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Abstract Amongst the most threatened ecosystems

on Earth, mangrove forests are also one of the more

difficult to work in due to their growth in mud and

open water coastal zones and their dense tangled

stems, branches and prop roots. Consequently, there

has been an impetus to employ remotely sensed

imagery as a means for rapid inventory of these

coastal wetlands. To date, the majority of mangrove

maps derived from satellite imagery utilize a simple

mangrove classification scheme which does not

distinguish mangrove species and may not be useful

for conservation and management purposes. Although

more elaborate satellite based mangrove classification

schemes are being developed, given their enhanced

complexity they deserve additional justification for

end users. The purpose of this study was to statisti-

cally examine the appropriateness of one such clas-

sification scheme based on an inventory of field data.

In January of 2007 and May of 2008, 61 field sample

plots were selected in a stratified random fashion

based on a previous classification of a degraded

mangrove forest of the Isla La Palma (Sinaloa,

Mexico) using Landsat TM5 data. Unlike other

previous Landsat TM based classifications of this

region, which simply identified the mangrove forests

as one class, the mangroves were classified (i.e.

mapped) according to four conditions; healthy tall,

healthy dwarf, poor condition, and dead mangroves.

Within each sample plot, all mangroves of diameter of

breast height (dbh) greater than 2.5 cm were identified

and their height, condition and dbh recorded. An

estimated Leaf Area Index (LAI) value also was

obtained for each sample and the shortest distance

from the center of each sample plot to open flowing

water was determined using a geographic information

system (GIS) overlay procedure. These data were then

used to calculate mean values for the four classes as

well as to determine stem densities, basal areas, and

the Shannon–Wiener diversity index. In order to

assess the appropriateness of this mangrove classifi-

cation scheme a discriminant analysis approach was

then applied to these field data. The results indicate

this forest has undergone severe degradation, with
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decreasing mean tree heights, mean dbh and species

diversity. In regards to the discriminant analysis

procedure, further classification of these field plots

and cross-validation based on these significant vari-

ables provided high classification accuracy thus

validating the appropriateness of the satellite based

image classification scheme. Moreover, the discrim-

inant analysis indicated that the estimated LAI, mean

height, and mean dbh are significant in the separation

of the classification of mangrove forest condition

along these field sample plots.

Keywords Mangrove structure � Degradation �
Discriminant analysis � Classification � Mexico

Introduction

Mangrove forests are represented by a variety of tree

species that once dominated most tropical and

subtropical coasts. These forests have provided both

important economical and ecological functions. Eco-

nomically, they have been identified as important

genetic reservoirs and have been shown as the

supportive element for recreational and commercial

fisheries (Walters et al. 2008). Mangroves are also an

important tourism resource and a source of raw

materials for the chemical industry (Basak et al.

1996). Regardless of their large scale commercial

potential, mangroves are particularly important for

local peoples, providing a subsistence fishery

resource and a source of material for food, firewood,

charcoal, furniture and building materials (Ewel et al.

1998). Ecological roles of mangroves include pro-

tection from flooding and wave erosion, sediment

trapping, water quality improvement, habitat for

wildlife both within the forest and in offshore areas,

and as crucial exporters of organic matter and

nutrients (Ewel et al. 1998; Duke et al. 2007). Given

all of their ecological and economical functions,

mangrove forests are still amongst the most threa-

tened of global ecosystems (Valiela et al. 2001;

Wilkie and Fortuna 2003). Based on rough estimates,

it has been reported that a 1.5% annual global loss of

mangroves occurred during the 1980s and 1990s,

with the global mangrove coverage falling below 15

million ha by 2,000 (Wilkie and Fortuna 2003). As a

result, many (Duke et al. 2007) postulate that

mangrove forests will soon disappear altogether if

these rates are maintained. The principal causes of

mangrove forest loss include pressure from anthro-

pogenic activities such as aquaculture, agriculture,

urbanization, pollution, and tourism (Barbier and

Sathirathai 2004) and from tidal hydrological varia-

tions induced by global climate change and/or

anthropogenic causes (Xue 1996; Allen et al. 2001).

These activities lead to either direct deforestation or

alterations to sedimentation rates, nutrient inputs,

freshwater inputs or tidal inundation patterns that

subsequently affect the distribution and condition of

the mangroves (Hogarth 1999; Linneweber and de

Lacerda 2002; Walters et al. 2008). Consequently,

changes in salinity regimes within mangroves are

often observed and have been treated as a primary

reason for observed global changes in mangrove

structure and species diversity (Ewel et al. 1998;

McDonald et al. 2003; Mitsch and Gosselink 2007).

Due to the increasing pressure on mangrove

ecosystems, there have been many efforts to inven-

tory local mangrove forest structure and productivity

using traditional field techniques (e.g., Ball 1998;

Ewel et al. 1998; Cole et al. 1999). However, such

studies, based purely on ground measurements, are

extremely difficult to conduct and logistically expen-

sive given the problems of accessibility to and

movement through these forested wetlands. There-

fore, proper mangrove assessments based on field

survey alone are extremely challenging if not impos-

sible at regional and national levels. Given the

constant threats to mangroves, it is crucial that

mangrove inventory endeavors consider mapping the

spatial extents and condition of these wetlands at

more regular intervals. Consequently, remote sensing

techniques, which remotely collect radiative data

from ground objects at different spatial and temporal

resolutions, have been shown to be powerful tools in

evaluating mangrove forest condition and distribu-

tion. Over the past decade or so the vast majority of

these applications have employed medium spatial

resolution (10–30-m pixel resolution) and multi-

spectral imagery (e.g., Landsat and SPOT XS,

Long and Skews 1996; Green et al. 1998; Saito

et al. 2003; Tong et al. 2004; Rakotomavo and

Fromard 2010) which can limit the thematic accu-

racy of such mapping endeavors. However, the use of

higher spatial resolution optical satellite imagery

410 Wetlands Ecol Manage (2011) 19:409–421

123



(e.g., Wang et al. 2004, 2008; Kovacs et al. 2005,

2009), airborne optical data (e.g., Madden et al. 1999;

Welch et al. 1999; Krause et al. 2004; Everitt et al.

2010), airborne hyperspectral data (e.g., Held et al.

2003; Hirano et al. 2003), in field laboratory hyper-

spectral data (e.g., Vaiphasa et al. 2005; Wang and

Sousa 2009) and synthetic aperture radar imagery

(e.g., Simard et al. 2002; Lucas et al. 2007; Kovacs

et al. 2008a) are now being used for improving

mapping inventories. The foci of these remote

sensing studies are in image classification (e.g.,

Kovacs et al. 2001; Simard et al. 2002; Tong et al.

2004; Wang et al. 2004), species separation (e.g.,

Vaiphasa et al. 2005; Wang and Sousa 2009),

quantification of foliage and canopy parameters

(e.g. Kovacs et al. 2004; Lucas et al. 2007), and

change detection (e.g., Rakotomavo and Fromard

2010). At present most remote sensing studies related

to mangroves have focused on their spatial extent and

have been limited to one class (i.e., mangrove). Even

though different parties may use the same classifica-

tion techniques and satellite imagery there are often

conflicting reports on the estimation of mangrove

areas. For example in Mexico, there is a 20,000 ha

difference between estimations of mangrove areas

from 1991 and 1993, based on remote sensing and

field surveys, respectively (Wilkie and Fortuna 2003).

In addition to mapping mangrove extents, others

have used the same satellite data to extend their

mangrove classification scheme from one mangrove

class to many in order to incorporate the overall

condition of the forests. For example, in their study of

the Teacapán-Agua Brava-Las Haciendas estuarine-

mangrove complex of the Mexican Pacific, Kovacs

et al. (2001) classified this mangrove forest according

to several mangrove conditions (e.g., poor condition

mangrove, dead mangrove) instead of one simple

mangrove class as employed by Berlanga-Robles and

Ruiz-Luna (2002) and Fuente and Carrera (2005). All

three studies employed Landsat data but a lack of

detail regarding the reference data used to test the

classification results has resulted in conflicting

reports as to the status of this system. However,

subsequent studies using higher spatial resolution

satellite imagery has confirmed a degraded mangrove

system (Kovacs et al. 2004, 2005, 2009). It is thus

suggested that further field work based on such

mangrove classes should be conducted to validate the

choice of the mangrove forest classification schema

which are typically based on expert knowledge and

spectral information. Additionally, an examination of

these field data may assist in providing insight as to

the potential environmental factors contributing to

the current status of the mangroves. Such informa-

tion could be beneficial for those regions where

historical records of environmental data are lacking

or non-existent, which is typical of most mangrove

forests.

The aim of this investigation was to propose a

technique for linking mangrove fieldwork data with a

remotely sensed mangrove classification, thus justi-

fying the results of the image classification as well as

suggesting the most probable cause of the mangrove

degradation. Specifically, we sampled a degraded

mangrove forest of Isla La Palma (Mexican Pacific)

and its surroundings based on a previous remote

sensing classification that employed a 2007 scene of

Landsat Thematic mapper (TM) data (Kovacs et al.

2008b) in order to elucidate its structure and obtain

some data on environmental factors that are related to

hydrological change. These biological and environ-

mental variables were then used to reclassify these

field data in order to confirm these remote sensing

classes are appropriate both in the context of spectral

classification and ecological monitoring.

Study area

The Teacapán-Agua Brava-Las Haciendas estuarine-

mangrove complex (22�090N, 105�260W, Mexico) is

one of the largest mangrove systems on the Pacific

coast of the Americas (Fig. 1). The system contains

numerous lagoons, including the very large Laguna

Agua Brava and Laguna Agua Grande, and now has

two inlets, the natural inlet of Teacapán, and an

artificial inlet, opened in 1972, which is known as the

Cuautla canal ([15 m depth and [1000 m width at

the mouth). Image sequences (Fig. 2) show the

mangroves on and around Isla La Palma have

undergone considerable degradation. Areas of the

dead mangrove (i.e., dead trunks) have increased

considerably between 1986 and 2009. In this region

of the Teacapán-Agua Brava-Las Haciendas estua-

rine-mangrove complex, the black mangrove (Avi-

cennia germinans) dominates. Large black mangrove

can be found just inland along a very thin fringe of

mixed mangrove that consists mainly of healthy red
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mangrove (Rhizophora mangle) with some white

mangroves (Laguncularia racemosa). These mixed

mangroves, typically having heights over 7 m and

dense green canopies, are located along the edges of

the estuaries and islands. Further inland, dwarf black

mangrove and poor condition black mangrove are

Fig. 1 The Teacapán-Agua

Brava-Las Haciendas

estuarine-mangrove

complex. Please note that

there are two inlets to the

ocean. The artificial one, the

Cuautla canal, is at the

south of the study area
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found (Fig. 3). The poor condition mangrove has a

very sparse canopy dominated by yellowish leaves

with many dead branches void of leaves. In this type

of mangrove, there is a conversion from what was

once healthy tall mangrove to a more dwarf type of

mangrove, possibly the result of hydrologic changes

resulting from the construction of the canal (Kovacs

2000; Kovacs et al. 2001). Many will have a remnant

Fig. 2 Degradation of mangrove forest on Isla La Palma.

Landsat satellite images are shown in enhanced false color

composites. It is clear that the area of dead mangroves has been

growing in the last 20 years. Images were taken on: a March

10, 1986; b February 12, 1994; c May 1st, 2005; and d March

9, 2009. Areas covered by vegetation are shown as different

shades of red. Areas with white or bright tone are saltpans. The

linear red features along the edge of the shore are fringe (or

tidal) mangrove dominated by healthy tall mangroves. Most of

the grey toned areas on the Isla La Palma represent dead or

degraded mangroves. Note the area indicated by the green
circle which shows a conversion of relatively healthy

mangrove to dead mangrove
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tall trunk with only leaves near the base. Dead stands

of black mangrove can also be found further inland

often bordering salt pans and terrestrial vegetation.

As previously stated there have been efforts to map

mangrove conditions for this lagoon based on remote

sensing techniques. Kovacs et al. (2001, 2008b, 2009)

employed Landsat, ENVISAT Advanced Synthetic

Aperture Radar (ASAR) and even QuickBird imag-

ery to map this region in addition to collecting

mangrove field data. Kovacs et al. (2001), using

Landsat data and a mangrove classification scheme

based on the condition of the mangroves, reported

that the system was undergoing extensive degrada-

tion. Others (Berlanga-Robles and Ruiz-Luna 2002;

Fuente and Carrera 2005), using the same type of

data but employing a single mangrove class, have

reported that the mangroves of the Teacapán region

located within the state of Sinaloa, Mexico, had

recently expanded.

Methods

Field data collection

A stratified random method using a satellite based

mangrove classification scheme was applied in deter-

mining field sampling locations. Specifically, the

mangroves of this study area had been previously

separated (i.e., mapped) according to four conditions

(tall healthy, dwarf healthy, poor condition, dead)

which had been based on an image classification

conducted in 2007 (Kovacs et al. 2008b). The field

work was conducted in January 2007 and in May 2008

during local dry season. In total 61 sites were visited.

At each sampling site a circular 0.04 ha field plot

(11.3 m radius) was laid out in order to collect

information on mangrove stem density, basal area,

mean tree height, and mean dbh. Species, dbh, and

height were recorded for every tree (including dead

Fig. 3 Examples of the four mangrove classes employed: tall healthy (1), dead (2), poor condition (3), dwarf mangrove (4)
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trunks) of greater than 2.5 cm dbh. Tree height

information was obtained using a clinometer or, if the

tree was short, through simple tape measurement.

The central location of each field plot was

identified and recorded using a Trimble GeoXT

GPS unit. The raw GPS data were then postprocessed

with Trimble Pathfinder software using data obtained

from a stationary GeoXT GPS unit (i.e., base station).

For consistency and security purposes the base station

was secured to the same rooftop location during the

two field expeditions and run on continuous mode.

The average accuracy of the post processed location

data were determined to be at a sub-meter level

relative to the base station and processed as UTM

based on a NAD 83 projection.

Leaf Area Index (LAI) is a very important canopy

structure variable. Data of estimated LAI were

obtained from a previous study of this location (Kovacs

et al. 2009). Specifically, based on field measured LAI

using an Accupar LP-80 Ceptometer, LAI for one

scene of QuickBird data (dated April 25, 2007) was

calculated using a linear regression technique of LAI as

the dependent variable and satellite image digital

numbers (DNs) as the independent variable. LAI for

each field plot was then obtained using an overlay of

plot locations on predicted LAI surface.

It has been hypothesized by many (Flores-Verdugo

et al. 1997; Kovacs 2000; Kovacs et al. 2001) that the

opening of the Cuautla canal influenced the tidal

dynamics in this region and therefore altered the

salinity regime. Although this has been suggested as a

plausible occurrence by local elders (Kovacs 2000)

there are no historical or even current scientific

records of salinity to support this. Alternatively, we

hypothesize the shortest distance to open flowing

water (or freshwater runoff) would be very important

in explaining the potential influence of tides on soil

pH and water salinity for the mangrove forests.

Consequently, the shortest possible distance to open

flowing water (i.e., estuary) for each field plot was

obtained using ArcGIS. Specifically, based on a

QuickBird image and a shapefile of sample location,

the shortest distance from the centre of each field plot

to open flowing water was recorded.

Data analysis

To show the historical changes of species diversity

and structure, a Shannon–Wiener diversity index (H0)

(Krebs 1989) was calculated for each field plot. The

Shannon–Wiener diversity index is defined as

H0 ¼ �
P

pi lnðpiÞ, where pi is the proportion of

individuals from the ith species. To calculate H0, all

trees belonging to each condition were combined to

calculate the two parameters.

Discriminant analysis was applied to investigate

the consistency of remote sensing classes based on

expert knowledge and field collected data as it has

been widely used to examine the separability of

multiple categorical data (e.g., Yu et al. 1999;

Salovaara et al. 2005; Wang and Sousa 2009). This

technique develops a classification criterion using a

measure of generalized squared distance from the

mean. Each observation is then classified into a group

from which it has the smallest generalized squared

distance. Computationally, discriminant analysis is

very similar to analysis of variance (ANOVA). When

given a group of variables, F tests are conducted to

decide which variables are significant to differentiate

between groups. Discriminant functions, also known

as classification criterion, are developed to assign

group membership. Assuming the variance (vari-

ance–covariance matrix of the responses) is the same

across all classes, this technique results in linear

discriminant functions, which is also the maximum

likelihood classification approach for traditional pixel

based image classification. Alternatively, each class

has a unique variance structure and a quadratic

discriminant function is produced. A statistical test

for equal variance structure was performed on the

data and the results indicated that a quadratic

discriminant function is appropriate for the data.

The quadratic discriminant function from x to group i

is defined as:

D2
i ðxÞ ¼ d2

i ðxÞ þ LnðjSijÞ � 2LnðpiÞ:

where d2
i ðxÞ ¼ ðx� �xiÞT S�1

i ðx� �xiÞ, Si is the within-

group covariance matrix for group i, and pi is the

prior probability for group i. The posterior probability

of x belonging to group i is then calculated according

to Bayes theorem as:

PðijxÞ ¼ expð�:5D2
i ðxÞÞP

k expð�:5D2
kðxÞÞ

To examine the plot separability, we first

applied stepwise discriminant analysis to identify

the significant variable(s) suitable for discrimination
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among the conditions. Secondly, the discriminant

procedure was used to determine the discriminant

function of the responses which best describes each

condition. Each observation was assigned a proba-

bility of belonging to a given group or class based on

the distance of its discriminant function from that of

each class mean. Variables included in the analysis

were estimated LAI, stem density, the percentage of

each tree species (live or dead), the total BA, mean

height, mean dbh and shortest distance to open

flowing water. For the estimated LAI, value 0 for one

field plot indicates that it must be a dead plot.

Therefore, a total of 9 field plots were first classified

to dead based on estimated LAI values for classifi-

cations using all data. When only using the data for

living trees 3 field plots were classified to the dead

class based on estimated LAI values. The discrimi-

nant analysis was then applied to the remaining 52

field plots. This analysis requires that the variables

have multivariate normal distribution in each of the

groups. This assumption was examined using Shap-

iro–Wilk, Kolmogorov–Smirnov, Cramer-von Mises,

and Anderson–Darling methods for each of the

variables. When the normal distribution assumption

was violated, a Box–Cox transformation was then

used to make the distribution of that variable normal.

Field collected data were further classified based on

the discriminant function. The purpose of this step was

to examine if the model fit the data appropriately, i.e.,

the model’s ability to correctly predict the outcome

modeled by the explanatory variables. If the accuracy

is high, it would indicate that the model might be

adequate for the data. However, the results obtained

from discriminant analysis may only be applicable to

the sample used. We required a discriminant model

which has both external and internal validity and,

therefore, cross-validation was also performed to

check on the propensity to inflate the accuracy if all

data are being used. The classification was performed

using the leave-one-out procedure, i.e., each field plot

is classified using the discriminant function con-

structed by taking that plot out of the data set. Hence,

each field plot was reclassified as if it were a new

unknown observation. Cross-validation provides a

better, but more conservative, assessment of classifi-

cation accuracy.

Results and discussion

Species and field plot data

Based on a previous classification procedure (Kovacs

et al. 2008b) and actual field mangrove conditions, all

field plot data were grouped into four conditions: tall

healthy, dwarf healthy, poor condition, and dead. Tall

healthy condition includes mixed mangrove species

with most of them tall black mangrove trees that are

typically much greater than 2 m height. This man-

grove condition appears mainly in the coastal fringe

where daily tidal inundation occurs. Poor condition,

dwarf and dead mangroves are generally further

inland from the water’s edge in areas currently

flooded only at the highest of tides.

The most dominant mangrove species in this area is

the black mangrove having the smallest average dbh

and mean height (Tables 1, 2). Black, white, and red

mangrove represented 90.12, 8.51 and 1.26% of the

total number of trees recorded, respectively (Table 1).

However, the values would be 88.84, 9.27, and 1.88%

if only live trees were counted. It is also clear that this

mangrove forest is undergoing serious degradation

(Table 1): among the 10,150 trees measured, about

44% of the trees were dead or cut. In particular, black

Table 1 The number of individual tree species in various conditions

Field plot class Live Dead Cut Total

A.g. L.r. R.m. A.g. L.r. R.m.

Tall healthy 2339 535 121 306 256 10 7 3574

Dwarf healthy 1976 0 0 824 2 0 0 2802

Poor condition 1123 62 0 709 9 0 0 1903

Dead stands 282 0 0 1589 0 0 0 1871

Total 5720 597 121 3428 267 10 7 10150

A.g., Avicennia germinans; L.r., Laguncularia racemosa; R.m., Rhizophora mangle
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and white mangroves are undergoing significant

degradation, with 24.47 and 30.90% of these trees

identified as dead, respectively. Comparatively, red

mangrove shows the best condition (Table 1). Cur-

rently, the tall red mangrove trees have the largest

mean dbh (5.40 cm) and mean height (5.82 m)

amongst the three species (Table 2). The red man-

grove exists mainly along the fringe closest to the

estuaries, and having only 5.47% of its sample

identified as dead or cut for timber. The cutting of

mangroves, particularly along the fringe is due to the

fact that this mangrove forest is not far away from local

communities which extract the timber for a variety of

purposes (Kovacs 1999). According to the results,

white mangrove historically depicted the largest mean

dbh and mean heights (based on measurements from

dead white mangroves, dbh 13.37 cm, height 3.31 m).

Therefore, it is highly plausible that white mangrove

has been replaced by red mangrove in the fringe zone.

Several very large dead white mangrove trunks still

exist in these stands and may be the reason the white

mangrove still has the largest average height. This

significant change in mangroves might have been

caused by changes in hydrology resulting from the

canal as suggested by others.

Historical data also show mangrove species diver-

sity is decreasing and the sizes and heights of the trees

are becoming smaller and shorter (Tables 3, 4). With

regards to species diversity, dbh, and mean height for

mangroves with various conditions, tall healthy

mangroves recorded the highest values. Poor condi-

tion mangroves depict medium diversity, dbh and

heights. Dwarf mangroves show the lowest diversity,

dbh and heights (Tables 3 and 4). The diversity has

decreased over time as is indicated by the decrease of

the H0 value. For the tall mangroves the H0 value

dropped from 1.10 (all trees) to 0.63 (living trees)

(P = 0.008). The same trend was observed for tree

diameters, with the mean dbh value decreasing from

6.43 to 5.57 cm (P \ 0.001). This is mainly due to the

fact that the poor condition mangrove currently

contains a fair number of large dead trunks as well

as some of large trunks that are still alive but in very

poor condition. The dwarf mangrove is quite homo-

geneous, short and typical in appearance to dwarf

mangrove found elsewhere. The results of this study

are coincidental with the change of species diversity

of another mangrove forest in northern Australia (Ball

1998) where species richness was influenced by soil

water salinity changes. In that study the maximum

diversity was found in areas with moderate salinities

(Ball 1998). One interesting observation of this study

is that the species diversity of the poor mangrove class

is higher than that of dwarf mangrove. This is not

surprising given that the dwarf mangroves of this

region are quite homogenous and thus lack variation.

Table 2 Descriptive

statistics of dbh and height

for different species (all

trees)

A.g., Avicennia germinans;
L.r., Laguncularia racemosa;
R.m., Rhizophora mangle

Tree type n dbh (cm) mean (SD) Height (m) mean (SD)

A.g. (live) 5720 4.63 (2.63) 3.76 (2.90)

L.r. (live) 597 5.21 (1.94) 6.78 (2.66)

R.m. (live) 121 5.40 (3.22) 5.82 (2.09)

A.g. (dead) 3428 6.64 (3.94) 1.81 (1.50)

L.r. (dead) 267 13.37 (9.61) 3.31 (2.85)

R.m. (dead) 10 4.05 (1.25) 2.98 (2.12)

Cut 7 8.36 (3.88) 1.36 (0.48)

Table 3 Descriptive statistics and Shannon–Wiener diversity index (H0) for mangrove conditions with all trees included

Condition Number

of plots

H0 LAI mean

(std)

Dbh (cm)

mean (SD)

Height (m)

mean (SD)

Distance to freshwater

(m) mean (SD)

Stem density

(stems/ha)

Tall healthy 17 1.10 3.98 (.58) 6.43 (4.72) 5.7 (3.1) 56.86 (29.53) 7007

Dwarf healthy 15 0.61 1.96 (.55) 4.07 (1.68) 1.9 (0.8) 137.15 (44.60) 6227

Poor condition 13 0.81 1.53 (.68) 5.62 (3.88) 2.5 (1.7) 159.03 (110.66) 4879

Dead 16 0.42 0.092 (.15) 6.21 (3.3) 1.5 (1.2) 305.95 (239.09) 3898
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The discriminant analysis

The analysis was carried out for conditions including

all trees and then including only live trees. When all

trees are included (total 61 plots), estimated LAI (P-

value \ 0.0001), mean height (P-value \ 0.0001),

percentage of dead mangrove (P-value = 0.0013),

and mean dbh (P-value = 0.0177) are found to be

significant variables for distinguishing the four clas-

ses of mangrove condition. We further tested the

appropriateness of using these variables to explain the

degradation of mangroves by classifying field plot

data. The prior probabilities are set to be proportional

to the number of field plots in each class, i.e., 17/52,

15/52, 13/52, and 7/52 for tall healthy, dwarf healthy,

poor condition, and dead, respectively. The natural

logarithms of the determinant of the covariance

matrix (|Si|) are -9.10, -12.44, -6.56, and -13.43

for these four respective classes. Within covariance

matrices were then used in the discriminant function

since a test of homogeneity of within covariance

matrices using Chi-square statistics showed a signif-

icant result (P-value \ 0.0001). Using this model, the

number of observations and percent classified into

condition were calculated (Table 5). The model

results are very satisfactory in the classification for

the conditions with an overall accuracy of 98.4%.

There is only one poor condition field plot which was

misclassified as dwarf healthy. Using cross-valida-

tion, the results indicate that on average 8 of the 61

field plots were misclassified with an overall accuracy

of 90.2% (Table 6) which is still satisfactory. The

poor condition mangrove plots were misclassified

more than any other, with a few field plots classified

as dead and dwarf healthy mangroves (Table 6). This

result may be expected given the poor condition class

is a transitional one.

When only live trees are considered, there are a

total of 55 field plots. Three plots with estimated LAI

values of 0 were identified and assigned to the dead

class. The discriminant analysis was then performed

on the remaining 52 field plots. The significant

variables of this model are the estimated LAI, the

mean height, and the mean dbh (P-value \ 0.0001).

With proportional prior probabilities and within

covariance matrices, the number of observations and

percent classified into condition are given in Table 7.

The overall accuracy of classification is 92.7%. There

Table 4 Descriptive statistics and Shannon–Wiener diversity index (H0) for mangrove conditions with only live trees included

Condition Number

of plots

Number

of trees

H0 dbh (cm)

mean (SD)

Height (m)

mean (SD)

Stem density

(stems/ha)

Tall healthy 17 2995 0.63 5.57 (3.02) 6.29 (2.97) 5872

Dwarf healthy 15 1976 0 3.71 (1.28) 1.96 (0.76) 4391

Poor condition 13 1185 0.21 4.36 (2.54) 2.62 (1.50) 3038

Dead 10 282 0 3.77 (1.32) 1.61 (0.65) 940

Table 5 Error matrix of classification based on all trees

Condition classified Total User’s accuracy (%)

Tall healthy Dwarf healthy Poor condition Dead

Tall healthy 17 0 0 0 17 100

Dwarf healthy 0 15 0 0 15 100

Poor condition 0 1 12 0 13 92.3

Dead 0 0 0 16 16 100

Total 17 16 12 16 61

Producer’s accuracy(%) 100 93.75 100 100

Note: The producer’s accuracy is the ratio of the number of field plots that were correctly classified with the actual number of field

plots of various conditions. User’s accuracy is the ratio of the number of field plots that were correctly classified with total number of

field plots that were classified as that class. For both Tables 5 and 6, the 9 Dead classes were first identified using the estimated LAI

values and the discriminant analysis was performed on the remaining 52 sampling plots
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are four dwarf healthy plots which are misclassified as

poor condition. Using cross-validation, the results

show that on average 10 of the 55 field plots were

misclassified with an overall accuracy of 81.8%

(Table 8). Although a lower accuracy was achieved,

the results are similar to the one based on all trees. The

results also show the large variations in poor condition

mangrove plots and the similarity between dwarf and

poor condition mangroves. The observed drop of the

classification accuracy based on live trees is mainly

due to the confusion of these two classes.

Furthermore, estimated LAI, an indicator of man-

grove structure and productivity, is an important

variable in regards to mangrove condition. If excluded

from analysis the overall accuracies, based on all

trees, drop from 98.4 and 90.2% to 95.1 and 86.9% in

the classification and validation procedures, respec-

tively. There are also misclassifications between tall

healthy and poor condition field plots if the LAI

variable is excluded (data not shown). Other variables,

i.e., mean height and dbh, were also found to be

significant for classification. These results show

environmental change has shaped the mangroves to

such a degree that it is possible to classify them based

on these biological variables. The high accuracies of

the field plot classifications and the cross-validation

Table 6 Error matrix of

classification using cross-

validation based on all trees

Condition classified Total User’s

accuracy (%)
Tall

healthy

Dwarf

healthy

Poor

condition

Dead

Tall healthy 16 0 1 0 17 94.1

Dwarf healthy 0 13 2 0 15 86.7

Poor condition 0 1 12 0 13 92.3

Dead 0 0 2 14 16 87.5

Total 16 14 17 14 61

Producer’s accuracy(%) 100 92.9 70.6 100

Table 7 Error matrix of

classification based on live

trees only

Note: For both Tables 7 and

8, the 3 Dead classes were

first identified using the

estimated LAI values and

the discriminant analysis

was performed on the

remaining 52 field sampling

plots

Condition classified Total User’s

accuracy (%)
Tall

healthy

Dwarf

healthy

Poor

condition

Dead

Tall healthy 17 0 0 0 17 100

Dwarf healthy 0 15 0 0 15 100

Poor condition 0 4 9 0 13 69.2

Dead 0 0 0 10 10 100

Total 17 19 9 10 55

Producer’s accuracy(%) 100 78.9 100 100

Table 8 Error matrix of

classification using cross-

validation for live trees only

Condition classified Total User’s

accuracy (%)
Tall

healthy

Dwarf

healthy

Poor

condition

Dead

Tall healthy 16 0 1 0 17 94.1

Dwarf healthy 0 13 2 0 15 86.7

Poor condition 0 5 8 0 13 61.5

Dead 0 0 2 8 10 80

Total 16 18 13 8 55

Producer’s accuracy (%) 100 72.2 61.5 100
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procedures also suggest it is logically reasonable and

feasible to classify the mangroves of the Isla La Palma

into the four classes previously employed by others.

These classes should not only be considered in further

satellite image classification procedures but also used

in any further field studies for these mangroves. It is

safe to conclude from the results of these field data

analyses that the four mangrove classes previously

employed for satellite image classification are appro-

priate for this study area.

Conclusion

The results of this study do indicate that, based on field

plot data, the mangroves of this system have experi-

enced considerable degradation. The mean height,

mean dbh, and species diversity values of the

mangroves under investigation have all decreased

considerable when examining all trees together or

when only considering live trees. It is also apparent

from the results that the most dominant species within

this study area, the black mangrove (Avicennia

germinans), has been particularly affected. Most

importantly, the statistical procedure used on the field

plot data would suggest that the classification scheme

previously employed for mapping the condition of the

mangroves in this study area is in fact appropriate.

Specifically, the categorization of mangroves as either

tall healthy, dwarf healthy, poor condition or dead is

representative for the Isla La Palma region. The results

of the stepwise discriminant analysis procedure would

also suggest that the estimated LAI, mean height, and

mean dbh are the most significant variables in the

classification of the mangroves for this region. In

conclusion, it is suggested that the techniques applied

to the mangrove field plot data in this study not only

provide justification for the use of the four class

mangrove classification scheme in mapping man-

groves from remotely sensed data, but also may

provide insight to the environmental variables most

influential to the current structure of these forests. The

results of this investigation also support the postulation

that changes in the hydrological regime following the

opening of the Cuautla canal may have contributed to

the observed degradation of this mangrove forest.
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Flores-Verdugo FJ, Gonzáles-Farı́as F, Blanco-Correa M, Nu-
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