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[1] The ability to map relationships between ecological outcomes and hydrologic
conditions in the Everglades National Park (ENP) is a key building block for their
restoration program, a primary goal of which is to improve conditions for wading birds.
This paper presents a model linking wading bird foraging numbers to hydrologic conditions
in the ENP. Seasonal hydrologic statistics derived from a single water level recorder are
well correlated with water depths throughout most areas of the ENP, and are effective as
predictors of wading bird numbers when using a nonlinear hierarchical Bayesian model to
estimate the conditional distribution of bird populations. Model parameters are estimated
using a Markov chain Monte Carlo (MCMC) procedure. Parameter and model uncertainty is
assessed as a byproduct of the estimation process. Water depths at the beginning of the
nesting season, the average dry season water level, and the numbers of reversals from the
dry season recession are identified as significant predictors, consistent with the hydrologic
conditions considered important in the production and concentration of prey organisms in
this system. Long-term hydrologic records at the index location allow for a retrospective
analysis (1952–2006) of foraging bird numbers showing low frequency oscillations in
response to decadal fluctuations in hydroclimatic conditions. Simulations of water levels at
the index location used in the Bayesian model under alternative water management
scenarios allow the posterior probability distributions of the number of foraging birds to be
compared, thus providing a mechanism for linking management schemes to seasonal
rainfall forecasts.
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1. Introduction
[2] Many of the adverse impacts on ecosystem function

in the Everglades National Park (ENP; Figure 1) are caused
directly or indirectly by altered regional hydrology [Ban-
croft et al., 2002; Craighead, 1971; Davis, 1943; Gleason,
1984; Loveless, 1959; Powell et al., 1989]. However, it is
difficult to identify cause-and-effect relations between
altered hydrologic patterns and ecosystem function because
of the many factors involved and the paucity of long-term
data on each of the putative notions. Consequently, model-
ing studies [Cline et al., 2006; Gaines, 2000; Wetzel,
2001] have been undertaken to create synthetic records that
could represent the hydroecology of the region. Since the
relationships in such models are largely prescribed or
empirically estimated from relatively short records, it is

difficult to rely solely on them as tools for understanding or
predicting the ecological outcomes in the ENP consequent
to hydroclimatic variations. A few authors [Bancroft et al.,
2002; Russell et al., 2002] have tried to directly use data
on a few species and hydrologic or climatic indicators to
infer such relationships that could be used for subsequent
management of the ENP. This paper contributes to this
literature.

[3] A goal of the restoration project is to ensure that the
ecological health of the ENP improves as a direct result
of management activities. Achieving hydrologic targets
through the proper timing and amount of releases from con-
trol structures is a first step in the management process.
Significant climate and weather variations in the region
[Kwon et al., 2006, 2009] influence the ability to make
releases and determine the ecological outcomes. A predic-
tive model for ecological outcomes given anticipated cli-
mate conditions and proposed releases is a basic building
block for an adaptive management process. The develop-
ment of such a model with a capacity for uncertainty analy-
sis is the goal of the larger research project to which this
paper contributes.

[4] Seasonal water depths in the ENP depend on man-
aged surface water releases from control structures and on
direct rainfall. On an annual basis and for the ENP as a
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whole, direct rainfall is the dominant component of the two
water sources. However, the importance of the discharges
through the control structures increases during the dry sea-
son. These discharges are concentrated along the northern
boundary of the ENP and they have their largest influence
in the region directly downstream called Shark Slough
(Figure 1). The ecological responses to these discharges
must be quantified to effectively manage the park and to
guide the restoration effort. However, given the large influ-
ence of rainfall on the system, the ecological responses to
the managed discharges must be placed within the context
of larger-scale climatic factors. Here we link the variations
in the foraging populations of two wading bird species, key
indicators of the Everglades’ ecology, to hydrologic condi-
tions in the national park that result from rainfall and
managed releases.

[5] Foraging patterns of wading birds have been a key
issue in the Comprehensive Everglades Restoration Plan
(CERP), and the monitoring of wading bird nesting success
is a coordinated effort between many agencies in Florida.
Although other factors (e.g., prey conditions, migrations
from remote areas) may influence the foraging patterns of
wading birds in ENP [Cristol and Switzer, 1999; Gawlik,
2002; Houtman and Dill, 1998; Krebs and Cowie, 1976;
Lima and Dill, 1990; Safina and Burger, 1985], it is likely
that hydrologic conditions are a major driver that dominate
the underlying population dynamics in the park [Cezilly
et al., 1995; Frederick and Collopy, 1989; Gawlik, 2002;
Powell, 1987; Russell et al., 2002; Smith, 1995; Spalding
et al., 1993; Strong et al., 1997]. Previous studies [Russell
et al., 2002] have shown an inverse relationship between
the number and degree of dry season disruptions (short-
term reversals in the recession of surface water) and bird
abundance.

[6] This paper develops a hierarchical Bayesian model
that first relates the population of two dominant wading
birds, the Great Egret (Casmerodius albus) and White Ibis
(Eudocimus albus), to key seasonal statistics of the water
levels at P33. The relatively long record (>50 yrs) at this
gage provides a basis for linking wading bird foraging

patterns in ENP to interannual to decadal climate variability.
Water levels at P33 and potential wading bird foraging
populations are then predicted, again in a Bayesian frame-
work, on the basis of rainfall and inflow volumes under
different management scenarios for the park. The Bayesian
posterior probability densities of bird populations condi-
tional on management scenarios embody the uncertainty
because of both sampling and parameter estimation. Their
comparative analysis allows for the selection of ecologi-
cally favorable water release strategies.

2. Study Area and Data
[7] The greater Everglades ecosystem extends from the

southern edge of Lake Okeechobee to Florida Bay. The
southern terminus of the system has been preserved as
ENP, one of the most widely recognized wetlands in the
world. The historic ecosystem was once characterized by
large expanses of shallow, slowly moving surface water
(called sheetflow) with seasonally fluctuating water levels
controlled primarily by rainfall and runoff from Lake
Okeechobee. Hydropatterns over much of this region have
been altered through various forms of land use change and
management practices related to regional water supply and
flood control. The once contiguous wetlands have been
compartmentalized by a series of canals and levees that,
along with a network of pumps, weirs, and gated culverts,
are the primary means by which water levels are controlled
and deliveries are made to the population centers and natu-
ral areas. As a result of these modifications, sheetflow pat-
terns in the system have been altered, causing deviations
from historic water level fluctuations and an overall decline
of ecosystem function within ENP. Most notably, wading
bird populations are estimated to have declined by 90% rel-
ative to their historic levels [Ogden, 1994]. ENP has a sub-
tropical climate with a distinct wet season in the summer
and a dry season in the winter. Almost 75% of the annual
precipitation falls during May–October with monthly pre-
cipitation amounts ranging between 0.0 and 20.0 inches.
Overland sheetflow from northern contributing zones into

Figure 1. Everglades National Park is located at the southern tip of the state of Florida. The hydrologic
monitoring station P33 is identified by the star near the center of Shark Slough.
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the ENP is a fraction of the historical amounts. Ecologic
restoration of ENP brings to the fore the challenge of how
to deliver the right amount of water to the park at the right
times to the right locations.

[8] The primary data considered are historical rainfall
records, water stages, and the foraging abundance of the
Great Egret and White Ibis. Water level data are taken
from the P33 gage, which is shown below to be directly
related to overall hydrologic conditions in the park, and for
which long-term reliable data are readily available from
1952 to 2007. The seasonal variation in the water stage at
P33 is illustrated in Figure 2a.

[9] Wading bird foraging data from the systematic re-
connaissance survey flights (SRF) [Norton-Griffiths, 1978;
Russell et al., 2001] were used. The SRF involve flying at a
fixed altitude and speed across a study area on a predeter-
mined transect while observers count animals in a strip of
land on either side of the aircraft. The SRF surveys were
initiated to give South Florida’s operational resource man-
agers a tool to assess wildlife populations. Past work to
explore the effects of hydrology on SRF-derived wading
bird distribution and abundance data is documented by
Bancroft et al. [1992, 2002] and Porter and Smith [1984].
The SRF wading bird survey was initiated in 1985. The
data are updated every month from December through
May, the dry season in south Florida, and once in August.
Russell et al. [2001] provide details of the SRF wading bird
surveys. In the present work the wading bird data were
derived by aggregation from any grid cell in which each
species was ever recorded by SRF from 1985 to 2006. The
seasonal variations in Great Egret and White Ibis popula-
tions are shown in Figures 2b and 2c.

3. Preliminary Analyses
3.1. Relationship Between P33 Stage and Water
Depths in ENP

[10] During the dry season, large numbers of wading
birds forage within the ENP and tend to concentrate along
Shark Slough. Aerial survey records (1985–present) show
the numbers of wading birds foraging in the Slough and
throughout the ENP fluctuate on an annual basis. These
fluctuations have been linked to water depths at the begin-
ning of the dry season and the subsequent recession rates
by Russell et al. [2002]. However, the hydrologic data used

by Russell et al. [2002] were derived from qualitative aerial
observations and not on the basis of actual gage data. This
is because water level recorders have been scattered nonun-
iformly in the park and operational for different time peri-
ods. Synoptic water depths for the entire park were
therefore not available for the period of record matching
the bird surveys. Recent installations of automated gage
stations have increased the spatial coverage of water level
measurements and allowed for interpolation between these
stations. Updated, grid-based (400 m2) topography data
[Desmond, 2003] facilitates the conversion of the interpo-
lated water levels to water depths for most of the ENP.

[11] Water level fluctuations across the ENP are highly
correlated. A linear correlation map between daily water
stages from January to April 2006 at P33 and daily water
depths derived from interpolation of gauge data throughout
the ENP is illustrated through the colored contour maps in
Figure 3. A high correlation is observed between stages at
P33 and water depths throughout ENP over this period. The
correlations are highest along the longitudinal axis of Shark
Slough, trending from NE to SW across ENP, and in areas
of similar elevations during both the dry and wet seasons
such as the Broad and Lostman’s River drainages. Control
structures discharge water across the northern boundary of
ENP directly into the Slough and have less effect on water
levels in adjacent areas of higher elevation, or in areas close
to the border canals. Thus, there is some decrease in correla-
tion between stages at P33 and water depths outside of the
Slough, such as in some of the marl prairie regions. For the
period from 2000–2007 we found an average r2 correlation
coefficient of 0.75 (ranging from 0.66 to 0.95) between
January–April daily water depths at P33 and water levels at
seven principal gages (NE2, NP201, EVER6, CP, P36,
NP46, CR2) in ENP, each representing one of the landscape
classifications shown in Figure 3. With this information we
consider water levels at P33 a useful indicator of water
depths throughout most of the ENP, particularly in the areas
of Shark Slough where wading bird foraging is concentrated.

[12] Observations of foraging Great Egret and White Ibis
in May of each year (1985–2006) are also displayed in Fig-
ure 3. High wading bird counts can be noted in those
regions of ENP that show the highest correlation with P33
water levels. As a consequence, water levels at P33 may be
useful to infer the suitability of hydrologic conditions for
wading birds throughout the park.

Figure 2. Seasonal trends and variation (box plots) in monthly values of (a) water stage at P33, and
foraging abundance of (b) Great Egret and (c) White Ibis from 1985 to 2006. Observations of wading
birds in June, July, September, October, and November are not available.
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3.2. Identifying Suitable Predictor Variables From the
P33 Data

[13] Bird foraging patterns are affected by many differ-
ent factors such as prey availability [Gawlik, 2002; Krebs
and Cowie, 1976; Lima and Dill, 1990; Safina and Bur-
ger, 1985] and the threat of predation [Cristol and Switzer,
1999; Houtman and Dill, 1998; Lima and Dill, 1990].
Hydrologic conditions are also known to play a role
[Powell, 1987]. Changes in the historical pattern of water
level fluctuation are considered to be a significant factor
that determines foraging patterns and the abundance of
bird populations in ENP [Russell et al., 2002; Strong
et al., 1997].

[14] It is important to recognize that hydrologic condi-
tions may be related to other factors influencing wading
bird foraging [Gawlik, 2002]. For example, the density and
distribution of vegetation in ENP is a habitat factor related
to hydrologic conditions that may affect foraging patterns.
Marsh vegetation types and density in the Everglades are
known to change with alterations to hydroperiod [Ross
et al., 2003; Armentano et al., 2006; Saunders et al.,
2006], and these changes in vegetation distribution/density
may affect the habitat quality for foraging wading birds.
The populations of wading birds in areas outside of ENP
(e.g., the water conservation areas) and the migrations of
birds to and from these areas may also be a determinant of
the foraging patterns observed during the SRF. The impact
of these migrations on the SRF observations is not well
known and was not included in our model. Since little in-
formation on the impacts of factors such as vegetation
types or migration on foraging patterns is available, we
focus on hydrologic statistics of within-season variation in
the P33 stage as potential predictors of foraging numbers
for the two species of interest.

[15] Everglades wading birds nest in the December–May
dry season, and successful foraging during this period can
be considered a prerequisite for successful nesting [Russell
et al., 2002; Frederick and Ogden, 2003]. Foraging success
in the dry season is dependent on water depths being low
enough to allow standing, and on appropriate surface water
recession rates which concentrate prey in the low-lying
areas [Kushlan, 1986; Frederick and Collopy, 1989; Gaw-
lik, 2002]. Disruptions to the dry season recession caused
by winter rainfall events or from managed water releases
tend to reduce foraging success because of the resulting
prey dispersal [Frederick and Ogden, 2003]. Too rapid
recession rates or too low water levels in December may
shorten the nesting season, although it is important to con-
sider that the impacts of these and other hydrologic factors
on foraging/nesting are often species-dependent [Frederick
and Spalding, 1994]. For this initial analysis, the number of
Great Egret and White Ibis in May at the end of the dry sea-
son are selected as the predictands reflecting aggregate
hydrologic variables calculated from January to April.
These two species were chosen because their white color
makes them easy to identify in the SRF flights, and these
data are therefore less subject to error. As in Russell et al.
[2002], bird counts in May were chosen because late-dry
season foraging numbers can be considered as an indicator
of nesting initiated earlier in the season. Similar models
could be developed using data collected during any dry sea-
son month and for other species of wading birds. Models
which incorporate within-season variability in foraging and
nesting patterns with changes in the regional and local-
scale hydropatterns will improve understanding of the spe-
cific relationships between hydrology, foraging, and the
success of individual colonies [Bancroft et al., 1994]. The
objective of this paper represents a step in this direction by

Figure 3. (left) Great Egret and White Ibis foraging abundance in May 2006, community types, and
correlation of water depths to P33 during the dry season. The colored contour map shows the correlation
between grid-based water depths in ENP and P33 water levels during the period from January to April
2006. The black circles represent the number of birds in May 2006 and the size of the circle is propor-
tional to the number of birds. (right) Outside of ENP and subject to different water management prac-
tices, resulting in depths with low correlations with P33 and few wading birds (not labeled). The small
area of low correlation on the left-hand side indicates a tidal influence not present in other parts of the
coverage.
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demonstrating the development of a robust analytical
framework capable of linking ecological outcomes to
hydrologic indicators in a manner that is useful to managers
and restoration planners.

[16] Now we consider the seasonal statistics of the daily
water levels recorded at P33 that may be useful predictors of
the May bird count. The approach followed is generally sim-
ilar to that used by Russell et al. [2002], except that the pre-
dictors are derived from actual daily water level data from a
single location, P33, instead of using the gridded qualitative
aerial observations of water level at a monthly scale.

[17] The procedure used to develop seasonal water stage
statistics as predictors from the daily water stage data at
P33 is illustrated in Figure 4. First, consider a linear decline
of stage with time during the middle of the dry season
(January–April) representing the seasonal recession of the
water table. For this recession, a linear regression of stage
versus time into the season provides the intercept as an esti-
mate of the mean of initial water level, and the slope as an
estimate of the recession rate. Once this recession behavior
is estimated, a disruption can be defined as a positive resid-
ual from the linear regression line. For each season, we can
then compute the number of disruptions, a standard devia-
tion of disruption, a maximum consecutive disruption, the
initial water stage, and average water stage at P33 as poten-
tial predictors.

[18] An exploratory data analysis was pursued first. A
k-means [Spath, 1985] cluster analysis was applied to
the standardized time series of the three predictors and

population counts for each bird species. The intention was
to see how these attributes group together. Box plots of the
number of birds and the predictors for the three clusters
identified are shown in Figure 5. The first cluster corre-
sponds to a medium water stage and relatively low disrup-
tion. The median bird populations are the highest for this
cluster. The White Ibis population has a high variation for
this cluster, but is still generally higher than for the other
clusters. Cluster 2 has the highest water levels and a me-
dium level of disruption. It maps to a middle category of
median bird population, but with a high variation in the
Great Egret bird count. The third cluster corresponds to the
lowest water levels and the highest disruption frequency
and maps on to the lowest bird counts for both species. The
nonlinearity of the relationship between the predictors and
the predictand is illustrated by this analysis.

[19] A smooth surface fit using a cross-validated thin-
plate smoothing spline [Wahba, 1990] of the birds as a
function of initial water stage and disruption, and as a func-
tion of initial and average stage are shown in Figure 6.
These pairwise relationships are nonlinear, suggesting that
a nonlinear model in all three predictors may be appropri-
ate. The correlations across the three predictors and the two
predictands, and partial correlations for each prediction for
the period 1985–2006 are provided in Table 1. On the basis
of these partial correlations it is apparent that while the pre-
dictors are correlated with each other, they still contribute
useful additional predictive information. Bird counts ini-
tially increase with average or initial water level, but

Figure 4. Three predictors derived from water stage at the P33 station. The first is the initial water
stage (IWS) at the beginning of the dry season, the second is the average water stage (AWS), and the
final predictor is the number of disruptions (DIS) to the recession rate as the dry season progresses.
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decrease or level out for a high stage. This agrees with prior
research [Russell et al., 2002] that a quadratic relationship
between the predictand and these predictors may be useful.
A stepwise regression procedure in a generalized linear
modeling (GLM) framework (considering log transformed
bird counts, a Poisson distribution for bird counts, and
quadratic terms including cross-products across predictors)
was next considered to refine the model choice. In the

GLM framework, one can consider either a Gaussian or
non-Gaussian distribution for the predictand while using a
maximum likelihood calculation for parameter estimates.
This setting approximates the conditions assumed in a hier-
archical Bayesian approach. The initial GLM/stepwise
model selection resulted in a nonlinear combination of log
transform data that included the initial stage, the average
stage, and the disruption frequency depending on which

Figure 6. Smooth surface fit using a cross-validated thin-plate smoothing spline [Wahba, 1990] of
(left) Great Egret and (right) White Ibis foraging numbers as a function of initial water stage and disrup-
tion illustrates the nonlinearity of the relationship. Note the generally linear relationship between the log-
arithm of bird counts with the number of days with disruptions, and the more complex relationship with
stage.

Figure 5. Box plots of the number of a) Great Egrets, b) White Ibis, c) initial water stage (IWS),
d) average water stage (AWS), and e) disruption (DIS) given three clusters.
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bird population was being predicted. Differences between
candidate models in terms of the likelihood criteria were
small and the instability of choice across models reflects the
small data set and correlated predictors. Models with the
Poisson assumption as to the bird count distribution typi-
cally tended to perform much better than those with the
log(bird) predictand in terms of the likelihood criteria and
in terms of cross-validated prediction. However, these mod-
els typically admitted nearly the full quadratic model (with
cross products) formed across the three predictors. Thus,
using the Poisson formulation, but accounting for predictor
correlation in a Bayesian framework while seeking a
reduced model was indicated. Detailed results of these ini-
tial screening models are not presented here. The Bayesian
model that was formulated using the initial analyses consid-
ers noninformative priors and explicitly considers the uncer-
tainty in estimating the covariance matrix across predictors
[Gilks and Roberts 1995; Gelman et al. 2004; Gelman,
2005]. This model is presented in section 4.

4. A Predictive Model for Foraging Birds
Populations

[20] A hierarchical Bayesian model is developed for the
seasonal prediction of populations of Great Egret and
White Ibis using the selected hydrologic variables, specifi-
cally the initial water stage, the average water stage, and
the number of disruptions. The model considers that the
population of each bird species follows a Poisson distribu-
tion with time varying mean �j tð Þ equal to the expected
number of birds for species j. A generalized linear model
for the mean �j tð Þ for bird species j in terms of each predic-
tor is then formulated as follows:

Zjt � Poisson �j½t�
� �

: ð1Þ

log �j½t�
� �

¼ �1j þ �2j � AWS tð Þ þ �3j � IWS tð Þ þ �4j � DIS tð Þ
þ �5j � AWS tð Þ � IWS tð Þ;

ð2Þ

where Zjt represents the bird count for species j for season
t, with mean rate �j tð Þ. IWS is the initial water stage,
AWS is the averaged-water stage, and DIS is the number
of disruptions at P33 from January to April. The specific

predictors retained in equation (2) were obtained from pre-
screening and forward/backward and backward/forward
stepwise selection considering linear and quadratic terms
in each predictor as well as cross products. Both cross-
validated performance and parsimony in model selection
were the key factors in selecting the final set of predictors
in the candidate model. In equation (2), the log transform
is introduced to ensure that predicted bird counts are non-
negative. We consider the model parameters to have the
following prior distribution:

�1j

�2j

�3j

�4j

�5j

0
BBBBB@

1
CCCCCA
� N

��1

��2

��3 ;�

��4

��5

0
BBBBB@

1
CCCCCA

ð3Þ

[21] Here uncertainty in parameter estimation is con-
sidered explicitly, through this multivariate distribution,
and inference is made on both the mean values of the pa-
rameters, ��, and � the covariance matrix of these
parameters.

[22] Following Gelman [2005], a conjugate prior distri-
bution with hyperparameters (�, v, and �̂�) estimated from
the data is employed to describe the uncertainty in estimat-
ing the parameters of the prior distribution:

� � Inv�Wishart �; vð Þ; ð4Þ

��1

��2

��3

��4

��5

�����������
�

0
BBBBB@

1
CCCCCA
� N

�̂�1

�̂�2

�̂�3 ; �̂

�̂�4

�̂�5

0
BBBBB@

1
CCCCCA
; ð5Þ

where � and v are the inverse scale matrix and the degrees
of freedom of the inverse Wishart distribution, respectively.

[23] Each of the parameters and the hyperparameters, is
considered as a random variable with an associated proba-
bility distribution. A schematic of the model is presented in
Figure 7. We note that the correlation of the observed abun-
dance between the two bird species is 0.85, and hence it
may be useful to consider pooling these data in a regression
conditioned on the same predictors. The hierarchical
Bayesian model used here provides an objective way to
choose the degree of pooling. First, we define the predic-
tand Zjt as the foraging bird population for species j stand-
ardized by dividing its raw data by its corresponding mean
annual bird population. Next, we consider that the regres-
sion coefficients for each bird species for each predictor
that comes from a common distribution with a common
mean and variance. If this variance is small, then effec-
tively we have a pooled regression. Conversely, if this var-
iance is large, then independent regressions for the two
species result. If the number of bird species introduced into
the model increases, then this procedure would still apply
and would lead to a better estimate of the mean and var-
iance of the common regression coefficient.

Table 1. Correlation Coefficients for the Three Predictors Initial
Water Stage (IWS), Average Water Stage (AWS), and Number of
Disruptions (DIS) and the Two Predictands (Great Egret and
White Ibis Foraging Populations), Including Partial Correlationsa

Bird, IWSjAWS,DIS �0.13 0.04
Bird,AWSjIWS,DIS 0.17 �0.14
Bird,DISjIWS,AWS 0.83 0.86

Bird,IWSjAWS 0.83 0.87
Bird,IWSjDIS 0.12 �0.21

Bird, AWSjIWS 0.83 0.87
Bird,AWSjDIS 0.03 �0.16
Bird, DISjIWS 0.12 �0.21
Bird,DISjAWS 0.03 �0.16

aIWS is initial water stage, AWS is averaged water stage and DIS is
number of disruptions at P33 from January to April. Values in bold are sig-
nificant at the 95% level.
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[24] The joint posterior distribution of the complete set
of parameters U can be derived by combining prior distri-
butions and the likelihood functions:

p � Zjð Þ /
Y2

j¼1

YN
i¼1

Poisson Zj½i� �1;jþ�2;j � x1½i� þ�3;j � x2½i�
���

þ�4;j � x3½i�þ�5;j � x1½i� � x2½i�
�

N

�1;j

�2;j

�3;j

�4;j

�5;j

��1

��2

��3 ; �

��4

��5

�������������

0
BBBBBBB@

1
CCCCCCCA
�

��1

��2

��3

��4

��5

�̂�1

�̂�2

�̂�3
; �̂

�̂�4

�̂�5

��������������

0
BBBBBBBB@

1
CCCCCCCCA
� Inv�Wishart � �;vjð Þ:

ð6Þ

[25] The hierarchical regression model is estimated in a
Bayesian framework. Noninformative priors are assumed
for each of the hyperparameters (e.g., ��, �, v) and their
optimal values are selected through a maximization of the
posterior likelihood of observing the data. A Markov chain
Monte Carlo (MCMC) procedure is used. In particular, the
Gibbs sampling approach to MCMC [Gilks et al., 1995]
was used. We chose to run three chains simultaneously
searching for optimal parameters. The evolution of each

chain was monitored to check for convergence to a com-
mon value. Selection of the hyper-priors and the appropri-
ateness of the prior distributions and the model structure
were judged by the deviance information criterion (DIC)
[Berg et al., 2004]. All computations were performed in
MATLAB using WinBUGS [Spiegelhalter et al., 2003]. To
assess convergence for each parameter the Gelman and
Rubin [1992] ‘‘shrink factor’’ was computed. This factor
compares the variation in the sampled parameter values
within and between chains, and it describes how much the
increase in the number of iterations improves the estimates.
Gelman and Rubin [1992] suggest running Gibbs sampler
chains until the estimated shrink factors are less than �1.2
for all parameters. WinBUGS produces scale reduction fac-
tors that are very close to 1 for the fixed effects. Values �1
were obtained after 20,000 iterations.

[26] Table 2 summarizes key results for each regression
coefficient. The posterior mean, standard deviation, and
95% credible interval are derived using MCMC as noted
above. If the posterior distribution is centered about a value
of zero, and is relatively tight, then one can be quite certain
that the associated coefficient is essentially zero, and the
predictor does not belong. On the other hand, if the var-
iance of the posterior is large, and the predictor is corre-
lated (as indicated in the covariance matrix) with another,
then it is possible that it is useful to retain the predictor
since its sign may change in a simulation in association

Figure 7. The l-hierarchical Bayesian regression model, where � indicates the location parameter
(mean) and � indicates scale parameter (variance).

Table 2. Hierarchical Model Parameters for Wading Bird Populations and Associated Uncertainty Bounds

Node Description Mean SD 2.50% Median 97.50%

Great Egret Population Model
�1 Intercept 0.096 0.272 �0.451 0.105 0.604
�2 Averaged W.S �0.157 0.549 �1.252 �0.152 0.932
�3 Initial W.S 0.605 0.481 �0.368 0.600 1.574
�4 Number of Disruption �0.220 0.241 �0.684 �0.228 0.265
�5 Averaged W.S � Initial W.S �0.518 0.327 �1.219 �0.492 0.035

White Ibis Population Model
�1 Intercept 0.104 0.287 �0.475 0.113 0.641
�2 Averaged W.S �0.466 0.574 �1.624 �0.456 0.649
�3 Initial W.S 0.727 0.492 �0.235 0.719 1.737
�4 Number of Disruption �0.409 0.243 �0.891 �0.407 0.069
�5 Averaged W.S � Initial W.S �0.680 0.387 �1.541 �0.641 �0.051
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with the sign ascribed to the coefficient of the correlated
predictor. Traditional analysts often look for a t-test to
accept or reject a predictor. However, such a procedure is
not always supported by other criteria such as the maximum
likelihood performance of the traditional model. In the hier-
archical Bayesian framework, the analyst seeks to present
the posterior probability distribution of the predictand,
rather than just the mean value, and in this context, retaining
‘‘weak’’ predictors is not quite the same as the ‘‘overfitting’’
that results in the traditional case where the performance,
with respect to the mean value, and a subjective (threshold)
hypothesis test for retaining a predictor is used. In the Hier-
archical Bayesian Model (HBM), the variance associated
with retaining an additional predictor is represented in the
posterior distribution.

[27] The HBM presented here considers a multistage
prediction problem and provides an effective means for
propagating both the model and parameter uncertainties
through all the stages simultaneously. In a Bayesian frame-
work, the entire process is linked into one model, and the
causal structure can be readily explored in terms of these
conditional distributions. Propagation of uncertainty is con-
siderably more complex in a traditional setting where the
uncertainty must be estimated separately for each individ-
ual regression. Another advantage of our method stems
from the manner in which HBM provides clear criteria for
pooling across multiple predictands. Traditional regression
typically provides for only two choices, either pooling
across all predictands or performing independent regres-
sions for each predictand/predictor combination. HBM
allows a consistent way to perform this estimation across
all the multiple predictands with appropriate shrinkage.
This in turn may lead to a reduction in the uncertainty of
estimation, but not necessarily a change in the mean predic-
tion. That is, if there is no opportunity of pooling across the

different response variables, the HBM will give results
comparable to those from individual regressions. The
reader is referred to Raftery [1995], Wikle [2003], Elsner
and Jagger [2004], Clark [2005], and Kwon et al. [2008]
for additional information on HBM applications.

[28] Recall that the predictors considered are mutually
correlated. Consequently, one needs to consider an aggregate
performance measure for choosing an appropriate model,
rather than the deletion of individual coefficients using only
the posterior probability density of that parameter. The per-
formance of the selected candidate models was compared
using the DIC as calculated in WinBUGS [Spiegelhalter
et al., 2003]. The lower the DIC value, the better the model
fits the data. The model presented in equation (2), with the
associated results for parameters was the best one based on
this criteria. Recall that in the Bayesian formulation, we
solved for the coefficients for both bird populations simulta-
neously, and hence this set of parameters is in some sense
best for both, rather than for an individual species.

[29] The time series of observed wading birds and the
values predicted at ENP in May, using a hierarchical
Bayesian model for 1985–2006 are shown in Figure 8. The
posterior mean and the 2.5%–97.5% posterior uncertainty
bounds are provided. In addition, the results of a hier-
archical Bayesian model fit under a leave-one-out cross-
validation setting are also shown. In this setting, the entire
MCMC model fitting procedure is repeated dropping the
observation to be predicted from the fitting set while using
the predictors selected in the final model. However, the
model selection procedure is not repeated each time. From
Figure 8, the performance under cross validation is seen to
be generally consistent (with slightly higher variance as
expected in general, but more so in the years 1990, 1995,
and 1996) with the full sample performance. Model predic-
tive ability is quantitatively assessed to judge the degree to

Figure 8. Posterior mean Bayesian model predictions (blue lines) and observed bird counts at ENP in
May using AWS, IWS, and DIS values at P33 as predictors for 1985–2006 (red lines, open red circles).
The shaded area represents the 2.5% and the 97.5% uncertainty bounds for the posterior distribution for
each year. Dashed lines represent the 2.5% and 97.5% uncertainty bounds on the posterior mean values
(open black circles) generated by a sequential leave-one-out procedure.
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which the model simulation matches the actual observa-
tions. One can utilize different statistics of efficiency to
measure the goodness of fit or prediction skill. While the
likelihood measure scored against the posterior probability
density of Zjt would be the appropriate measure, to facili-
tate comparison for traditional analysts we present selected
measures that traditional analysts use. Legates and McCabe
[1999] have critically reviewed many of the principal sta-
tistics of efficiency. Nash and Sutcliffe [1970] defined the
coefficient of efficiency (CoE) which ranges from minus in-
finity (poor model) to 1.0 (perfect model). The CoE has
been widely used to evaluate the performance of prediction
models [e.g., Wilcox et al., 1990]. For more details regard-
ing goodness of fit measures, see Legates and McCabe
[1999] and Willmott et al. [1985]. The definitions of these
performance statistics are summarized in Table 3 and the
performance of the model for the period from 1985 to
2006, according to these measures, is shown in Table 4.
The Great Egret and White Ibis posterior means predicted
by the model have a correlation of �0.8 with the observed
series, with a CoE 0.7 under cross validation. Analysis of
residuals (observed–posterior mean) for the model for
Great Egret and White Ibis supported the assumption of
zero mean, independent, and identically normally distrib-
uted errors. The Jarque-Bera test for goodness of fit to a
normal distribution [Judge et al., 1988] and the Shapiro-
Wilk parametric hypothesis test of composite normality
[Royston, 1995] were performed, and the hypothesis that
error has a normal distribution is not rejected at the 5% and
10% level.

[30] The model developed above is now applied for ret-
rospective prediction of wading bird foraging numbers for
the period 1952–1984 for which daily P33 stage data is
available but bird data are not. The results are illustrated in
Figure 9. Note the wide variation in the width of the poste-
rior distribution indicating years in which the predicted
bird counts may be more or less precise. The long-term
trends for the P33 average water stage, disruption, and rain-
fall are indicated by Lowess [Cleveland, 1979] smooth
lines superimposed on graphs of time series in Figure 10.
The concurrent decadal to multidecadal variability in the
relevant time series is shown. An interesting feature is the
increase in the foraging bird population post-1995, even
though the seasonally averaged rainfall and P33 stage do
not show any marked trends. We note, however, that the
disruption time series reveals a decreasing trend over the
same time period, reinforcing the earlier assessment that
both the stage and the disruption frequency are important
indicators for foraging conditions. The trends in foraging

numbers in the period before systematic observations are
available are consistent with our expectations from the non-
linear model. The period from 1962 to 1970 is marked by
relatively low water levels and higher disruption frequency,
and translates into lower bird counts. On the other hand,
the higher bird counts around 1960 and 1980 again corre-
spond to average to higher water levels with a lower disrup-
tion frequency. These results rely on the assumption that
the relationship between P33 and water levels in the other
areas of the ENP where wading birds are known to forage
remained relatively constant over the complete period of
record. Some changes in water management regulation
schedules and policies have occurred during this time pe-
riod. However, the central location of P33 in Shark Slough
gives confidence that it has consistently reflected the gen-
eral hydrologic condition of the areas where wading birds
tend to forage. Our goal in presenting these results is to set
the stage for a comparative evaluation of different release
policies from the control structures that translate into dif-
ferent AWS, IWS, and DIS values at P33 and therefore, dif-
ferent numbers of foraging bird populations.

5. Modeling Water Levels at P33
[31] A Bayesian approach is developed to relate

observed water levels at P33 to a combination of hydro-
logic predictors representing the water budget parameters
at the site. The model considers that over time period t the
water level at P33, Z(t), is normally distributed with a time-
varying mean � tð Þ and a constant variance �. The water
level is measured with respect to a fixed land surface da-
tum, and can be positive or negative relative to that datum.
A model of the mean � tð Þ in terms of each predictor is then
formulated as follows:

Z tð Þ � N �½t�; �ð Þ; ð7Þ

� tð Þ ¼ �1 þ �2 � P33 t � 1ð Þ þ �3 � �R tð Þ t � 1ð Þ þ �4 � �R tð Þ t � 1ð Þ2

þ �5 � �I tð Þ t � 1ð Þ þ �6 � �I tð Þ t � 1ð Þ2;
ð8Þ

�R ¼
0 R � 0

1 R > 0

�
; �I ¼

0 I � 0

1 I > 0

�
; ð9Þ

where P33 is daily average water stage, R is total daily rain-
fall, and I is the daily average rate of surface water inflow
through upstream control structures into ENP. A delta func-
tion is employed to differentiate the zero and the nonzero
case for R and I. The form of the equation in this case
reflects the univariate relationships between the hydrologic
parameters known to occur at this site; namely, that the
mean water levels increase with I and R, and that the water
stage is highly autocorrelated. The factors leading to

Table 3. Regression Model Performance Measuresa

Statistics Formula

Correlation coefficient r ¼
PN

t¼1 Ot � �Oð Þ Pt � �Ptð ÞPN
t¼1 Ot � �O½ �2

� �0:5 PN
t¼1 Pt � P
� 	2� �0:5

Coefficient of efficiency CoE ¼ 1�
PN

t¼1 Ot � Ptð Þ2PN
t¼1 Ot � �Oð Þ2

Normalized bias Bias ¼ N�1PN
t¼1 Ot � Ptð Þ=O

aN is the sample size, P is the model-simulated data, and O is the
observed data.

Table 4. Model Performance for Wading Bird Foraging Predic-
tions Using Traditional Criteria

Predictors R CoE Normalized Bias

Great Egret 0.83 0.66 1.82%
White Ibis 0.83 0.67 �5.45%
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observed nonlinear relationships between rainfall, water
levels, and structural discharges in the ENP are discussed
by He et al. [2010]. Noninformative priors were selected
and a three chain Gibbs sampling approach to MCMC
[Gilks et al., 1995] was employed to solve for the parame-
ters in MATLAB using WinBUGS [Spiegelhalter et al.,
2003]. A [Gelman and Rubin, 1992] ‘‘shrink factor’’ crite-
ria of 1 in the MCMC was used to establish the parameter

values (Table 5) and their variation within and between
chains. The model coefficient of variation, the coefficient
of efficiency, and the bias show very high fidelity with
observed values during separate calibration (1978–1987)
and verification (1988–2006) periods. The output of the
model is a posterior probability density function for daily
P33 stage, conditional on rainfall and releases. Thus, as
part of a Monte Carlo simulation, given a proposed release

Figure 9. A retrospective analysis of wading bird foraging numbers. Model predictions (solid lines)
and observed birds (open circles) at ENP in May, using hierarchical Bayesian regression (equation (2))
and AWS, IWS, and DIS derived from 1952 to 2006 water levels at P33. The late 1950s and early 1960s
were marked by significant hydrologic manipulations in the regional water management system.

Figure 10. (top) The long-term trends for P33 annual average water stage, (middle) number of disrup-
tions, and (bottom) rainfall are indicated by Lowess [Cleveland, 1979] smooth lines superimposed on graphs
of time series. The concurrent decadal to multidecadal variability in the relevant time series is shown.
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strategy and a synthetic (from a prediction or stochastic
model) or historical record of rainfall, one can sample from
the posterior distribution of daily P33 stage to identify the
seasonal predictors for the bird model. This approach was
taken to investigate the role of managed structural releases
in regulating bird populations in the ENP under varying
levels of rainfall.

6. Impacts of Alternative Water Management
Policies on Water Levels and Foraging Populations

[32] The impacts of water release policies was investi-
gated by linking predictions of seasonal P33 water levels
(and the corresponding AWS, IWS, and DIS) on the basis
of different inflow scenarios to the Bayesian model of for-
aging bird populations. In this scheme, posterior distribu-
tions of P33 water levels were first calculated using
equations (7) and (8) with calibrated parameter values, and
with variable inflow volumes corresponding to different
management scenarios for the period 1986–2000. The
hydrologic predictors used in equation (2) were then
derived from the P33 values expected under each scenario
and used to generate probability distributions of the num-
bers of foraging birds for each year of the simulation. The
results are presented as a time series of predicted mean val-
ues with the 2.5% and 97.5% confidence intervals for each
posterior distribution. The following management scenarios
are considered:

[33] 1. The ‘‘baseline’’ case represents P33 and foraging
population predictions using measured rainfall and inflows
discharging into ENP.

[34] 2. Three alternative inflow management scenarios
were then tested and are ordered here on basis of the total
amount of water delivered to ENP. Rainfall amounts do
not vary across scenarios; they refer to observed values for
the period. The first scenario, ‘‘no inflow,’’ assumes zero
releases from the surface water control structures located
across the northern boundary of the park. The second sce-
nario, ‘‘rainfall plan’’ regulates inflows to ENP as a func-
tion of rainfall in the northern contributing basins according
to a formula derived by the South Florida Water Manage-
ment District [Neidrauer and Cooper, 1989; Light and
Dineen, 1994]. The final scenario, the combined structural
and operational plan (CSOP) scenario is a management
scheme accompanying a large-scale restoration project
designed to increase and alter the timing of ENP inflows.

[35] Inflows into ENP under the CSOP scenario were
derived from the South Florida water management model
(SFWMM, available at http://www.evergladesplan.org/pm/
recover/system_wide_modeling.aspx), a regional-scale hy-
drology model for south Florida. For January–April of each

year, the AWS, IWS, and DIS were calculated and used to
generate probability density functions for wading bird pop-
ulations generated in each scenario according to equation
(2). The period 1986–1990 is characterized by low to
below-average rainfall and relatively low numbers of forag-
ing birds in all of the scenarios. The period from1991 to
2000 is characterized by average to above-average rainfall,
and relatively higher water levels and greater numbers of
foraging birds.

[36] In the Bayesian framework, the posterior distribu-
tions of bird populations in these scenarios, which overlap,
indicate no significant differences in the predictions. For
most years in the scenario comparisons, only minor differ-
ences in the predicted probability distributions of bird
counts were shown (Figure 11). The wide uncertainty inter-
vals in these predictions arise primarily from the uncertainty
in the relationship between the hydrologic parameters (AWS,
IWS, and DIS) and bird populations. The uncertainty in
water level predictions at P33 as a function of inflows and
rainfall were small in comparison.

[37] The largest differences in scenario outcomes occurred
during the very high rainfall years of 1995 and 1996. During
these years, those plans that delivered the least amount of
water to the ENP through the control structures (no inflow
and rainfall plan) produced the largest numbers of both
White Ibis and Great Egrets relative to the baseline values.
The relatively low DIS values in these scenarios during 1995
contributed to the predictions of greater bird populations
(Table 6). The no inflow scenario in 1995 was also charac-
terized by AWS and IWS values that were closer to their an-
nual mean (i.e., standardized values close to zero) compared
to the other scenarios. As a result, the AWS and IWS cross
product (a negative term in equation (2)) was also relatively
closer to zero in this scenario, resulting in higher bird predic-
tions. The overall differences in the numbers of foraging
birds in the no inflow compared to the baseline scenarios can
be interpreted as an estimate of the ecological impact of
structural discharges on the quality of foraging habitat in the
ENP over the 1986–2000 period. Since more birds are con-
sistently predicted during wet years under the reduced inflow
scenarios, this suggests high rainfall alone is capable of
maintaining AWS and IWS within optimal ranges for wad-
ing birds during wet periods without the addition of managed
structural releases.

[38] A negative correlation between water levels and
DIS was observed in all of the scenarios. The reason behind
this is twofold. First, water levels are positively related to
rainfall amounts, and recession rates in this system gener-
ally increase with water levels. As recession rates increase,
the duration over which any temporary rainfall-driven
increase in water level deviates from a linear recession is

Table 5. Model Performance Measures, Parameters, and Associated Uncertainty Bounds for Daily Predictions of P33 Water Levels on
the Basis of Hydrologic Parameters

Measure Cal. 30% Ver. 70% Node Description Mean SD 2.50% Median 97.5%

r 0.981 0.989 �1 Intercept 6.151 0.906 4.823 5.908 7.761
�2 P33t�1 0.913 0.012 0.892 0.916 0.931

CoE 0.963 0.978 �3 Rainfallt�1 0.440 0.078 0.289 0.440 0.596
�4 Rainfallt�1

2 �0.017 0.013 �0.043 �0.017 �0.008
Bias (m) �0.001 �0.057 �5 Inflowt�1 0.398 0.083 0.245 0.396 0.561

�6 Inflowt�1
2 �0.007 0.033 �0.069 �0.007 0.058
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Figure 11. Posterior distributions of foraging Great Egret and White Ibis populations under baseline
(B) conditions and three different management scenarios: no inflows (N), the rainfall plan (R), and the
CSOP (C). Lines for each scenario represent the mean number of birds and the 2.5% and 97.5% uncer-
tainty bounds of each posterior distribution calculated on AWS, IWS, and DIS for each year of the
simulation.

Table 6. Summary of Predicted Hydrologic Variables and Great Egret and White Ibis Foraging Populations for a Year With Low
(1988), High (1995), and Average Rainfall (2000) for the Current Management Scheme (Baseline), and Three Alternative Management
Scenariosa

AWS IWS DIS

White Ibis Great Egret

2.5% Avg. 97.5% 2.5% Avg. 97.5%

1988
Baseline �0.57 �0.62 0.19 521 1020 1737 519 983 1645
No inflow �1.20 �1.28 0.77 74 334 946 94 374 1005
Rainfall plan �0.61 �0.69 �0.86 682 1483 2768 547 1159 2161
CSOP �0.62 �0.79 �0.28 488 1023 1857 445 924 1643

1995
Baseline 2.04 1.74 2.06 9 94 591 50 358 1702
No inflow 0.15 0.49 �0.28 1405 2362 3947 1332 2223 3553
Rainfall plan 1.45 1.22 0.19 172 598 1562 380 1063 2351
CSOP 2.06 1.75 1.13 13 137 793 68 434 1736

2000
Baseline 1.03 1.26 0.19 426 1032 2051 849 1404 2195
No inflow �0.27 �0.12 �2.04 1794 4030 8126 374 784 1434
Rainfall plan 0.50 0.69 �1.45 1863 3183 5178 618 1101 1831
CSOP 1.16 1.34 �1.92 715 2070 5220 782 1300 2043

aThe management scenarios representing no inflows, the rainfall plan, and the combined structure and operations (CSOP) restoration plan.
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reduced, and the calculated DIS values decline. Second,
during wet years, the frequency of rain events is relatively
higher and the impact of any one rain event on water levels
(and on the recession rate) also decreases. The combination
of these two factors leads to an overall negative relation-
ship between rainfall amounts and DIS. Intermittent man-
aged inflows also influence DIS values and raise average
water levels.

[39] During years with low rainfall, those plans that
delivered relatively more water to the ENP generally pro-
duced larger numbers of foraging birds. For example, in
1988, very few birds were predicted for the no inflow sce-
nario due to very low AWS and IWS values. The DIS value
for this scenario in 1988 was also relatively high, contribut-
ing to the low bird predictions. For years with very low
rainfall amounts (e.g., 1990), no significant differences in
predicted birds were shown among the scenarios. Inflow
amounts in all of the scenarios were close to zero during
this year.

[40] Relatively large differences in bird predictions were
also observed during 2000, a year with near average
January–April rainfall amounts. During this year, more
birds were predicted in the no inflow, rainfall plan, and the
CSOP scenarios compared to the baseline predictions due
largely to the differences in DIS values. Again, the no
inflow and rainfall plans produced the lowest DIS and the
most birds. IWS values for the baseline and CSOP scenar-
ios were above average in this year due primarily to the
high rainfall amounts in the latter half of 1999. This condi-
tion also contributed to the high AWS exhibited in these
scenarios in the 2000 January–April dry season. Hydrologic
conditions in the months prior to the start of the dry season
recession thus contribute to the performance of these
scenarios.

[41] The results of the scenario analyses point to the
potential impacts of managed inflows on foraging condi-
tions in ENP. During low rainfall periods, managed
releases are necessary to maintain favorable water levels.
However, during high rainfall periods these releases may
contribute to maintaining water levels above optimal val-
ues. Over the entire 1986–2000 period, the largest average
numbers of foraging birds of both species were predicted
under the no inflow and the rainfall plan scenarios. How-
ever, this is largely because the majority of the period is
characterized by high rainfall conditions when the scenar-
ios, which restrict inflows, performed relatively well. We
suggest it is therefore important to consider the relative per-
formance of these scenarios in a larger context determined
by longer-term rainfall amounts and timing. Optimizing
foraging conditions for wading bird species over longer
time periods is likely to require adaptive release schedules
which incorporate real-time information on water levels,
rainfall, and climatic drivers [e.g., Kwon et al., 2006]. Of
the four analyzed here, the management scenario most
closely tied to climatic conditions is the rainfall plan, and
while it did not produce the highest numbers of Great Egret
or White Ibis during either the low or high rainfall periods,
this scenario did produce the highest median number of for-
aging birds when the species were combined over the full
period of record (2450 birds yr�1). Similar climate-based
approaches to managing inflows into ENP could further
improve habitat quality for foraging birds. However, the

variability that is inherent in the observed numbers of birds
in relation to hydrologic conditions and which is captured
in the Bayesian model lowers the confidence in our conclu-
sions regarding the relative performance of the scenarios
during most years. The large overlap in posterior distribu-
tions in these scenarios also suggest that the variability in
wading bird foraging populations is driven primarily by
rainfall, and that these populations may be relatively insen-
sitive to the water level fluctuations driven by structure
releases. It is recommended that additional analyses be con-
ducted using population data from other species to investi-
gate the broader ecological outcomes of rainfall-driven
management plans. Also, the analysis opens the possibility
of developing specific optimization schemes for operation,
conditional on preseason hydrologic conditions and fore-
casted rainfall scenarios that can maximize the probability
of achieving target bird populations. Such an approach
would require the convolution of the uncertainty distribu-
tion of the forecast, which could be achieved with a daily
stochastic weather generator conditioned on that season’s
anticipated conditions, and with the two steps of posterior
distributions evaluated in the models described here.

7. Summary and Conclusions
[42] Water depths and their fluctuation in the dry season

are known to have an impact on wading bird habitat suit-
ability in ENP. The Bayesian approach presented here
incorporates basic hydrologic parameters (AWS, IWS, and
DIS) at P33 to estimate the seasonal foraging populations
of wading birds. Since water depth patterns throughout
ENP are highly correlated, measurements at a single, cen-
trally located gauge can reasonably be used to infer the
suitability of foraging conditions across large areas of the
park. This finding is relevant for water resource managers
concerned with optimizing hydrologic conditions for wild-
life but for which real-time data over large areas are often
unavailable. The results also suggest that with knowledge
of water depths in Shark Slough at the beginning of the dry
season and some predictive information on expected rain-
fall patterns, structural discharges may be regulated to
improve the probability of specific ecological outcomes.
For instance, information on the initial water level, together
with probabilistic climate forecasts, and a proposed water
release policy, could be used to estimate both the probabil-
ity distributions of the average water level in the upcoming
season, and the disruption frequency. Future work will focus
on developing models that map observed and forecast daily
rainfall, current stage, and water release from control struc-
tures into future stage at P33. Daily rainfall simulations are
under development that represent low frequency variation
using wavelet autoregressive models [Kwon et al., 2007]
which may then be used as part of an adaptive policy to
guide intraseasonal releases such that hydrologic conditions
evolve toward improved end-of-season outcomes. It is
noted that this type of feedback generally has not been uti-
lized over the past several decades and this has contributed
to the large fluctuations observed in wading bird foraging
populations. Wading bird populations remain low in ENP
relative to estimates from historic (i.e., predrainage) peri-
ods and low relative to other areas in the greater Everglades
ecosystem. Our analyses of alternative structural release
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policies for ENP that have been applied in the past (the
baseline scenario) or are proposed for the future (CSOP)
indicate that dynamic water release schedules, which are
linked explicitly and primarily to rainfall amounts over the
long term, resulted in high average numbers of wading
birds across the widest range of conditions. However, dur-
ing years with low rainfall, the management schemes,
which released relatively greater amounts of water into
ENP, tended to result in better foraging conditions than the
more conservative schemes. These plans performed rela-
tively poorly during years with high rainfall and already
high water levels, suggesting that water release schedules
should also be conditioned on downstream water levels to
maximize desired ecological outcomes.
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