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Mechanistic Biogeochemical Model
Applications for Everglades Restoration:
A Review of Case Studies and Suggestions

for Future Modeling Needs

JOONG-HYUK MIN, RAJENDRA PAUDEL, and JAMES W. JAWITZ
Soil and Water Science Department, University of Florida, Gainesville, FL, USA

Mechanistic biogeochemical model applications for freshwater wet-
land ecosystems are reviewed with an emphasis on applications in
the Florida Everglades. Two significant human impacts on the Ev-
erglades have been hydrologic alteration and phosphorus (P) en-
richment. Thus, it is important for research conducted in support
of Everglades restoration to integrate understanding of the coupled
effects of hydrologic and biogeochemical processes. Models are tools
that can facilitate such integration, but an important challenge in
model development is determining the appropriate level of model
complexity. Previous wetland biogeochemical and flow modeling
efforts are categorized across the spectrum of complexity from em-
pirical and spatially aggregated to mechanistic and spatially dis-
tributed. The focus of this review is on mercury and P, as these two
elements represent major environmental concerns in this ecosys-
tem. Two case studies of coupled hydrologic and biogeochemical
modeling for P transport are described in further detail to illus-
trate the implications of different levels of model complexity. The
case study simulation results on time series TP data revealed that
the mechanistic biogeochemical model with more complexity did
not guarantee significantly better simulation accuracy compared
to the simpler one. It is concluded that the level of model com-
plexity should be represented appropriately based on the modeling
objectives, hypotheses to be tested, and data availability. Finally,
better integration between data collection and model development
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490 J.-H. Min et al.

is encouraged as cross-fertilization between these processes may
stimulate improved system understanding.

KEYWORDS: biogeochemical model, Everglades, mechanistic
model, phosphorus cycling, restoration, wetland

1 INTRODUCTION

Mechanistic biogeochemical models have been extensively applied to diverse
aquatic ecosystems including rivers, lakes, wetlands, and estuaries (Chen
and Sheng, 2005; Jørgensen and Bendoricchio, 2001; Robson et al., 2008).
Such modeling is a core research tool to support understanding ecosystem
structures and functions, and support management decision making through
hypothesis testing and prediction (Arhonditsis et al., 2006, 2008; Mitsch and
Reeder, 1991; Sklar et al., 2001; Wang and Mitsch, 2000). Historically, the
Florida Everglades was a huge oligotrophic freshwater wetland ecosystem
that extended from the upper basin of the Kissimmee River to the Florida
Bay. However, more than a century of human intervention has degraded
this unique wetland area. Hydrologic alteration and phosphorus (P) rich sur-
face runoff have been designated as the two most fundamental causes of
major environmental issues in the Everglades over the last several decades
(Newman and Lynch, 2001). Thus, it is important for research conducted
in support of Everglades restoration to integrate understanding of the cou-
pled effects of hydrologic and biogeochemical processes. Models are tools
that can facilitate such integration for understanding process behavior, de-
signing engineered systems (such as the large treatment wetlands known as
stormwater treatment areas [STAs]), and evaluating scenarios that cannot be
easily tested physically.

The spectrum of complexity of hydrologic and biogeochemical rep-
resentations in wetland modeling is categorized conceptually in Figure 1.
For biogeochemical modeling, the simplest approaches use empirical or
process-lumped equations. More complex models adapt physical process-
based mechanistic or ecosystem-level compartment modeling approaches.
For flow modeling, the simple and complex approaches can be generally
classified in terms of time (steady state vs. transient) or space (spatially
aggregated vs. distributed). Here, the four different combinations of these
characteristics describing the integration between hydrologic and biogeo-
chemical models (Figure 1) are used to categorize the case studies reviewed.
Although this classification is a simplification of the possible spectrum of
coupled hydrologic-biogeochemical wetland modeling, it facilitates compar-
ison of modeling approach strengths and weaknesses, and helps understand
individual case studies within the broader context of possible modeling ap-
proaches. Thus, this classification was used here to review the present status

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
9:

57
 1

0 
Ja

nu
ar

y 
20

12
 



Mechanistic Biogeochemical Model Applications 491

FIGURE 1. Conceptual diagram of approaches for incorporating biogeochemical and flow
complexity in wetland modeling.

of mechanistic biogeochemical model applications for freshwater wetland
ecosystems, with an emphasis on mercury (Hg) and P in the Florida Ev-
erglades. These two elements represent major environmental concerns in
this ecosystem, and to our knowledge mechanical biogeochemical model-
ing efforts on other constituents such as C, N, heavy metals, and organic
compounds have been rarely reported (Browder and Volk, 1978; Kadlec and
Wallace, 2009; Martin and Reddy, 1997).

Some historical empirical (relatively simple and parameter-lumped) bio-
geochemical models have been very useful as management modeling tools
and predictive tools for treatment wetlands and of long-term P retention.
However, more mechanistic (relatively complex and process-based) biogeo-
chemical modeling approaches may be necessary to systematically under-
stand the internal processes of a wetland ecosystem and predict the bio-
geochemical impacts as a result of changes in environmental factors such as
hydrology and climate. This modeling approach is also essential to achieve
the goals of the Everglades restoration.

Since the promulgation of the 1994 Everglades Forever Act, rigorous
ecosystem restoration efforts have been carried out in Florida through various
regulatory, research, and construction activities. One of the primary efforts
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492 J.-H. Min et al.

FIGURE 2. Regional map showing the strategic locations of STAs and two treatment cells
selected for case studies: STA-1W Cell 4 and STA-5 Cell 1A.

was construction of the STAs strategically located between the Everglades
Agricultural Area and Everglades Protection Area (Water Conservation Areas
[WCAs]; Figure 2). The STAs comprise the largest treatment wetland system
in the world (total effective treatment area of approximately 182 km2) and
have played a critical role in reducing P levels in surface water entering the
EPA. Through two case studies applied in the Everglades, we examine the
level of complexity and model performance of two mechanistic P models
that were applied to the STAs.

Our focus in this paper was not to fully describe the model development
processes, algorithms used, and the major conclusions elicited from the mod-
eling efforts, but to review mechanistic biogeochemical modeling approaches
in terms of the flow and P-dynamics complexity levels described in Figure 1.
The emphasis was on examples in the Florida Everglades, but also included
discussion of applications in other areas that have potential to be applied for
this wetland ecosystem. In addition, we contrasted two P models in terms of
level of complexity and the associated model prediction performances on the
time series outlet TP concentration profiles. Therefore, the specific objectives
of this communication were to (a) estimate an optimized level of mechanis-
tic biogeochemical model complexity based on present data availability and
(b) identify major data gaps and modeling needs essential for development
of more advanced mechanistic biogeochemical models to support Everglades
restoration.
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Mechanistic Biogeochemical Model Applications 493

2 MECHANISTIC MODELING APPROACHES

A fundamental challenge for wetland scientists is determining the appropri-
ate level of complexity for biogeochemical models to effectively simulate
the fate and behavior of target elements in wetlands. For example, many re-
searchers have developed and applied wetland P models of widely varying
complexity in flow as well as in the cycling (Table 1) to address varying ob-
jectives. Empirical biogeochemical modeling approaches are relatively easy
to develop and apply, but only provide relationships among observational
data. Empirical models are useful in describing an overall trend in a sys-
tem but do not have mechanistic relevance. The advantages of empirical
modeling approaches conversely become the disadvantages of mechanistic
modeling approaches. Fernandez et al. (2006) summarized the shortcom-
ings of mechanistic approaches: (a) they usually require extensive model
input data and physical parameters—in many cases, some of the model in-
put data or parameters are not available, which makes it difficult to develop

TABLE 1. Wetland P model classification in terms of level of complexity on flow and P
dynamics

P dynamics

Flow More empirical More mechanistic

Fully assumed Empirical mass balance approach
• Kadlec and Newman (1992)
• Kadlec and Wallace (2009)

First-order kinetic or Vollenweider type
approach

• Kadlec (1994)
• Mitsch et al. (1995)
• Reed et al. (1995)
• Walker (1995)
• Kadlec and Wallace (2009)
• Wong and Geiger (1997)
• Kadlec (2000)
• Carleton et al. (2001)
• Black and Wise (2003)
• Wang and Jawitz (2006)
• Chavan and Dennett (2008)

Ditch
• Janse (1998)

River marginal wetlands
• van der Peijl and Verhoeven (1999)

Everglades
• Walker and Kadlec (1996; EPGM)
• Noe and Childers (2007; P budget)

Fully
considered

Watershed model-based approach
• Huber and Dickinson

(1988; SWMM)
• Arnold et al. (1994; SWAT)
• Refsgaard and Storm (1995;

MIKE SHE)
• Bicknell et al. (1997; HSPF)
• SWET, Inc. (2006; WAM)
• Bingner and Theurer

(2009; AnnAGNPS)
Hydrodynamic model-based approach

• Tsanis et al. (1998)
• Raghunathan et al. (2001)
• Kazezyilmaz-Alhan et al. (2007)

Lake wetland
• Kadlec and Hammer (1988)
• Mitsch and Reeder (1991)

River marginal wetlands
• Wang and Mitsch (2000)

Everglades
• HydroQual (1997; WWQM)
• Fitz and Sklar (1999; ELM)
• Chen and Sheng (2005; Lake

Okeechobee)
• Walker and Kadlec (2005; DMSTA2)
• Min (2007; MIKE 21)
• Jawitz et al. (2008; RSM-WQ)
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494 J.-H. Min et al.

the model, this also makes it difficult to calibrate and validate the model;
(b) the underlying uncertainties in the parameterization lead to uncertainties
in model prediction; and (c) time and effort required to run these models
are considerable.

In contrast, mechanistic biogeochemical models are usually complex
because these models are designed to produce quantitative outputs based
on the understanding of underlying functional mechanisms of the processes
(Robson et al., 2008). Construction of mechanistic models begins with con-
ceptualization of a system, which involves representing the key system com-
ponents and their linkages. The model structure is generally formulated in
terms of stores and flows among the stores to describe the fate and behavior
of elements of interest within an ecosystem. For example, in wetlands, P
stocks are in the water column, biomass, and soil, and the flows are the
cycling and the transformation of P in various forms between these stocks.
Thus, mechanistic models explicitly represent the functionality of internal
dynamics of a system and seek to describe the relationship between the
phenomenon and underlying principle of cause. In addition, these models
allow simulating the physical and biogeochemical behavior of target ele-
ments quantitatively within a system and the physical meanings of model
parameters are usually clear.

In ecosystem modeling, mechanistic models have formed the scientific
basis in the decision making process by providing linkage between man-
agement questions and the response of the ecosystem (Arhonditsis et al.,
2006; Fitz and Sklar, 1999; Fitz and Trimble, 2006; Walker and Kadlec, 2005).
A key advantage of mechanistic models is that the variables in an ecosys-
tem are mechanistically connected with the physical process-based linkages.
Thus, such models have the ability to predict alternate management scenar-
ios, which is critical to make management decisions. Spatially distributed
models have added advantages because these models represent ecological
processes throughout the simulated domain, enabling assessment of spatial
variability of internal changes within the system as well as the effects of
system inputs on outputs. In South Florida, several models have been used
to simulate management strategies to adaptively guide the restoration and
protection of the Everglades. For example, a Dynamic Model for Stormwater
Treatment Areas (DMSTA) has been used for evaluating scenarios related to
STAs and reservoirs under the Comprehensive Everglades Restoration Plan
(CERP; Walker and Kadlec, 2005). Also, the Everglades Landscape Model
(ELM) has been used to quantify potential ecosystem responses to altered
hydrologic and nutrient drivers (Fitz and Trimble, 2006).

Mechanistic models are based on the underlying physics and chemistry
governing the process and seek to describe phenomena with transferable
equations that can be used predictively. This approach is contrasted with em-
pirical methods that are based on observed relationships between variables
that may not be transferable in space or time. The first step in developing a
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Mechanistic Biogeochemical Model Applications 495

mechanistic model is to construct a conceptual model that defines the key
interactions between process variables based on fundamental knowledge.
Then, each interaction is defined mathematically (e.g., first-order kinetic and
Monod equation). Parameters for these relationships must be obtained from
experimental data or field measurement. Finally the model should be vali-
dated against process data. Although these four steps in the model devel-
opment are generally similar whether the model is empirical or mechanistic,
the differences appear in resilience to perturbations. For example, if an em-
pirical model parameter (e.g., settling coefficient) is a function of load or
vegetation community, then the parameter must be changed when these
input conditions change (Kadlec, 2000).

The level of complexity in mechanistic biogeochemical models is based
on the goal or utility of the modeling effort. This is usually dependent on how
much data are available for model fitting, but it is definitely based on what
predictions are desired (e.g., What if the external load is directly reduced?) or
what hypotheses can be tested (What about the effects of other key control-
ling parameters regulating the target component?). In reality, it is not always
possible to completely differentiate mechanistic and empirical modeling ap-
proaches because most models in use are hybrids where some processes are
mechanistically or empirically described (Reckhow and Chapra, 1999).

3 REVIEWS OF MECHANISTIC MODELS IN THE EVERGLADES

In this section, the review of mechanistic biogeochemical models is primar-
ily focused on applications in the Everglades. However, we also include
several examples that have not been directly applied to the Everglades, but
have contributed to the mechanistic biogeochemical modeling studies for
the Everglades. A synthesized review of these modeling efforts will be use-
ful to develop more advanced mechanistic biogeochemical models in the
Everglades.

3.1 Mercury

The Everglades Mercury Cycling Model (E-MCM; Harris et al., 2003) was
the first detailed mechanistic model to describe the Hg cycling in the Ev-
erglades marsh. This model is based on the mass balance approach, and
can predict time-dependent concentrations for three forms of Hg: inorganic,
methyl, and elemental. The model divides the natural system into four com-
partments: the water column, macrophytes, four sediment layers, and a food
web (Figure 3). The food web consists of fish, zooplankton, phytoplankton,
periphyton, detritus, shrimp, and benthos. The E-MCM was initially calibrated
using two years of data (1996–1998) from WCA-3A-15, and subsequently ap-
plied to predict the response of fish mercury concentrations to the altered
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496 J.-H. Min et al.

FIGURE 3. Hg cycling in E-MCM.

atmospheric Hg deposition (Harris et al., 2000). The E-MCM was further
modified to allow multiple cell simulations to be linked in series, with a
direct link of an individual cell to adjacent cells immediately upstream and
downstream. The modified version was used for transient model calibrations
to four individual sites of the Everglades: the Everglades Nutrient Removal
(ENR) Project, WCA-2A (F1 and U3), and STA-2 (Harris et al., 2003). The
model calibrations were performed against the observed mean concentra-
tions of Hg level in fish as well as inorganic Hg and methyl Hg in surface
water. In addition, several simulations of management scenarios were con-
ducted to evaluate the potential effects of changes to flow rates, atmospheric
Hg deposition, methylation rates, and TP across ENR Project and WCA-2A
sites. One of these hindcasting model results indicated that changes in atmo-
spheric deposition may account for most of the recent changes in largemouth
bass Hg levels in terms of both timing and magnitude of change, although
the effects of concomitant shifts due to other environmental variables, such
as water column sulfate levels needed further elucidation (Atkeson et al.,
2005). These results were predicated on rapid rates of turnover of the pool
of Hg (II) that was readily bioavailable in surficial sediments for methylation
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Mechanistic Biogeochemical Model Applications 497

(Atkeson et al., 2005) because thin surface sediment layer (3 mm) employed
by model fitting caused minimal buffering, leading to rapid response to the
loading in water column. Sulfur (S) cycling is one of the primary control-
ling factors on the net methyl Hg production and bioaccumulation in the
Everglades ecosystem (Gilmour et al., 2007). Harris et al. (2003) suggested
developing a more sophisticated model that can accommodate the essential
features of the S cycle, and work is now in progress to capture the complex
interactions between methyl Hg production and the S cycle (Axelrad et al.,
2008). In summary, the E-MCM integrated several hydrologic and biogeo-
chemical processes, and its demonstration in the Everglades marsh provided
a valuable understanding of some of the processes and governing factors of
Hg dynamics for this unique ecosystem.

3.2 Phosphorus
3.2.1 MODELS THAT COUPLE SIMPLE HYDROLOGY AND SIMPLE

BIOGEOCHEMISTRY

An empirical mass balance approach based on input-output analysis is the
simplest model used to describe phosphorus retention in various wetland
systems (Kadlec and Newman, 1992; Kadlec and Wallace, 2009; Reddy
et al., 1999). The first-order kinetic model referred to as k−C∗ model or
Vollenweider-type model has been most frequently used to explain expo-
nential decrease of P concentration along the flow direction or compare the
efficacy of treatment wetlands (Table 1). This model is based on the assump-
tions that P removal is directly proportional to the P concentration at a given
location and the first-order kinetic constant, k, called net uptake coefficient or
settling velocity, which lumps all P retention processes occurring in wetlands
(Kadlec, 1997). Walker (1995) adapted this approach to provide a design ba-
sis for STA construction and management. The model was tested against peat
and water column monitoring data from WCA-2A, and successfully applied
in designing STAs to achieve average outflow TP concentration of 50 ppb or
less. This model was also formulated to predict net phosphorus removal via
peat accretion due to settling and burial in proportion to the amount of labile
P in storage over a long period of time. The Everglades Phosphorus Gradient
Model (EPGM) was developed as an expansion to the design model for STAs
that includes mass balances between water column and surface soil (Walker
and Kadlec, 1996). The EPGM predicted downstream steady-state flow, wa-
ter column and soil P levels, and peat accretion rate along the horizontal
gradient. The model presumed that soil accretion is the only long-term, sus-
tainable mechanism for P removal. For optimizing treatment wetland design
and long-term nutrient management, these empirical (relatively simple P cy-
cling) modeling approaches have been used successfully. However, these
models may not be able to predict performance of the treatment wetlands
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498 J.-H. Min et al.

under varied conditions, such as altered flow and vegetation type and den-
sity, because these models are not based on transient flow characteristics
and the key model parameter, k, is not independent to model input condi-
tion such as mass loading rate and retention time distribution (Kadlec, 2000;
Wang and Jawitz, 2006).

3.2.2 MODELS THAT COUPLE COMPLEX HYDROLOGY AND SIMPLE

BIOGEOCHEMISTRY

Some P models have adapted an integrated approach coupling simple P
transport and cycling with fully or semi-distributed watershed- and wetland-
scale models (Table 1). The watershed models include AnnAGNPS (Bingner
and Theurer, 2009), HSPF (Bicknell et al., 1997), MIKE-SHE (Refsgaard and
Storm, 1995), SWAT (Arnold et al., 1994; Neitsch et al., 2002), SWMM (Huber
and Dickinson, 1988), and WAM (Soil and Water Engineering Technology
[SWET], 2006). These watershed-scale models implement a variety of hydro-
logic and hydraulic and biogeochemical components, ranging from empir-
ical to physically based approaches (Borah and Bera, 2003; Migliaccio and
Srivastava, 2007), primarily to simulate nonpoint source pollution in var-
ious watersheds (see Borah and Bera [2004] and their references for the
summary of each model application and the details, respectively), including
agricultural and urban watersheds in Florida. Several forms of P (dissolved
or particulate phases) are simulated with water and sediment flux gener-
ated via overland, channel, or groundwater flow and the loss and retention
functions are in most cases simply implemented into the models during the
flow routings in a watershed based on the land use types (e.g., the wetlands
function of WAM; SWET, 2006).

In addition to the watershed-scale coupling, simplified P dynamics have
been linked to wetland-scale flow dynamic models (Kazezyilmaz-Alhan et al.,
2007; Raghunathan et al., 2001; Tsanis et al., 1998). For example, Tsanis
et al. (1998) developed a two-dimensional depth-averaged hydrody-
namic/mass transport model with a Vollenweider-type P loss term (sedimen-
tation rate coefficient; 0.03 day−1) to simulate water column TP behavior in
Cootes Paradise marsh, Canada, and the model predicted TP concentrations
reasonably well, both for an overall average of the entire marsh and for
individual sites. Similarly, Raghunathan et al. (2001) used Everglades Water
Quality Model (EWQM) to describe water column TP transport and reten-
tion in the Everglades and test the effects of nutrient reduction scenarios in
support of Everglades restoration. The model coupled a spatially distributed,
regional-scale flow model (SFWMM) with a P mass balance model that used
a simple, apparent net settling rate coefficient that integrated the effects of
chemical, biological, and physical processes in each model grid element.
The spatially different coefficients (7–11 m/year) were determined through
model calibration against data collected in the WCAs and the Everglades Na-
tional Park. The calibrated model was used to explore the fate and behavior
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Mechanistic Biogeochemical Model Applications 499

of water column TP in the Everglades with respect to several hypotheti-
cal conditions (no settling, varied atmospheric deposition, and controlled
upstream P loads). Hydrologic complexity was sufficiently captured with a
two-dimensional model grid in these models; however, the biogeochemistry
was represented too simply to describe and simulate details of most internal
P cycling processes in wetlands, which have been traditionally regarded as
a black box.

3.2.3 MODELS THAT COUPLE COMPLEX HYDROLOGY AND COMPLEX

BIOGEOCHEMISTRY: MIDWEST, USA

A variety of mechanistic wetland P models have been used to simulate P cy-
cling linked with hydrology submodels (Kadlec and Hammer, 1988; Mitsch
and Reeder, 1991; Wang and Mitsch, 2000). Mitsch and Reeder (1991) de-
veloped a semimechanistic, wetland compartment model to determine the
fate and retention of P in a wetland area adjacent to Lake Erie. The P sub-
model was coupled with the hydrology and primary productivity submodels
and included two storages (water column and sediment), which were linked
with linear pathways—sedimentation and resuspension. Also, P uptake by
macrophytes was assumed to occur in sediments. The single state variable
in the hydrologic model was the volume of water in the marsh, which was
controlled by water budget components. Through the model simulations for
various hydrologic conditions, P retention ranging from 17 to 52% was es-
timated in the wetland with the highest retention when high inflows were
coupled with high lake levels. The model predicted a net P retention rate
(net soil accretion) of 2.9 mg P/m2/day, which was mainly due to the active
role of plankton to uptake water column P and be ultimately deposited onto
the sediment layer (i.e., plankton sedimentation). Wang and Mitsch (2000)
used a similar approach with the addition of a sediment submodel to simu-
late P dynamics in four constructed riparian wetlands at Des Plaines River,
northern Illinois. The P submodel had four compartments, including water
column TP, bottom detritus TP, active sediment layer TP, and deep sediment
layer TP. The detailed ecosystem model was calibrated and validated against
field data measured for the period of 1989–1991. TP budgets calculated from
the ecosystem P dynamic model results showed that these wetlands entirely
retained 85% of the inlet TP. Based on the detailed P fluxes calculated among
the compartments, macrophytes had a relatively low effect on net P retention
on the whole system (the amount of P taken up by macrophytes from deep
sediments—about 74% of inflow—was considerable, but most was later rein-
corporated into the sediments), but physical sedimentation played a key role
for the overall P retention, despite the existence of substantial intrasystem
cycling.
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500 J.-H. Min et al.

3.2.4 MODELS THAT COUPLE COMPLEX HYDROLOGY AND COMPLEX

BIOGEOCHEMISTRY: EVERGLADES, USA

In the Everglades, various levels of flow-coupled mechanistic P models have
been developed to describe flow and P movement in STAs (HydroQual, 1997;
Jawitz et al., 2008; Min, 2007; Walker and Kadlec, 2005) and the entire Ever-
glades area (Fitz and Sklar, 1999; Fitz and Trimble, 2006). A fairly complex
mechanistic biogeochemical model, Wetland Water Quality Model (WWQM)
was developed to simulate changes in wetland water quality (specifically P)
under alternative management scenarios, especially in STAs of the Everglades
(HydroQual, 1997). WWQM was implemented with mass transport and com-
plex kinetic equations of nutrients in water column, sediment, and emergent
vegetation to simulate the P cycling processes. The model first calculated
flow dynamics followed by water quality. The flow model was calibrated
against data from a prototype STA, the ENR Project (Moustafa and Hamrick,
2000). The structure of the water quality model consisted of four stationary
compartments: macrophyte, periphyton, aerobic sediment, and anaerobic
sediment. The complexity of the biogeochemical processes included in this
model (over 200 parameters) translated to difficult calibration, so the model
has not been adopted for management purposes.

Walker and Kadlec (2005) extended their previous models to a DMSTA
that enabled simulating transient flow conditions to account for event-driven
performance in treatment wetlands with an additional biomass compartment
of labile P storage. DMSTA was developed to facilitate the design of STAs
to achieve long-term outflow TP concentrations of 10 ppb in the discharges.
DMSTA calculates daily water and mass balances in a user-defined series of
treatment cells with P cycling parameters. A maximum of six treatment cells
can be linked in series or parallel compartments, and each cell is further
divided in a series of continuous tank reactors to reflect the residence time
distribution. DMSTA considers the biomass component, which is primarily
the wetland vegetation that includes three categories: emergent macrophytes,
submerged aquatic vegetation, and periphyton. P cycling model parameters,
which account for uptake and release from biomass and burial of stable P
residuals, were obtained from several wetland systems in the Everglades. The
model has been used in several feasibility and design studies of STAs (Burns
and McDonnell, 2003) and storage reservoirs (Black and Veatch, 2006) as part
of the CERP and regularly updated by calibrating and validating with addi-
tional data from full-scale STA treatment cells and other wetlands/reservoirs
in the Everglades (Walker and Kadlec, 2005).

Also, a spatially explicit, mechanistic model that targeted prediction of
flow and P movement across the South Florida landscape, ELM, was devel-
oped (Fitz and Sklar, 1999; Fitz and Trimble, 2006). The landscape model
was primarily designed to evaluate the ecosystem responses to alternative
water and nutrient management scenarios, and has been applied in the
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Mechanistic Biogeochemical Model Applications 501

Everglades restoration efforts. ELM dynamically integrates hydrology, water
quality, soils, periphyton, and vegetation, and simulates the hydroecological
processes at scales suitable for regional assessment. In addition to the hori-
zontal (2-D) transport of water and constituents, the vertical solutions of the
landscape simulation (different ecological processes based on landscape pat-
tern) are calculated in each homogeneous grid cell, known as unit General
Ecosystem Model (Fitz et al., 1996). To describe P cycling over each raster
grid cell, the model includes four stationary state variables—macrophytes,
periphyton, floc, and soil—and several processes including uptake by macro-
phyte and periphyton, mineralization, sorption, diffusion, and organic soil
accretion. ELM does not simulate the flow at hydraulic structures, and thus it
imports boundary condition hydrologic data from the SFWMM. The general
limitations of this model are high computational demand and extensive data
requirement in support of the model development and calibration and vali-
dation because of the complex P cycling processes combined with the large
number of fully distributed grid cells.

4 CASE STUDIES

Case study simulations are described here for two treatment cells from two
of the six STAs: STA-1W Cell 4 and STA-5 Cell 1A (Figure 2). Cell 4 in STA-
1W (effective area: 1.45 km2), dominated by submerged aquatic vegetation
(SAV), is one of the most intensively studied areas due to the relatively longer
operational history (DB Environmental Laboratories, 2000, 2002; Dierberg
et al., 2002; Dierberg et al., 2005). On the other hand, Cell 1A in STA-5
(effective area: 3.38 km2), dominated by emergent aquatic vegetation (EAV),
has been considered one of the challenged systems in STAs in terms of
historical TP removal rate (Juston and DeBusk, 2006). Detailed information
on the operation and management as well as the physical features of these
treatment cells are available in the STA performance chapters of the South
Florida Environmental Report annually published by the South Florida Water
Management District (SFWMD; Pietro et al., 2008).

Mechanistic P models reviewed in the following two cases show differ-
ent level of complexity but both were linked to two-dimensional, spatially
distributed, flow dynamic and transport models and tested against water
column and soil TP data. Flow-coupled mechanistic P models need large
amounts of data for model setup, calibration, and validation, as noted by
Robson et al. (2008). Time series data including rainfall, evapotranspira-
tion, water level and flow, and water column P concentrations were ob-
tained from the SFWMD online database, DBHYDRO (http://www.sfwmd.
gov/org/ema/dbhydro/). For spatially distributed data, including bathymetry,
biomass, and floc/soil P, field survey data were interpolated or literature val-
ues from either the STAs or the WCA-2A eutrophic area were used for model
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502 J.-H. Min et al.

initial condition setting. Weekly or biweekly grab sample data of TP concen-
trations at each inflow structure were used as a transient input source.

In this study, percent model error (PME)—defined as root mean square
error (RMSE) divided by the range of the measured data—was used for
the model accuracy assessment in addition to RMSE. The PME allows direct
comparison between model applications with different output metric ranges,
such as in the case studies here where output TP levels measured in STA-5
Cell 1A were generally three times higher than those in STA-1W Cell 4. The
model performance in predicting the outlet TP concentration is compared
for the two case studies to investigate whether increased process complexity
(including additional model compartmentalization, more state variables, and
more parameters) guarantees better simulation results.

4.1 STA-1W Cell 4 P Dynamics Model
4.1.1 MODEL SETUP

For Cell 4 in STA-1W, the modeling framework was the Regional Simula-
tion Model (RSM) developed by SFWMD (2005). The Hydrologic Simulation
Engine (RSM-HSE) was used to simulate the flow dynamics and internally
coupled with the Water Quality Engine (RSM-WQ) to simulate the transport
and reaction dynamics (James and Jawitz, 2007). The model domain con-
sisted of 298 unstructured triangular meshes (average area: 5,100 m2), and
the mesh density was further refined in some specific areas to better rep-
resent the location of flow structures. The model was calibrated with the
water column P data from 1995 to 1998 (4 years) and validated against data
from 1999 to 2000 (2 years). The simulation time step of 1 hr was selected
considering numerical stability of the hydrodynamic model.

4.1.2 P CYCLING

This case study evaluated the credibility of a partially lumped mechanistic
model in predicting outlet TP levels. Figure 4a illustrates a conceptual model
of P cycling that was implemented to simulate the water column, biomass,
and soil TP in Cell 4 of STA-1W. The model consists of three state variables
and seven kinetic processes. The biomass store includes the combination of
several variables such as variety of organisms and plant species. Only the
water column TP was considered as a mobile component, whereas the other
two state variables were assigned to be stabile (nonmobile). Each kinetic
pathway among the stores was modeled with a first-order rate constant.

4.1.3 OUTFLOW TP PREDICTION

Long-term measurements of TP concentrations from 1995 to 2000 at the
wetland outflow structure provided an excellent dataset for model calibra-
tion and validation. The model calibration was performed by trial and error
for a 4-year period (1/10/1995–12/31/1998) by adjusting model parameters
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Mechanistic Biogeochemical Model Applications 503

FIGURE 4. Mechanistic P cycling applied to case study areas: (a) STA-1W Cell 4 and (b)
STA-5 Cell 1A. The state variables denoted with asterisks were compared to the observed
time series data.

until optimal goodness of fit metrics were obtained. Figure 5 shows snap-
shots (March 14, 2000) of the 2-D distribution of water column and soil
TP. High concentrations of water column and soil TP along the inflow
structures of the northern area, and short-circuiting flow zone along the
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504 J.-H. Min et al.

FIGURE 5. Snapshots of TP distribution simulated at STA-1W Cell 4 on March 14, 2000.
(a) water column TP and (b) soil TP concentrations. Asterisks denote the location of moni-
toring stations on water column (G256) and soil TP (4-1E and 4-2W).

eastern and western levees (Dierberg et al., 2005) were simulated appropri-
ately (Figure 5). The model predictions corresponded also to the temporal
variation of water column TP levels measured at the outlet hydraulic struc-
ture, G256 (Figure 6). Comparison between the simulated and observed TP

FIGURE 6. Measured and simulated TP concentrations at the outflow structure (G256) of
Cell 4 in STA-1W for the model calibration period (January 10, 1995–December 31, 1998) and
validation period (January 1, 1999–December 31, 2000).
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Mechanistic Biogeochemical Model Applications 505

FIGURE 7. Measured and predicted soil TP levels at two locations within the Cell 4 of
STA-1W. (a) upstream area, 4-1E and (b) downstream area, 4-2W.

concentrations during the model calibration period shows fair agreement
(RMSE = 13.0 µg/L; PME = 23%). Potential sources of the prediction er-
rors include uncertainties in the observed data, and mesh resolution, which
was not fine enough to capture high-resolution spatial variations in topogra-
phy and vegetative distribution. The model validation with independent two
year monitoring data (1/1/1999–12/31/2000) resulted in a similar prediction
accuracy compared to observed values (RMSE = 12.8 µg/L; PME = 26%).

Time series profiles of soil TP level simulated at two monitoring stations
(4-1E and 4-2W) within Cell 4 (see the locations in Figure 5) are shown in
Figure 7. These results show that the model was able to reproduce the spa-
tiotemporal variations of soil TP level over a 5-year period. It is emphasized
that even though the simulations did not fully capture all of the short-term
variability in water column TP, the overall trend was captured and this al-
lowed good prediction of the more integral effect of P accumulation in the
soil. Sensitivity analyses indicated that the outlet TP concentrations were
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506 J.-H. Min et al.

highly sensitive to changes in settling and release rate constants compared
to other P cycling rate constants.

4.2 STA-5 Cell 1A P Dynamics Model
4.2.1 MODEL SETUP

For Cell 1A in STA-5, the modeling framework was MIKE 21 developed
by the Danish Hydraulic Institute (2004). The Hydrodynamics (HD) and
Advection-Dispersion (AD) modules were used to simulate the flow dynam-
ics and solute transport, which integrated with Water Quality module (ECO
Lab) to simulate the P dynamics. The model consisted of 408 rectangular
grids (100 × 100 m), and incorporated time-varying, daily-based measure-
ments of water budget components, such as stage, flow, precipitation, and
ET. Monthly averaged net groundwater seepage was determined by mini-
mizing the monthly water budget error. In this model, groundwater as well
as surface water flows through hydraulic structures are described as point
sources and sinks. An ECO Lab P dynamics model, linked with the HD
and AD modules pretested against contemporary water level and chloride
concentration profiles at the study area (Min, 2007), was calibrated with the
measured water column P data (SRP, DOP, and PP) from May 1, 2003 to April
30, 2004 (1 year) and validated against data from May 1, 2004 to December
31, 2004 (0.67 years). The simulation time step was 10 min.

4.2.2 P CYCLING

This case study evaluated the credibility of a more complex mechanistic
model in predicting outlet TP levels. Figure 4b illustrates a conceptual P
cycle that was implemented for Cell 1A of STA-5. The model consists of 11
state variables, 30 processes, 50 constants, and 3 forcing functions. Of the
state variables, only four P species in the water column are mobile compo-
nents and the other variables were fixed at each grid cell. For most of the
transformation processes, first-order kinetics formulation was used with the
Monod equation incorporated for the growth of macrophytes representing
the dominant EAV species found in the cell (Typha spp. and Ludwigia spp.).
In this conceptual model, P dynamics in the floc layer were assumed to
play a critical role in regulating the level of P species in the water column.
One of the major standing stocks in the wetland ecosystems, phytoplank-
ton and periphyton, were not considered because these components were
found to be sparse in eutrophic water samples collected from the northern
Everglades (McCormick et al., 1998). All the coupled ordinary differential
equations were solved numerically with the Euler method. Daily averaged
summation of simulation results on four state variables (SRP W + DOP +
PIP + POP = TP) were compared to the time series TP observations.
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Mechanistic Biogeochemical Model Applications 507

4.2.3 OUTFLOW TP PREDICTION

The constants in most kinetic pathways were initially selected based on liter-
ature data and finally determined by model calibration on 18 constants. Floc,
soil, and biomass-related parameters were first estimated through model
calibration by maintaining their dynamic equilibrium condition in the state
variables because no time series measurement data for these state variables
were available. This calibration approach was based on an assumption of
only gradual annual changes in the standing stocks. Model calibration on
the parameters related to water column processes was not finalized until
the overall simulation error (RMSE) on the model fit of SRP W, DOP, and
PP was minimized. Figure 8 shows the model calibration and validation
results of TP at two downstream monitoring stations, G343B and G343C.
The model showed a reasonable agreement with spatiotemporal variation of
TP concentration profiles. The average RMSE values were 30 and 27 µg/L
during the model calibration and validation period, respectively. These cor-
responded to the PME of about 17–21%, which were slightly smaller than the
values calculated for STA-1W Cell 4. The most sensitive model parameters
on SRP W were the constants regulating EAV dynamics, such as maximum
growth rate, uptake half saturation, and macrophyte decay rate constant, as
well as adsorption rate constant in the water column. In contrast, the pa-
rameters that most directly affected DOP and PP were primarily related to
physical processes in water column, including critical flow velocity and POP
deposition rate constant (Min, 2007).

5 DISCUSSION AND SUMMARY

5.1 Level of Complexity in Mechanistic Biogeochemical Models

The previous two case study simulation results on each outlet time series TP
data revealed that the mechanistic biogeochemical model with more com-
plexity (Figure 4b) did not guarantee significantly better simulation accuracy
compared to the one with less complexity (Figure 4a). Hence, it can be said
that the simple mechanistic model is more efficient than the complex one
if the ultimate modeling goal is just to predict time series TP concentration
profiles at some outlet points.

However, the more complex mechanistic model can provide some in-
sight on the internal processes that the simpler model cannot provide. Figure
9 shows the relative portion of water column P species (SRP, DOP, and PP)
to the model prediction error of time series TP level at one of the outlet
monitoring stations (G343B) in STA-5 Cell 1A. The model error was defined
as deviation of simulated from measured concentration at each time step.
Hence, if the error (Cs−Cm) was greater than zero, the model prediction
was overestimated and if less than zero, the simulation was underestimated.
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508 J.-H. Min et al.

FIGURE 8. Measured and simulated TP concentrations at the outflow structures (G343B
and G343C) of Cell 1A in STA-5. (a) model calibration (May 1, 2003–April 30, 2004) and
(b) validation (May 1, 2004–December 31, 2004).

The annual fluctuation of TP simulation error is closer to the pattern of SRP
than those of DOP and PP (Figure 9). This shows that the SRP simulation
error generated the largest simulation uncertainty in the TP outlet prediction
(R2 = 0.69). The SRP simulation error may be related to biomass (SAV and
periphyton) activities that were not fully reflected in the model. The over-
all overestimation of SRP during the vegetation growth period was likely
related to the active growth of unaccounted vegetation. It is expected that
incorporating improved understanding (and associated data) for SRP cycling
between the water column and biomass into the conceptual model for this
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Mechanistic Biogeochemical Model Applications 509

FIGURE 9. Model prediction error for TP components (SRP, DOP, and PP) at outlet monitor-
ing station G343B in STA-5 Cell 1A.

treatment cell would result in enhanced model predictive capability on the
time series outlet TP level.

Reconciling the tradeoffs in the level of complexity is a continuing chal-
lenge for mechanistic biogeochemical models. Some investigators claim that
simple models (closer to empirical approach) have better practical value
(Kadlec and Wallace, 2009; Wong et al., 2006) because no mechanistic mod-
els are able to explain the infinite complexity of the underlying phenomena,
and that significant uncertainties are introduced in estimating a large num-
ber of model parameters. Others emphasize that more complex mechanistic
models have robust theoretical basis and thus better predictive potential (Fitz
et al., 2003; Jawitz et al., 2008; Robson et al., 2008). According to the model
categories suggested in this paper, the former may prefer the simple bio-
geochemical modeling approaches coupled to simple or complex hydrology
(Sections 3.2.1 and 3.2.2), while the latter may prefer the complex biogeo-
chemical modeling approaches based on complex flow models (Sections
3.2.3 and 3.2.4). However, it is noteworthy that all useful models involve
an element of empiricism where some processes are empirically described
in a broad aspect (Reckhow and Chapra, 1999). In this respect, most of the
P models applied in the Everglades wetland (Table 1) can be considered
hybrids between mechanistic and empirical models.

What level of complexity is warranted in mechanistic biogeochemical
models to be used in support of the Everglades restoration? To address this
dilemma, first we may need to answer what kind of predictions are desired
or what hypotheses can be tested through a modeling study. For example,
what if the external load of TP is increased to a specific location in the
Everglades due to increased flow as a result of hydrologic restoration? Or
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how much P internal loading is expected at some P-enriched soil areas like
WCA-2A if a significant reduction of external TP loading is maintained in
the future as a result of reduced P export from upstream areas? Hence, the
appropriate level of complexity of a mechanistic biogeochemical model is
highly dependent on the specific modeling objectives. For the case study
examples, if the modeling interest were to simulate the behavior of solu-
ble and particulate P species in STAs independently, the relatively simple
P cycling model described in Figure 4a may not be sufficient to fulfill the
modeling goal. In contrast, if the modeling target was only to simulate the
outlet TP concentration profile, a simpler P cycling model than Figure 4a may
be enough to meet the need. Next, we may also need to decide the model
utility: long-term management purpose (close to the style of DMSTA), or sci-
entific investigation for better process understanding among the ecosystem
compartments (close to the style of ELM). Finally, the level of complexity is
definitely limited by data quality collected from field and laboratory. There-
fore, each process complexity should be represented appropriately based
on the specific modeling objectives, the model utility, and the availability of
spatiotemporal data.

Constructing a mechanistic model is to mirror the complexity of the nat-
ural system (Arhonditsis et al., 2006; e.g., complex interactions of hydrologic
and biogeochemical processes in wetland systems). It is unlikely that even
an extremely complex mechanistic model can mimic the reality of the natu-
ral system. Therefore, regarding the level of complexity of flow-integrated,
mechanistic biogeochemical models to be used effectively for Everglades
restoration, we suggest developing a hybrid model where some processes
are empirically lumped and others are mechanistically represented on the
basis of the model goal and data availability. The determination of optimal
aggregation level of processes is challenging. This may be determined with
a rigorous testing of the model with different combination of aggregations.
In this paper, our goal was not to suggest what complexity of the integrated
model is optimal, but rather it was to show the suitability of different com-
plexity of biogeochemical models with available existing knowledge and
data.

5.2 Mechanistic Modeling Needs for Everglades Restoration

One of the most important features of a model is the predictive capability.
From this view, a mechanistic biogeochemical model with intermediate level
of complexity that straddles oversimplification and overparameterization is
preferred because it both promotes better biogeochemical process under-
standing in a system and provides a process-based data integration tool.
Also, it allows delineating a cause and effect relationship within a model
efficiently and predicting the response of a target ecosystem component to
some changes in other state variables or environmental factors.
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Mechanistic Biogeochemical Model Applications 511

In addition, a mechanistic biogeochemical model for Everglades restora-
tion should be based on a spatially distributed flow dynamic modeling ap-
proach because hydrology is the most critical factor sustaining the structure
and function of wetland ecosystems. The importance of hydrology on bio-
geochemical dynamics has been well acknowledged in the Everglades marsh
(Noe and Childers, 2007), as it provides the basis for horizontal and verti-
cal transport processes, and biogeochemical transformations of nutrients in
surface water and upper sediment. Also, flow-integrated mechanistic bio-
geochemical modeling can provide a guideline for optimized hydrologic
restoration through testing scenarios on the future impact of restored hydrol-
ogy on the wetland ecosystem, maximizing the beneficial restoration impacts
and minimizing the side effects.

The following scientific research needs are identified for improved de-
velopment of a conceptual model that defines key interactions among the
ecosystem variables in the Everglades. First, the roles of the floc layer, com-
monly observed in most areas of the Everglades, have been rarely investi-
gated, particularly quantitative mass transport with other key stores, such as
water column, soil, and biomass. Second, it is necessary to develop submod-
els for biomass (EAV, SAV, and periphyton) dynamics, which are calibrated
based on time series field and laboratory data collected at several loca-
tions. These submodels may be linked with complementary models of water
column and floc and soil layer processes to approach an ecosystem-level
mechanistic biogeochemical cycle. Finally, better integration is warranted be-
tween data collection and modeling efforts. Data should be collected based
on important processes identified during careful construction of a concep-
tual model that meets the predictive modeling needs. Similarly, new under-
standing that evolves from observations and measurements can be used to
improve the conceptual model. Such bidirectional feedback between con-
ceptual model development and spatiotemporal monitoring is recommended
to facilitate both processes.
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