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Information on water stage over an extended area is important for hydrological and ecological studies.
Microwave remote sensing provides an opportunity to measure changes in water stage from space
because of its sensitivity to land surface characteristics; it reduces the need to monitor water stage at
multiple locations. In this research, a linear model is developed which relates variation in water stage
measurements (ws) to Tropical Rainfall Measuring Mission Precipitation Radar backscatter (r�). The esti-
mated water stage from the model is compared with the observed water stage in the wetlands of South
Florida. The model performance is assessed by comparing the correlation coefficient (R), the root mean
square error (RMSE), and the non-exceedance probability of mean absolute error between observed
and modeled water stage measurements for various landcovers. The model works reasonably well in
the regions with tree heights greater than 5 m. For example, over woodlands R ranges between 0.59–
0.93 and the average RMSE = 19.8 cm. Similarly, for wooded grassland, R ranges between 0.54–0.93
and the average RMSE = 19.8 cm. For other relatively shorter height vegetation landcovers such as grass-
land (R = 0.57–0.85, RMSE = 20.1 cm) and cropland (R = 0.69–0.79, RMSE = 18.2 cm), the model also per-
forms reasonably well. The research presents a novel use of TRMMPR data and gives an insight into the
effect of water level in partially inundated vegetation on radar backscatter.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction Understanding the changes in water stage over time is impor-
A wetland is an area where the soil is saturated seasonally
or perennially resulting in shallow pools of standing waters.
Wetlands have the ability to store floodwater and protect shoreline
(Brande, 1980). They play an important role in flood control, con-
taminant attenuation, and carbon sequestration (McAllister et al.,
2000; Pant et al., 2003). They also impact the regional ecology
and hydrological cycle.

Understanding the hydrological processes in wetlands is impor-
tant because it helps develop measures to maintain ecological
functions, and it protects the economic benefits of the wetlands
(Ozesmi and Bauer, 2002). In particular, it is necessary to under-
stand the changes in water stage as this affects the water flow path
between the surface and ground water (Johnson et al., 2004).
Changes in water stage have been linked to changes in salinity in
the wetlands (Gorham et al., 1983), which can modify the vegeta-
tion patterns.

Water stage in wetlands needs to be monitored because of its
consequential impact on the surrounding environment. However,
due to a wide expanse of wetlands and a lack of hydrological sur-
veys, some wetlands are rarely monitored (Zhang, 2008). A method
for water stage estimation needs to be developed to compliment
the available ground measures.
ll rights reserved.

).
tant for hydrological modeling (Ahmad and Simonovic, 2001;
Mosquera-Machado and Ahmad, 2007) and an appreciation of
the wetland ecosystem (Bourgeau-Chavez et al., 2005). Several
techniques using in situ observations have been used in the past,
and these techniques usually involve comparing surface water
heights to a given vertical reference level. For example, water stage
in streams has been derived from Rating Curves which provide a
functional relationship between stage and stream discharge.

In addition to Rating Curves, other methods have been used to
track water stage. Several studies have monitored water stage
using Synthetic Aperture Radar (Bourgeau-Chavez et al., 2005;
Kasischke and Bourgeau-Chavez, 1997; Kasischke et al., 2003), pas-
sive microwave sensors (Sippel et al., 1998), and Landsat thematic
mapper (Mertes et al., 1995). Researchers have also used Interfer-
ometric Synthetic Aperture Radar (Hong et al., in press, 2010;
Wdowinski et al., 2004, 2008) and airborne scanning laser
altimetry to estimate water surface elevation and extent during
flooding (Mason et al., 2007).

Remote sensing of water level in large water bodies is an active
area of research and application. For example, altimeters are pri-
marily designed to measure the height of the ocean’s surface, but
they have also been used to measure surface water stage. However,
there have been problems with the accuracy of measurements
using altimeters; prior studies have reported discrepancies up to
several meters when surface water stage is measured (Birkett
et al., 2002; Calmant et al., 2008). Another area of developing
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Fig. 1. (a) Map showing study area in South Florida (Source: SFWMD website). (b)
Location of stations in a GIS map.
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research is Surface Water Ocean Topography (SWOT). SWOT satel-
lite mission will be launched by NASA in 2020 and has the hydro-
logic objective of providing a global inventory of terrestrial water
surface bodies (rivers, lakes, wetlands) with area >50 m2 and rivers
with width more than 100 m (Alsdorf et al., 2003).

Measuring water stage using remote sensing is possible because
of the double bounce from the vertical parts of the vegetation (e.g.,
tree trunks) in the presence of horizontal water surface (Richards
et al., 1987). The transmitted radar signal after undergoing a dou-
ble bounce from tree trunks and water surface is reflected back to
the sensor. However, the signal undergoes two way path attenua-
tion due to volume scattering by the canopy. Thus, changes in the
water level are reflected in the strength of the backscatter signal
due to effect of variations in the two way path attenuation. For
example, water in a non-vegetated area or over a completely sub-
merged vegetation area causes mostly specular reflection of the
transmitted radar signal (except under high wind conditions).

Land surface backscatter (r�) is sensitive to physical and dielec-
tric characteristics of the target area. Physical characteristics such
as surface roughness and dielectric characteristics such as water
content can impact land surface backscatter. The surface roughness
is governed by the geometric features of soil (relief) and soil cover
(vegetation). As a result, water in the presence of vegetation con-
tributes to the roughness characteristics of the surface. In the case
of open water, incident radiation undergoes specular reflection;
whereas over vegetation, changes in water depth alter roughness
characteristics. Roughness characteristics are changed through
the partial submergence/exposure of the vegetation trunk/canopy
which impacts the scattering behavior of the incident radiation. A
better understanding of these phenomena in wetlands can be used
to develop a relationship between water stage and backscatter.

In this paper, we present a method to estimate water stage (ws)
using the Tropical Rainfall Measuring Mission Precipitation Radar
(TRMMPR) backscatter data. Use of TRMMPR backscatter is tested
for the first time to estimate water stage. A model is developed that
relates ws measurements to backscatter. The effect of vegetation
greenness on model performance is investigated by incorporating
the Normalized Difference Vegetation Index (NDVI) into the model
as a measure of greenness of the vegetation. The model is tested in
wetlands of South Florida.

This paper is organized as follows: Section 2 describes the study
area and data sets used in this research; Section 3 presents the ws

model and model parameters. The comparison between estimated
and observed ws is discussed in Section 4. Finally, Section 5 pre-
sents conclusions.

2. Study area and data description

This section describes the study area and data sets used in this
research. The Tropical Rainfall Measuring Mission specifications,
measurement of water stage and characteristics of Normalized
Difference Vegetation Index are described. The acquisition proce-
dure for each of the datasets is also discussed.

2.1. South Florida wetlands

The South Florida region as shown in Fig. 1a is characterized by
flat topography and average annual rainfall of about 1300 mm/yr
(Alaa et al., 2000). The Everglades National Park (ENP), located in
South Florida, consists mostly of wetlands (Doren et al., 1999)
and covers an area of 6110 km2. The water bodies and lakes in
South Florida experience significant changes in the seasonal and
interannual cycle of water stage because of the variability in
climate.

This region has a large number of man made levees and water
control structures. The Everglades Agricultural Area (EAA) of South
Florida lies to the south of the Lake Okeechobee (Vedawan et al.,
2008). Adjacent to EAA are the Water Conservation Areas (WCAs)
that store the surplus water in the region. Everglades National Park
that lies to the south of WCAs also has tropical and sub-tropical
forests (Cavender and Raper, 1968).

In certain areas, mainly WCAs, the operation of the flood control
structures result in the accumulation of water exceeding natural
levels (Wdowinski et al., 2008). Therefore, it is important to mon-
itor water stage in order to understand the hydrological flow in
wetlands. There are 114 water measuring stations that lie in the
wetland regions of ENP, WCAs, and Big Cypress as depicted in
Fig. 1b. These sites represent diverse land use categories summa-
rized in Table 1.

2.2. Tropical Rainfall Measuring Mission Precipitation Radar

TRMM Precipitation Radar (TRMMPR) aboard TRMM satellite
was designed to provide information about rainfall distribution



Table 1
Description of landuse categories (Hansen et al., 2000).

Landuse
category

Tree height (m) Canopy cover Number
of
stage sites

Woodland >5 40% < tree canopy < 60% 22
Wooded

grassland
>5 10% < tree canopy < 40% 20

Closed shrubland <5 Bush/shrub > 40% 15
Open shrubland <2 10% < canopy

cover < 40%
17

Grassland – Herbaceous cover 36
Cropland – Crop producing fields 4

Total 114
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in the tropical and sub-tropical regions (Kummerow et al., 1998).
TRMM operates in a 350-km circular orbit with an inclination of
35�. Precipitation Radar, operating at 13.8 GHz (Ku-band; 2.2 cm
wavelength) and Horizontal transmit and receive (HH) polarization
has a cross track scan angle of 0� (nadir) to 17� with a swath width
of 215 km and a cross range spatial resolution of 4.4 km. In order to
extend the mission life, satellite altitude was increased to 402.5 km
which resulted in an increased ground resolution of 5 km.

TRMMPR measurements have been used to study vegetation
(Stephen and Long, 2002; Satake and Hanado, 2004), deserts
(Stephen and Long, 2005), and ocean winds (Li et al., 2004). In
August 2001, TRMMPR’s design objective was to provide a three
dimensional structure of rain with a vertical resolution of 250 m
(Kozu et al., 2001). Nevertheless, previous research has shown its
usefulness to study characteristics of land surfaces. TRMMPR mea-
surements have shown to be sensitive to the surface soil moisture
(Seto et al., 2003; Narayan et al., 2006; Stephen et al., 2010; Ahmad
et al., 2010).

Although horizontal polarization has greater penetration into
the vertical vegetation stand, the high frequency of Ku-band is
subject to greater attenuation by the plant leaves and branches.
Nevertheless, the large footprint (4.4 km) allows sufficient surface
coverage to study the effects of phenomena under the vegetation
canopy. Small random gaps in the vegetation where incident waves
can reach the lower levels result in backscatter values dependent
on the characteristics of the lower levels of canopy, vegetation,
and water.

TRMMPR data is available at an irregular temporal and spatial
grid for the tropical region lying within 36�N to 36�S. The backscat-
ter images of the study area are produced from this data for a time
interval for which sufficient backscatter information is available
over the study area.

Backscatter measurements from multiple orbits are combined
at each grid point to produce backscatter images. Since combining
multiple orbits results in backscatter data collected at different
incidence angles, a linear model between backscatter and inci-
dence angle is used. In this model, a reference incidence angle of
10� is used to determine the normalized backscatter at each grid
cell. Thus, images of backscatter normalized to a 10� incidence an-
gle are prepared. TRMMPR measurements from a 14 day time
interval are sufficient to prepare an acceptable image. Thus, nor-
malized backscatter (A) images are prepared for 14 days with a
moving window of 7 days. Each pixel in the image corresponds
to 2 � 2 km area of the land surface. The higher resolution is
achieved by deconvolving the backscatter measurements using
the antenna response function of TRMM Precipitation Radar. A
median filter is applied to remove the noise from the images pro-
duced with this method.

Each TRMMPR backscatter measurement is provided along with
a rain flag which is set if rain was detected in the measurement
cell. In order to remove the effect of rain on the results of this
research, backscatter measurements contaminated by rain are
not used.

2.3. Normalized difference vegetation index

NDVI is the normalized difference between infrared band and
visible band reflectivities, and it is used to monitor vegetation
(Tucker, 1979). It is a numerical index that ranges between �1.0
to +1.0 and represents greenness of vegetation. It is highly corre-
lated with other vegetation parameters like leaf area index and
canopy cover and thus serves as a good descriptor for vegetation
discrimination (Gao et al., 2002). High values that are close to 1.0
represent dense vegetation and forests, whereas low values (0.2–
0.4) indicate the presence of shrubs and grasslands.

NDVI data is derived from AVHRR and acquired from Earth Ex-
plorer website (http://edcsns17.cr.usgs.gov/EarthExplorer/) main-
tained by the United States Geological Survey. It is available at
1 km spatial resolution. A 3 � 3 cell is averaged to obtain NDVI at
the same spatial resolution as TRMMPR r�. The 14-day NDVI com-
posites at 7-day time steps are acquired for the time period 1998–
2008. There are a total of 52 NDVI composites for each year. Images
with excessive cloud cover were removed before the analysis.

2.4. Water stage data

The water stage data for this research is obtained from South
Florida Water Management District (SFWMD) online database for
the time period 1998–2008. SFWMD monitors a network of control
stations that provide daily average estimates of water level, rain-
fall, and other key hydrologic parameters. The stage data consists
of daily average water levels above the National Geodetic Vertical
Datum of 1929 (NGVD29).

Most of the stage measurement stations are located near the
water control structures for logistical and operational reasons
(Wdowinski et al., 2008). As a result, the interiors of natural flow
wetlands are sparsely monitored. Water stage measurements are
averaged over a 14-day period with a 7-day moving window to
match the temporal resolution of the TRMMPR normalized
backscatter.

3. Model description

TRMMPR backscatter depends on vegetation characteristics,
moisture content, and surface roughness. This section describes
an empirical model that relates r� to water stage. Backscatter mea-
surements are affected by incidence angle (h). A typical r�–h plot
for incidence angle range of 3� to 15� is shown in Fig. 2. The relative
contribution from surface and vegetation scattering depends on
the vegetation density and is reflected in the slope of the r�–h rela-
tionship. It is approximated to be linear for angles between the gi-
ven incidence angle range. The r�–h is modeled as

r� ¼ Aþ B � ðh� href Þ ð1Þ

where href is the reference angle, A (dB (decibels)) is the backscatter
normalized to href and B (dB/�) is the slope of the line fit. The refer-
ence incidence angle href is chosen to be 10� because r� at this angle
is sensitive to soil moisture (Ulaby and Batlivala, 1976). Although
this high sensitivity is observed for L- and C-band backscatter,
Ku-band backscatter has shown good sensitivity to soil moisture
in Lower Colorado River basin (Stephen et al., 2010).

In this research, r� measurements from multiple orbits are used
to prepare images of backscatter normalized to 10�. Study area is
gridded into 2 � 2 km cells and for each cell Eq. (1) is used to com-
pute the A using backscatter measurements from multiple orbits.
The antenna response function is used to deconvolve the

http://edcsns17.cr.usgs.gov/EarthExplorer/


Fig. 2. General behavior of r�–h response.
Fig. 4. Variation of backscatter with water stage for a site in Big Cypress area.
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measurements to acquire high resolution images. The Eq. (1) mod-
el fitting and deconvolution are performed simultaneously where
the linear regression is performed using measured backscatter
weighted by the value of antenna response for the given cell.

Fig. 3 is the A image of South Florida and illustrates the varia-
tion in A due to surface characteristics. Rough surface areas such
as mountain ranges have higher backscatter (bright spots) com-
pared to smoother surfaces such as plains. Large urban areas, major
cities, and riparian areas with dense vegetation also appear as
bright areas with high backscatter.

In the case of partially inundated vegetation, A depends on the
characteristics of the water surface roughness governed by wind
conditions. The effect of wind conditions is not considered in this
research.

TRMM backscatter depends on the amount of partially sub-
merged vegetation. In the areas with high water stage (submerged
vegetation), the water surface is typically smooth which results in
specular reflection of the incident radiation. The specular reflection
results in low backscatter. It is noted that for nadir (vertical) view,
i.e. h = 0� (not considered in this research), the specular reflection
would be directed back to the sensor. In the areas where the height
of vegetation is greater than the water stage, the backscatter signal
depends on the extent of submerged vegetation. This principle is
used to estimate the effect of water stage on r� measurements.

Fig. 4 shows the dependence of backscatter on the water stage
for a site in the Big Cypress area. The relationship between back-
scatter and water stage depends on the stature of the vegetation
relative to the water stage change as well as the ability of the elec-
tromagnetic radiation to penetrate the vegetation. As the water
stage increases, the backscatter also increases, which demonstrates
a linear relationship. This inter-dependence between ws and A is
modeled by
Fig. 3. TRMMPR normalized backscatter (A) image of South Florida during (a)
January 1, 2008–January 14, 2008; (b) June 7, 2008–June 21, 2008; (c) September
14, 2008–September 28, 2008.
wsðAÞ ¼ ls þ T � A ð2Þ

where ws is water stage in m. ls and T are the calibration parame-
ters in (m) and (m/dB)) respectively. ls is the average value of water
stage and T is the parameter relating ws and A.

For each site, ws and A data are used to compute the model
parameters ls and T by minimizing the root mean square error
(RMSE) between observed and modeled ws. Seventy-five percent
of the data is used to obtain model parameters ls and T. These
model parameters are used to compute ws from the remaining
25% of the data. The validation process consists of comparing the
ws values obtained from the model with the observed water stage
values. The correlation coefficient (R), RMSE, and non-exceedance
probability are computed between observed and modeled water
stages, and the accuracy of the model estimates is assessed.
Box plots are used to compare the distribution of observed data
and model predictions.

In order to obtain a better understanding of the role of vegeta-
tion in the proposed model, NDVI is added into the model, as given
by

wsðA;NDVIÞ ¼ ls þ T � Aþ P � ðNDVI� lndviÞ ð3Þ

where P is the weighing factor describing the effect of NDVI and
lndvi is the average NDVI over the calibration period.
4. Results

The model is applied to the data over various land use types and
the results are reported in this section. Different land use classes
were identified using the University of Maryland’s 1 km Global
Land Cover Product (Hansen et al., 2000) available at http://
www.geog.umd.edu/landcover/1km-map.html. Over each landuse,
a representative site is selected and time-series plots consisting of
observed and modeled water stage are discussed. The scatterplot
and non-exceedance probability plot of absolute error are pre-
sented. In addition, scatterplots, non-exceedance probability plots,
and boxplots are presented to show the overall performance for
each landuse type. A summary of model performance parameters
(R, RMSE) for all landuse categories is provided in Table 2.

Fig. 5 shows the results of the water stage model applied to the
woodland area for the testing period of 3 years. Woodland is char-
acterized by having canopy cover between 40% and 60% and tree
height greater than 5 m. The peak water stage for woodlands is
4.9 m.

Fig. 5a shows the time-series plot of observed and modeled
water stage. The variation in water stage is related to rainfall
events or operation of control gates in the region.

http://www.geog.umd.edu/landcover/1km-map.html
http://www.geog.umd.edu/landcover/1km-map.html


Table 2
Model performance for various landuse types.

Landuse Number of sites R RMSE (cm) Percentage of estimates with error <15 cm (%) Percentage of estimates with error <30 cm (%)

Woodland 22 0.59–0.93 19.8 66.6 91.0
Wooded grassland 20 0.54–0.93 19.8 73.2 93.7
Closed shrubland 15 0.55–0.96 16.1 72.1 94.3
Open shrubland 17 0.57–0.84 17.3 70.0 93.2
Grassland 36 0.57–0.85 20.1 71.1 92.1
Cropland 4 0.69–0.79 18.2 67.3 91.9

Fig. 5. Water stage model as applied to wetlands in woodland: (a) time-series plot of observed and modeled water stage, (b) scatterplot of observed and modeled water stage,
(c) non-exceedance probability plot, (d) combined scatterplot of observed and modeled water stage for all the woodland sites, (e) combined non-exceedance probability plot,
and (f) boxplot distribution of observed and modeled water stage.
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The model is able to capture the variation in water stage reason-
ably well. The modeled water stage, in general, follows the high
and low variations except in summer months. During the summer
months, the model over-estimates the low values.

Fig. 5b shows the scatterplot of observed and modeled water
stage where R = 0.93 and RMSE = 21.3 cm. Over-estimation of stage
is indicated by the data points above the 45� line (line with
slope = 1) whereas the points below the line indicate under-
estimations. It is evident in Fig. 5b that for the selected woodland
site in the Big Cypress Preserve, the model over-estimates the low
values of water stage.

Fig. 5c is the non-exceedance probability plot where the x-axis
is the probability of getting an absolute error corresponding to a
value on the y-axis. For example, 59.7% of the modeled water stage
values have an error of 15 cm or less and 85.8% have an error of
30 cm or less. The TRMMPR backscatter successfully captures the
variation in exposed vegetation due to the rise and fall of water
stage in the area.

In order to analyze the overall behavior of the model, data from
all 22 woodland sites is combined in the ensemble of scatterplot,
non-exceedance probability, and boxplot shown in Fig. 5d–f. The
correlation coefficient for 22 woodland sites ranges between 0.59
and 0.93, and the average RMSE for all sites is 19.8 cm, indicating
that the model works well over woodlands. Moreover, in the
non-exceedance probability plot [Fig. 5e], 66.6% of data points have
an error of 15 cm or less and 91% of data points have an error of
30 cm or less.

Fig. 5f is a boxplot of the distribution of observed and modeled
water stage. The upper and lower edges of the box correspond to
the 75th and 25th percentile of the data. The horizontal line be-
tween the box is the median of the data set. The 95th percentile
and 5th percentile are shown by whiskers above and below the
box. The boxplot shows that the distributions of observed and
modeled water stage are similar.

Fig. 6 shows the time-series plots of observed and modeled water
stage for a representative point in each of the landuse categories for
the testing period. The y-axis of the figures shows water stage, and it
is different for each sub-plot because the range of water stage vari-
ation differs largely from one landuse to the other. Woodland and
wooded grassland have 3 years of testing data available whereas
shrubland (closed and open) have 2 years of testing data. Grassland
and cropland have one and a half years of testing data.

The time-series plots for the six landuses follow similar pat-
terns. They all show a decline in water stage values during the
summer months. This can be attributed to high evapotranspiration
during these months. With exception of the grassland and crop-
land, where maximum stage value is less than 2 m, water stage
in other landuses reaches up to 4 m.

Fig. 6b shows the time-series plot for a representative point in
wooded grassland. Wooded grassland is characterized by tree



Fig. 6. Time-series plots of observed and modeled water stage in (a) woodland, (b) wooded grassland, (c) closed shrubland, (d) open shrubland, (e) grassland, and (f) cropland.
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canopy cover between 10% and 40% and tree heights greater than
5 m. The model over-estimates the lower values of stage and
underestimates the higher stage values as observed in March,
2006 and November, 2008.

The time-series plot for a representative site of closed shrub-
land is shown in Fig. 6c. Closed shrubland has greater than 40%
canopy cover and is dominated by shrubs that are less than 5 m
in height. Most of the water stage at various sites in closed shrub-
land is less than 5 m which does not result in specular reflection of
incident radiations because the height of vegetation is shorter.

Fig. 6d shows the time-series plot for a point in open shrubland.
Open shrubland consists of tree with height less than 2 m and
canopy cover is between 10% and 40%. It is observed that the model
does not capture the high values of water stage that occurred dur-
ing the end of the year 2008.

The observed and modeled water stage plots for one and a half
years of testing data for grassland and cropland is shown in Fig. 6e
and f, respectively. Grassland is covered with continuous herba-
ceous cover consisting of less than 10% tree canopy cover whereas;
in cropland, more than 80% of landscape is covered with crop pro-
ducing fields. Therefore, the maximum water stage in this landuse
is below 2 m. In both these landuses, the modeled water stage fol-
lows the patterns of observed water stage and captures its rise and
fall variation.



Fig. 7. Scatterplot of observed and modeled water stage for a representative site in (a) woodland, (b) wooded grassland, (c) closed shrubland, (d) open shrubland, (e)
grassland, and (f) cropland.
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Fig. 7 shows the scatterplot of observed and modeled water
stage for representative site in all the six landuses. Fig. 7b shows
the scatterplot for wooded grassland. The model captures the var-
iation in water stage with R = 0.89 and RMSE = 14.3 cm. The model
also works well for closed shrubland capturing the highs and lows
of the water stage variation with R = 0.86 and RMSE = 15.5 cm
[Fig. 7c]. The scatterplot results for open shrubland is shown in
Fig. 7d and has R = 0.84 and RMSE = 12.8 cm. The scatterplots for
grassland and cropland are shown in Fig. 7e and f, respectively.
The R for representative site in grassland is R = 0.85 whereas;
Fig. 8. Non-exceedance probability plot of absolute error in computation of water stage f
(d) open shrubland, (e) grassland, and (f) cropland.
RMSE = 15.8 cm. The same for site in cropland is R = 0.79 and
RMSE = 18.0 cm.

The non-exceedance probability for the six landuse types is
shown in Fig. 8. Fig. 8b for wooded grassland indicates that
99.3% of the estimates have an absolute error of 30 cm or less.
The non-exceedance plot for closed shrubland in Fig. 8c shows that
66.9% of the water level estimates have an absolute error of 15 cm
or less, and 95.4% of the estimates have an absolute error of 30 cm
or less. For open shrublands, the non-exceedance probability plot
shown in Fig. 8d indicates that 84.9% of the estimates have an error
or a representative site in (a) woodland, (b) wooded grassland, (c) closed shrubland,



Fig. 9. Combined scatterplot, non-exceedance probability plot, and boxplot distribution of observed and modeled water stage for all the sites in (a) woodland, (b) wooded
grassland, (c) closed shrubland, (d) open shrubland, (e) grassland, and (f) cropland.
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of 15 cm or less and 96.8% of the estimates have an error of 30 cm
or less. The Fig. 8e shows that in grasslands, 77.3% of the model
estimates have 15 cm or less error and 92.1% of the estimates have
30 cm or less error. In croplands, these numbers are 60.0% for an
error of 15 cm or less and 92.2% for an error of 30 cm or less
[Fig. 8f].

The combined plots of scatterplot, non-exceedance probability
and boxplot for all the sites in each of the six landuses have been
shown in Fig. 9. For wooded grassland landuse, the combined plots
for 20 sites have been shown in Fig. 9b. The combined scatterplot
shows that majority of the data points lie along the 45� line with R
ranging between 0.54–0.93 and RMSE = 19.8 cm; and 93.7% of the
water level estimates have an absolute error of 30 cm or less. Sim-
ilarly, the model captures the observed water stage variation for 15
sites in closed shrubland as shown in Fig. 9c with R ranging be-
tween 0.55–0.96 and RMSE = 16.1 cm. From the scatterplot of 17
sites in open shrubland shown in Fig. 9d, it can be seen that R
ranges between 0.57–0.84 and RMSE = 17.3 cm. The combined



Table 3
Model parameters and performance for various landuse types with and without NDVI.

Landuse Without NDVI With NDVI

ls (m) T (m/dB) R RMSE (cm) ls (m) T (m/dB) P (m) R RMSE (cm)

Woodland 4.74 0.14 0.93 21.3 4.74 0.14 �0.08 0.94 21.3
Wooded grassland 3.30 0.07 0.89 14.3 3.30 0.07 0.04 0.89 14.3
Closed shrubland 3.94 0.09 0.86 15.5 3.94 0.09 �0.36 0.86 15.5
Open shrubland 3.48 0.08 0.84 12.8 3.48 0.08 �0.05 0.84 12.8
Grassland 1.90 0.13 0.85 15.8 1.90 0.13 �0.53 0.86 15.8
Cropland 1.82 0.14 0.79 18.0 1.82 0.14 �0.39 0.81 18.0
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non-exceedance probability plot shows that 70.0% of the water lev-
els estimates have an error of 15 cm or less and 93.2% of the esti-
mates have an error of 30 cm or less.

The boxplot distribution shows that the model works for most of
the data except for the high water stage values represented by 95th
percentile and low water stage represented by 5th percentile. The
combined results of the model over 36 grassland sites are summa-
rized in Fig. 9e. The model works with R ranging between 0.57–
0.85 and RMSE = 20.1 cm. The non-exceedance probability plot for
grassland shows that 92.1% of the water stage estimates have an er-
ror of 30 cm or less. Lowering of water stage in grassland exposes the
grass and most of the backscatter obtained by the TRMMPR is from
the vegetated surface. On the other hand, high stage values sub-
merge the grass and render the surface as smooth, which decreases
the amount of backscatter as most of the incident radiation is spec-
ularly reflected from the water surface. There are only 4 water stage
measuring sites in cropland, and for combined results, R ranges be-
tween 0.69–0.79 and RMSE = 18.2 cm [Fig. 9f]. In this case, 67.3% of
the estimates have an error of 15 cm or less and 91.9% of the esti-
mates have error of 30 cm or less. Water stage in cropland ranges
from 0.3 m to 1.8 m. This keeps the vegetation under partial sub-
mergence, which affects the backscatter measurements.

The model that includes NDVI is compared with the model
without NDVI. The model calibration parameters and model
assessment parameters for two scenarios, with NDVI and without
NDVI, are compared in Table 3 for a representative location in each
landuse type. Model calibration and assessment parameters are the
same for both cases for most landuse types, with the exception of
cropland where R slightly increases with inclusion of NDVI in the
model. This difference is due to changes in croplands due to agri-
cultural practices such as irrigation and the stage of the crop.

NDVI is an index that measures the greenness of vegetation. The
greenness is strongly linked to cropland but has a weak link with
woodland, wooded grassland, and shrubland. In the case of crop-
land, physical changes are brought about by the crop cycle of seed-
ing and harvesting which changes the geometrical characteristics
of the cropland. There is a greater variation in greenness of crop-
land throughout the year as compared to other landuse types. In
woodland, wooded grassland, and shrubland, the vegetation re-
mains same for the entire year. Hence, it is seen that NDVI impacts
the results for cropland but not for other landuse types.

5. Discussion

The summary of results in Table 2 shows that most of the lan-
duses have a high correlation value except for cropland. The RMSE
ranges between 16 cm and 20 cm. It is also noted that croplands
are not flooded all the time. Thus, under dry and field capacity con-
ditions, the modeled backscatter is not dependent on partial sub-
mergence; it depends on soil moisture and vegetation condition.
The lower accuracy of the model in cropland can be attributed to
the intermittent flooding of these areas. Results show that the
model works reasonably well for all landuses in the study area.
For woodland vegetation (height >5 m), fluctuation of water
depth primarily affects the exposure of the lower canopies and
for trees, the lower parts of the canopies. The partial submergence
of woodland vegetation affects the backscatter by exhibiting high
backscatter for higher stage values and low backscatter for low
stage values.

The results show that the model over-estimates the low stage
values in relatively dense vegetation. This is attributable to the
shorter wavelength of TRMMPR waves that are attenuated by the
vegetation canopy. In tall and dense vegetation with low water
stage levels, the backscatter has little sensitivity to the variations
in water stage.

The proposed model depends on the height of the exposed veg-
etation under varying water stage. It would be difficult to calibrate
the model over areas where water stage temporal variations are
negligible. The model performance deteriorates where vegetation
remains under water for extended periods of time or where most
of the vegetation is submerged. Under such conditions the specular
reflection of the water surface dominates, making it difficult to
capture the variations due to the exposed vegetation.

This research shows the relationship between the TRMMPR
backscatter measurements and water stage. The proposed model
uses ground measurements for calibration over a given landcov-
er type. The calibrated model can be used to estimate water
stage from backscatter measurement over that landcover.
Although NDVI does not show much contribution in this model,
Leaf Area Index (LAI), a relatively better measure of vegetation
density, may improve results. The model performance deterio-
rates with the reduction of vegetation over free water. In the
case of completely inundated vegetation, the model does not
work because of the specular reflection of incident energy from
the water surface. The model also does not work in extreme
dry conditions.

The simple model proposed and tested in this paper suggests
that changes in water stage alter the backscattering coefficient
measured by the radar. The ability to estimate water stage from
the measured backscatter depends upon the type of vegetation
cover. In relatively taller vegetation, where the stature of the veg-
etation above water is sufficient, the changes in water stage are
estimated from the backscatter. With reduction in the vegetation
height, the relative proportion of the vegetation above water re-
duces and impacts the accuracy of estimated water stage. More-
over, in the cropland, the stage of crop and cycle of flooding and
drying makes it difficult for the model to estimate water stage
accurately. Nevertheless, the results indicate that the TRMMPR
backscatter measurements can be used to estimate the water
stage.

6. Conclusions

A simple empirical model is developed that relates water stage
to TRMMPR backscatter measurements. Backscatter depends on
the dielectric and physical characteristics of the target area. Its
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dependence on the partial submergence of vegetation is used as
the basis of estimation of water stage from r� measurements.

The model works reasonably well over various landuse types in
wetlands of South Florida. For various landuse types, the correla-
tion between observed and modeled water stage ranges between
0.54–0.96 and root mean square error ranges between 16.1 cm
and 20.1 cm. A high correlation and low root mean square error
shows the strength of the model.

A model relating water stage to TRMMPR backscatter and NDVI
is also developed and tested. NDVI accounts for vegetation green-
ness, and it improves the model performance for cropland. This
happens because NDVI has a strong link with the geometrical char-
acteristics of the cropland and these characteristic change due to
the crop cycles and seasons of seeding and harvesting of crops.
Over the other landuse types that are characterized by tall trees
and shrubs, inclusion of NDVI in the model does not improve the
results. This occurs because there is not much variation in vegeta-
tion growth from one season to the other. This research provides a
method to compliment the ground measurements of water stage
using spaceborne backscatter measurements. It provides a novel
use of TRMMPR data and gives an insight into the effect of water
level in partially inundated vegetation on radar backscatter.
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