As ex-
pected, Ceff values for Model III were somewhat reduced from
Model II (overall Ceff = 0.79, 0.59 6 Ceff 6 0.93; compared to
Ceff = 0.90, 0.67 6 Ceff 6 0.99 for Model II), but are adequate for
most measurement locations (Table 4).

Comparisons between Model III simulations and observed data
are presented in Fig. 8 and are fair to excellent, although for some
series there are periods with reduced performance vis-à-vis Model
II (e.g., compare model performance during extreme summer
drawdowns in series T1–1 2.76 m and 2.41; bottom panels in Figs. 5
and 8). Despite this decrease in performance over Model II, Model III
still out-performed the sigmoidal model for eight of the 10 He series
and had only slightly inferior performance for the remaining two
series, T1–60 (3.90 m) and T1–50 (3.41 m). Model improvements
nse variables obtained from multi-linear Model III using three explanatory variables
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for response variables in the lower floodplain realized in Model II
were retained. Although empirical by nature, these results indicate
that Model III may be useful for assessment of restoration scenarios
for the floodplain wetlands of the Loxahatchee River, particularly in
light of the wide range of climatic conditions captured in the exper-
imental period.
3.2.4. Spatial complementarity of surface water and groundwater
effects

Fig. 9 illustrates the spatial relationships between regression
coefficients and floodplain elevation for the three explanatory vari-
ables from Model III. bSWE (Fig. 9a) and bWTEj (Fig. 9b) are
strongly correlated with floodplain elevation (with equal but oppo-
site slopes), highlighting the complementary effects of these vari-
ables on floodplain soil moisture. Noise in these relationships is
likely due to soil heterogeneities with depth and distance from
the river and increasing water table elevation with increasing dis-
tance from the river (Kaplan et al., 2010a). Correlation between
bRnet and floodplain elevation (Fig. 9c), on the other hand, is not
significant, suggesting that the effect of net recharge is relatively
homogenous across the transect and is not strongly affected by dif-
ferent soils, vegetation, or duration of flooding. Incorporation of
these elevation-based relationships for regression coefficients
explicitly introduces spatial dependence in Model III. Additionally,
replacing the 30 regression parameters from Model III with four
parameters from the two linear equations proposed in Fig. 9a
and b and a single parameter for the effect of Rnet (estimated as
the average value; Fig. 9c) allows a further model simplification.
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Fig. 9. Model III regression coefficients plotted against floodplain elevation for (a) surfac
net recharge (Rnet). Error bars correspond to standard error calculated from multiple reg
In this way, the total number of empirical parameters required is
reduced from 40 (30 regression parameters and 10 level parame-
ters) to just 15 (five elevation-based empirical parameters and 10
level parameters), while slightly reducing the model performance
(overall Ceff = 0.70, 0.51 6 Ceff 6 0.85).
4. Summary and conclusions

Bald cypress floodplain forests rely on a series of environmental
sieves to maintain mature trees and achieve periodic seed germi-
nation and seedling recruitment. Accordingly, restoring natural
hydrological and ecological dynamics to degraded ecosystems re-
quires a thorough understanding of surface water–groundwater–
vadose zone relationships. In particular, restoration flows must
ensure an appropriate soil moisture regime when seeds are avail-
able for germination. In this study, long-term multivariate
hydrological time series, measured in and around the Loxahatchee
River in south Florida, were studied using dynamic factor analysis
(DFA) in order to investigate soil moisture variation along a flood-
plain transect in a degraded coastal floodplain forest. The method
proved to be a useful tool for the study of interactions among 29
long-term, non-stationary hydrological time series (10 effective
soil moisture [He] series and 19 candidate explanatory variables).
Using DFA, the factors underlying the complex variability observed
in these multivariate hydrological datasets were identified. The
resulting models are useful for assessing the effects of proposed
ecological restoration and management scenarios on He dynamics
in the floodplain of the Loxahatchee River.
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We found a minimum of five common trends (representing
unexplained variability) were necessary to adequately describe ob-
served He variation in the 10 response variables (Model I). Depen-
dence on this unexplained variability was reduced by including
appropriate explanatory variables selected from hydrological data
measured in the area. The resulting model (Model II) required few-
er trends, and those that remained were less important to the mod-
el (reduced canonical correlations and factor loadings). Model II
also identified the most useful explanatory variables for describing
He variation – surface water elevations (SWE), capped water table
elevation (WTEj), and cumulative net recharge (Rnet) – and quan-
tified the spatial distribution of their importance to He in each
location. Finally, by removing common trends from Model II, we
found variation in He series to be adequately described using just
these three explanatory variables (Model III; overall Ceff = 0.79,
0.59 6 Ceff 6 0.93).

A quantitative measure (strong linear correlation) of the differ-
ential and complementary effects of surface water and groundwa-
ter on floodplain He as a function of floodplain elevation was
identified (with equal but opposite slopes), while the effects of Rnet

were weaker and homogenous across the experimental transect.
These findings were used first to reduce model dependence on
empirical factors, and second to introduce landscape effects into
the model by explicitly considering floodplain elevation. The re-
sults from this study have practical implications, beyond guiding
restoration planning and ecohydrological analysis for the Loxahat-
chee River. For instance, the effect of elevation on the interdepen-
dence of groundwater–surface water–vadose zone dynamics
dictates the need for structured hydrological monitoring plans that
account for elevation. Furthermore, restoration plans that address
the vadose zone must consider the impacts of both surface water
and groundwater management. For example, in floodplain systems
like that studied here, increased consumptive use that draws down
local water table elevation will most strongly impact the deeper
vadose zone (and the mature, deeply-rooted plants). On the other
hand, surface water withdrawals or management that reduce the
frequency and duration of overbank flooding will mostly affect
the shallower vadose zone and floodplain surface (and the
shallow-rooted plants and seed germination). While the surface
water–groundwater–vadose zone system is often highly connected
in these variably flooded systems, understanding and quantifying
the intricacies of these dynamics will provide a robust science-
based water management plan to best restore degraded
ecosystems.

Despite the empirical and data-driven foundation of DFA, we
believe that the identification and quantification of complex time
series shared variation and spatial interactions provided by DFA of-
fers critical information for ensuing mechanistic or conceptual
modeling efforts. Therefore we do not propose DFA as the only
modeling alternative, but as a useful exploratory tool that can in-
form refined monitoring, restoration, and modeling efforts. In
ongoing work, we aim to incorporate these and other hydrological
relationships into an ecohydrological model to predict long-term
effects of restoration scenarios on floodplain vegetation.
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