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a b s t r a c t

Dispersal kernels in grid-based population models specify the proportion, distance and direction of move-
ments within the model landscape. Spatial errors in dispersal kernels can have large compounding effects
on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were
investigated, and methods for minimizing errors caused by the discretizing process were explored. Ker-
nels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration
and cell-center methods. These kernels were convolved repeatedly, and the final distribution was com-
pared with a reference analytical solution. For large Gaussian kernels (� > 10 cells), the total kernel error

−11

ap lattice

patial model
nvasion model
umerical simulation
edistribution

was <10 compared to analytical results. Using an invasion model that tracked the time a population
took to reach a defined goal, the discrete model results were comparable to the analytical reference.
With Gaussian kernels that had � ≤ 0.12 using the cell integration method, or � ≤ 0.22 using the cell cen-
ter method, the kernel error was greater than 10%, which resulted in invasion times that were orders
of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the ker-
nels to minimize overall error. With this, corrections for small kernels were found that decreased overall

d inva
kernel error to <10−11 an

. Introduction

Spatially explicit population models are useful for forecasting
patial processes that cannot be solved with single-location ana-
ytical models. They combine temporal reproduction and mortality
rocesses with spatial redistribution processes. The earliest spa-
ial population models were analyzed with continuous time and
pace equations (e.g. Kolmogorov et al., 1937), and this form is still
mportant and useful (e.g. Andow et al., 1990; Lutscher et al., 2007).
ontinuous systems allow for exact solutions to research questions
uch as density of organisms and speed of invasion wavefronts at a
iven time and place. They simulate populations that have free, or
on-seasonal, reproduction throughout the time domain.

For modeling organisms that have a distinct breeding season,
ntegro-difference models that are discrete in time, but contin-
ous in space, are often used (e.g. Neubert and Caswell, 2000;
utscher and Lewis, 2004). Because of increased complexity in
he model system compared to all-continuous models, numeric
ast-Fourier transformations or numerical solutions are commonly

ound in ecological applications of integro-difference dispersal

odels, rather than analytical solutions (e.g. Kot et al., 1996).
ecause of computational complexity, theoretical spatial processes
re often developed first in continuous space, and then demon-
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sion time error to <5%.
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strated with a grid-based discrete map lattice (e.g. Lutscher and
Lewis, 2004).

1.1. Discrete-space models

If a continuous-space model is analytically intractable or if a
fragmented, realistic map landscape is desired, the landscape of
interest can be modeled directly in discrete space. Methods of dis-
cretizing space include nodal models that simulate the measured
distances and directions among habitat nodes (spatially explicit
population model; Dunning et al., 1995), or simulate the “move-
ment cost” associated with movement between two nodes (Minor
and Urban, 2007). These “graph models” are by definition uncon-
cerned with the space between nodes of interest. Space can also be
subdivided into grids that simulate all of the landscape of interest.
Irregular grids, such as unstructured polygonal meshes or curvilin-
ear grids, allow for different sized cells to concentrate computing
power and resolution in those locations that are more complex. This
approach has been used to model hydrodynamics (e.g. Bockelmann
et al., 2004; Crowder and Diplas, 2000), but apparently not for ani-
mal or plant models due to the complexity of calculating dispersal
in cells that have various sizes and spatial arrangements.
Subdividing the spatial domain into a map lattice of regular
polygons (generally squares) simplifies dispersal modeling. Grid-
based kernel redistribution models are useful for simulating spatial
dispersal processes such as invasion in complex, natural land-
scapes with varying features and multiple types of irregular habitat

dx.doi.org/10.1016/j.ecolmodel.2010.11.023
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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atches. Dispersal routines in grid-based population models spec-
fy the proportion, distance and direction of movement within each
ell of the model landscape. Dispersal methods in regular grid mod-
ls include global redistribution (e.g. King and Hastings, 2003), and
earest-neighbor redistribution (e.g. cellular automata; Ellner et al.,
998). A flexible modeling paradigm that can be applied to both
raphs and (with effort) grids is circuit theory (McRae et al., 2008).

To simulate local dispersal processes in a grid-based spatial sys-
em, a continuous dispersal kernel, or probability density function
or redistribution, can be split into component cells to generate
nd apply a discrete kernel through spatial convolution (Allen et al.,
001) or similarly, to apply a displacement matrix (Sebert-Cuvillier
t al., 2008; Westerberg and Wennergren, 2003).

.2. Problems with discrete spatial models

Standard terminology for cartographic standards, modified for
cological use, will be used (Dungan et al., 2002). “Spatial extent”
s the overall size of the spatial domain, and “grain size” is the size
f the cells in the landscape grid relative to the spatial extent. As
he grain size decreases, the number of cells within a given spa-
ial extent (the resolution) increases, and the accuracy of spatial
rocesses, such as dispersal, increases.

Kernel smoothing and accuracy measures for “binned” data, and
he determination of what grain size is needed for a given level
f accuracy has been well documented (Jones, 1989; González-
anteiga et al., 1996; Hall and Wand, 1996; Pielaat et al., 2006).
ith classical numerical simulation of a complicated system that

annot be solved analytically, the grain of the landscape can be
ynamically adjusted to preserve a defined, low error rate. For the-
retical applications in discrete systems with a small spatial extent,
small grain size can be implemented for good accuracy. How-

ver, if the landscape is large compared to the dispersal abilities of
he organism, a fine grain size for detailed dispersal kernels would
ead to a very large number of cells across the spatial domain, thus
equiring large amounts of computer processor power, RAM and
ata storage. Depending on the complexity of non-dispersal oper-
tions, the amount of time needed to run grid-based models tends
o increase to the fourth power of the number of cells in any linear
imension of the simulation, so the time to run a simulation quickly

ncreases as the spatial resolution becomes finer.
For some applications, the resolution of the model is already set

ue to precedent models or available data resolution (e.g. satel-
ite imagery), and the modeler must work within that framework.
or example, there are several spatial population models that sup-
ort decision-making in the greater Everglades restoration process
CERP; http://www.evergladesplan.org/). Many of these models are
riven by hydrological state variables, such as water depth or salin-

ty. Hydrological models that provide these variables are available
or different regions and purposes in 2 × 2 mile squares (SFWMM;
FWMD, 2005), 500 × 500 m (ATLSS; DeAngelis et al., 1998), or
00 × 400 m (EDEN; Liu et al., 2009). Land managers generally
xpect ecological model output to be in the same grid system as
he hydrological models for consistency and ease of interpretation.
hese pre-defined grid sizes can lead to very coarse-grained spa-
ial processes and small dispersal kernels. Climate models often are
alculated with grid sizes of several kilometers. Downscaling to a
ner scale presents substantial challenges and effort (Araújo et al.,
005), so tools to use coarse-scale models directly would be useful.

When dispersal of organisms is introduced to a discrete spa-
ial model, the square shape of the landscape cells introduces

rrors in distance and direction as compared to the analyti-
al dispersal process. Simple discrete dispersal methods such as
earest-neighbor, where propagules are redistributed only to the
earest contiguous cells, limit dispersal patterns, and are inap-
ropriate for wide-ranging organisms. Using a discrete form of
ng 222 (2011) 573–579

the continuous integro-difference redistribution kernel may reduce
spatial errors compared to a simple nearest-neighbor distribution
process, but each cell in the kernel can only contain one constant
density, while a continuous dispersal kernel can change value over
the same space. For some applications, a fine temporal scale may
be desired. As the time step decreases, dispersal kernels become
smaller and more coarse-grained. As the grain size is increased
and the number of cells in a dispersal kernel shrinks, the informa-
tion contained within the kernel also shrinks, and the kernel tails
become less well defined. Very coarse kernels can essentially be
reduced to a nearest-neighbor situation. These coarse kernels can
be expected to contain large spatial errors (Hall and Wand, 1996;
Fig. 1).

Errors that are generated by the discretization of spatial pro-
cesses have always been tacitly acknowledged by researchers
performing traditional numerical solutions to continuous spatial
processes, so they use very fine grain sizes or error-controlling
numerical methods (such as Runge-Kutta) in their simulations.
Recently, uncontrolled error that appears in discrete model systems
where the grain size is pre-selected and large is receiving atten-
tion in the literature (Chesson and Lee, 2005; Holland et al., 2007;
O’Sullivan and Perry, 2009). Significant dispersal errors were found
in a model described by Slone et al. (2003), caused by small size
dispersal kernels on a large-grained landscape. For that model, the
authors corrected the specific kernels used on an ad-hoc basis, but
questions remained about the general error rates of small kernels.
Measuring and correcting these errors will be the central focus of
this paper.

2. Methods

2.1. Defining and correcting errors

Accurate dispersal kernels are necessary for spatial models to
be reliable tools for answering management questions. As grain
size decreases towards zero, results from a discrete simulation will
asymptotically approach that of a continuous-space simulation (i.e.
– have zero error). Two questions that arise are (1) at what grain
size does the error between the discrete and continuous system
become negligible for answering research questions, and (2) at
coarser resolutions, can the error be corrected so that more efficient
coarse-grained simulated landscapes can be used?

The research has the following three objectives:

1) quantify error in discrete Gaussian and Laplace dispersal kernels,
and the invasion speed of these kernels when applied to a spatial
model;

2) explore methods to correct kernel error, thus allowing the
output from coarse-grained discrete spatial systems to match
theoretical or field-measured dispersal rates; and

3) determine a minimum grain size where no correction is required
(<5% error in invasion speed).

Though population redistribution functions are often non-
normal (Kot et al., 1996), the bivariate Gaussian distribution was
explored first because it exhibits “closure” (Chesson and Lee, 2005):
that is, as organisms disperse from a single cell through time with
a Gaussian dispersal kernel, their overall distribution will remain
Gaussian, with known parameters. This property enables a sim-
ple but powerful test: as a Gaussian dispersal kernel becomes very
small, do the propagules still disperse in the expected pattern and

retain the expected Gaussian distribution? Other kernel shapes do
not lend themselves so readily to this type of analysis. The Gaussian
kernel – assuming non-directional circular dispersal (�x = �y = 0;
�x = �y = �) – has an additional simplifying property that it has only
one parameter (�; see Table 1 for notation).

http://www.evergladesplan.org/
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ig. 1. Dispersal kernels of different standard deviations: smaller kernels are more
he larger distributions are displayed).

For kernels that do not exhibit closure, a practical dispersal test
an be conducted to ascertain whether speed of invasion remains
onsistent over a fixed distance as the grain size of the simulation
hanges. The circular Laplace (exponential decay) kernel and also
he Gaussian kernel were tested in this way.

.2. Dispersal kernel functions

Dispersal in continuous space integro-difference models is
ccomplished through use of a spatial convolution model of the
orm:

t(i, j) =
∫ ∫

k(x, y)f (Nt−1(i − x, j − y)) dx dy, (1)
x, y

(Kot et al., 1996; Lutscher and Lewis, 2004), where k(x, y)
epresents the dispersal kernel for the species in question, and
(Nt − 1(i, j)) is some function that transfers the population from one

able 1
otation.

Variable Definition

k Distribution kernel function
x, y Spatial coordinates of distribution kernel
N Population density at each location
i, j Spatial coordinates of model landscape
t Time step of model
f Population reproduction or mortality function
� Mean of the Gaussian kernel
� Standard deviation (spread) of the Gaussian kernel
� ′ Corrected standard deviation of the Gaussian kernel
b Scale (spread) of the Laplace distribution
b′ Corrected scale of Laplace distribution
n Number of convolutions applied
* Spatial convolution operator
ally inaccurate, and also converge to a common shape (only the center portions of

time step to the next. The dispersal kernel k can be any prob-
ability density function (pdf). For grid-based discrete ecological
models (Allen et al., 2001), the continuous convolution process
above becomes the analogous discrete convolution:

Nt(i, j) =
∑

x

∑
y

k(x, y)f (Nt−1(i − x, j − y)). (2)

This equation may be solved by multiplying the 2-d fast Fourier
transforms of k and f together and then inverting in a time loop to
visualize the spatial dynamics, and when k is large relative to the
spatial domain, this may be computationally efficient. In practice,
however, most ecologists are simulating very large spatial domains
relative to the dispersal of their organisms, implying that k is very
small relative to the spatial extent of f. In this case, the direct con-
volution is usually faster.

Two methods were compared for calculating discrete kernels.
For the first method, the value of the appropriate continuous dis-
tribution was calculated at the center of each cell of the array, and
used as the value for that cell (center method):

k[x, y] = 1
2��2

exp

(
−x2 + y2

2�2

)
, (3)

where � is measured in grid cell units.
For the second method, which was more computationally inten-

sive but more indicative of the actual density of organisms moving
to each cell, the part of the continuous probability distribution that
fell within each cell was integrated. The resulting value was used
as the value of that cell (integrated method):
k[x, y] =
x+0.5∫
x−0.5

y+0.5∫
y−0.5

1
2��2

exp

(
−x2 + y2

2�2

)
. (4)
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Fig. 2. Spatial error was measured after repeated convolution of Gaussian dispersal
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Most testing was performed using these two variations of the
aussian kernel. Additional invasion speed tests were performed
sing the center-calculated circular Laplace distribution. It also has
nly one parameter (b), which is analogous to the � parameter of
he Gaussian distribution:

[x, y] = 1
b

· exp
(

−1
b

√
x2 + y2

)
. (5)

The spatial extent of each kernel was set to 12� + 1 cells for the
aussian kernels and 12b + 1 cells for the Laplace kernels, with a
inimum of 5 × 5 cells. For example, a Gaussian kernel with � of

0 was 121 × 121 cells, while a Gaussian kernel with � of 0.1 was
× 5 cells, because 12(0.1) + 1 = 2.2. This rule generated kernels that
ad densities of less than 10−16 at their periphery. All kernels were
ormalized by dividing each cell of the kernel by its sum:

∗
[x, y] = k[x, y]∑

x

∑
y

k
, (6)

hus assuring that each kernel summed to 1 and maintained a con-
tant population abundance as it was applied.

.3. Quantifying discrete dispersal kernel error

A Gaussian kernel exhibits “closure” (Chesson and Lee, 2005),
uch that a kernel k(�, x, y) that is convolved n times (repeated
ispersal events) is theoretically equivalent to a single convolution
f a large Gaussian dispersal kernel of size k(�

√
n, x, y):

(�, x, y)1 ∗ k(�, x, y)2 ∗ · · · ∗ k(�, x, y)n ∗ N(x, y) = k(�
√

n, x, y) ∗ N(x, y), (7)

here * is the convolution operator. To measure the shape error of
ispersal kernels, 2-D discrete convolution was applied repeatedly
o a simulated population of size 10,000 placed in the center cell of a
arge discrete arena. The resulting distribution was then compared
o the theoretical result.

As kernel size approaches infinity (i.e., grain size shrinks towards
ero), the error induced by the “pixelation” of the discrete land-
cape also approaches zero. So, we might expect a large discrete
ispersal kernel to show high fidelity to its theoretical parame-
ers, while a smaller one would show less fidelity (Fig. 1). Through
reliminary testing, a Gaussian kernel with a � of 24 was found
o contain negligible spatial error. To test the effect of size on
patial error, Gaussian kernels (ksmall) with 0.01 ≤ � ≤ 4, were con-
olved (24/�)2 times, so the resulting distribution (kconv) could be
ompared to a Gaussian kernel of � = 24 (klarge). Larger Gaussian
ernels with 4 ≤ � ≤ 24 were convolved 36 times and then com-
ared to a klarge kernel with �large = 6�small. This methodology was
epeated for each of the two kernel generation methods (center
nd integrated), with klarge and ksmall being generated with the
ame method. There was no simulation of immigration, emigra-
ion, reproduction or mortality, so the total population size in all
imulations remained constant.

To measure error in the kconv kernels, the pairwise sum-of-
quares error (SSE) was calculated for the entire spatial domain:

SE =
∑

x

∑
y

[
kconv(x, y) − klarge(x, y)

]2
. (8)

.4. Correcting dispersal kernel error

For each dispersal kernel of size �, there was an associated n,

r the number of convolutions used to generate the uncorrected
large. An adaptive gradient descent algorithm was used to test new
alues of � for each value of n, to minimize the SSE between kconv

nd klarge. This procedure ultimately resulted in a corrected value
or each �, called � ′.
kernels of a single population placed in the center cell, with smaller kernels show-
ing dramatic errors in population distribution. Integrated = kernel calculated using
integrated method; center = kernel calculated using center method.

Finally, a simple invasion scenario was developed to test the
speed of invasion of the uncorrected and corrected values of �. For
each value of �, a square grid map was created with a size that was
the larger of either 100� + 1, or 41 cells. In the center cell of this
map, a population of 10,000 individuals was added, and then the
uncorrected Gaussian kernel was convolved with the map until a
cell at the edge of the map had a population > 1. This number of
convolutions was recorded. Next, the respective corrected kernels
were convolved with the same scenario, and the number of convo-
lutions needed for the population to reach the edge of the map was
recorded.

To assess whether a dispersal kernel could be corrected without
resorting to analysis of the kernel size and shape, an adaptive gradi-
ent descent algorithm was used to directly optimize � by matching
the number of time steps the discrete invasion model took to reach
the edge to the theoretical number of time steps that an equivalent
continuous model took. After several values of � were corrected, a
polynomial regression was fitted to ln(� ′/�), and then this regres-
sion was tested using the full range of � values in the invasion
model, again by comparing the number of time steps the discrete
model took relative to the continuous model.

Finally, a similar invasion scenario was run using the Laplace dis-
tribution. Again using a gradient descent goal-seeking algorithm,
the invasion model was processed for several levels of b until opti-
mum corrected values (b′) were found that matched the expected
continuous-space results. A polynomial regression was fitted to
ln(b′/b), and this equation was validated by choosing a wide range
of values of b′ to compare with the continuous-space results.

Analysis was performed in Matlab, 2007a (The Mathworks, Inc.,
Natick, MA, USA) with double-precision floating point calculations.

3. Results and discussion

3.1. Quantifying discrete dispersal kernel error

Dispersal error increased rapidly in both center and integrated
methods for � > 1 (Fig. 2). Whereas the center method produced
a somewhat better fit than the integrated method for medium-
sized kernels (� from 0.45 to 7.5), it produced much larger errors
for small kernels below � = 0.45. For simulation models with low
resolution, uncorrected kernels generated with the center method
would generally show slower invasion speed than the correspond-
ing analytical result. This pattern has been seen in the literature

where the analytical and numerical results were plotted together
(e.g. Fig. 5 in Kot et al., 1996; Figs. 1 and 2 in Méndez et al., 2002).
Numerical simulations with small kernels generated with the inte-
grated method might show slower or faster invasion wavefronts,
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Fig. 3. Results of invasion test with Gaussian dispersal kernels generated by the
integrated method (black lines) and by the center method (gray lines). Corrected
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Fig. 4. The corrected kernels were generally larger than the uncorrected kernels –
that is, if uncorrected, dispersal would be underestimated. Dispersal kernels with

F
c
o

ernels were derived from polynomial Eqs. (9) and (10) that were fitted to the curves
lotted in this figure. Small residual errors in the corrected kernels were the result
f error in the polynomial equation to the optimized kernels – optimizing each size
f kernel directly would lead to an accurate invasion model for every size.

epending on the resolution of the kernel and the precise ratio of
he dispersal kernel to the map cell size.

.2. Correcting dispersal kernel error
The invasion test confirmed that the error increased rapidly in
mall kernels. Accurate results were obtained without correction
rom the integrated method down to � = 2 (Fig. 3), and with the
enter method down to � = 0.8 (Fig. 3). Reasonable accuracy (within
0% error) was retained down to � = 0.3 for the integrated method

ig. 5. An arbitrarily-chosen small Gaussian kernel using the Center calculation metho
orrected kernel is on the right (only the center portions of the larger distributions are d
rders of magnitude. Other sizes show similar results. Note that the scales may differ in e
standard deviations that were smaller than 1 required more correction, with the
center method requiring the most correction. Integrated = kernel calculated using
integrated method; center = kernel calculated using center method.

and � = 0.5 for the center method, but below those values, accuracy
degraded rapidly with decreasing standard deviation values.

For each method and each �, a corrected kernel size (� ′) was
found that brought the total SSE to very small levels (<1e-11,
Fig. 2), and also produced accurate invasion speed results (Fig. 3).

As the size of � decreased, the magnitude of correction necessary to
minimize the total SSE increased (Fig. 4). The center method gener-
ally required a larger correction, especially for very small kernels.
Regressions from the invasion model optimization were calculated

d and � of 0.2134. The original uncorrected kernel is shown on the left, and the
isplayed). The correction reduced the population density error by approximately 8
ach graph.
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Fig. 6. Comparing the expected distribution (left) with the difference in the cor-
rected kernel after convolution 12643 times. The error distribution was multiplied
1
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Fig. 7. Results of invasion test with Laplace kernels generated by the center method.
Corrected kernel was generated by polynomial Eq. (11). As with the Gaussian kernel,
000× to make it visible (right). Near the center of the distribution, the error
fter convolution was more than 4 orders of magnitude (10−4) smaller than the
istribution, and near the periphery, the error was approximately 10−3 times the
istribution. Only the center portions of the distributions are shown.

s follows. For integrated kernels with � < 2:

′ = � · (−0.1014 · ln (�)3 + 0.0097 · ln (�)2 + 0.1244 · ln(�) + 0.9375), (9)

nd for center-calculated kernels with � < 0.8:

′ = �.(0.0929. ln (�)3 + 0.2226. ln (�)2 + 0.1184. ln(�) + 1). (10)

These equations reduced the error of invasion speed to <5% for
> 0.1 (Fig. 3).

To visually demonstrate the dramatic difference in dispersal
rror before and after kernel correction, an arbitrary, small value
f � was chosen (� = 0.2134, or 12,643 convolutions to generate a
istribution ∼N[0, 24]) (Fig. 5). Before correction, the population
tarting from the center cell did not disperse more than a few cells
rom the center after 12,643 convolutions, indicating that the cal-
ulated kernel was effectively too small. Any application of this
ncorrected kernel would lead to gross underdispersal of the mod-
led organism, compared to the analytical model solution. After
orrection, which only slightly increased the size of the kernel, the
esulting population distribution was very close to the expected
istribution. The error in the overall distribution on a cell-by-cell
asis was generally less than 10−4 times the population density
ear the center of the distribution, and approximately 10−3 times
he population density near the critical edges (Fig. 6). This level
f error would be negligible compared to errors in other model
rocesses.

While so far only the Gaussian kernel shape has been discussed,
ny kernel can be adjusted by performing a continuous-space anal-
sis to obtain the theoretical number of time steps for an invading
opulation to disperse to a distant cell, then adjusting the size
arameter in the discrete domain until the number of time steps

n the discrete model matches the theoretical result. This proce-
ure could be used to calibrate any form of small discrete dispersal
ernel, allowing for more biologically realistic leptokurtic shapes.
ollowing this procedure, several center-calculated circular Laplace
ernels of sizes b = 0.01 to b = 1were corrected, then a polynomial
quation was fit to the points, and a general equation to correct an
rbitrary sized Laplace kernel was generated:

For b < 1.5:

′=b · (−0.06 · ln (b)3−0.0732 · ln (b)2+0.077 · ln(b)+0.9906). (11)

his equation reduced invasion speed error to less than 2% for
aplace kernels with b > 0.03 (Fig. 7).

The invasion model method of correcting cannot guarantee that

he total SSE of a corrected kernel would be vanishingly small. Given
hat the SSE for the Gaussian kernel was very small after correction
or size, and this in turn also corrected for invasion speed, it may
e reasonable to assume that SSE for the Laplace or other kernel
hapes would also be small after correction for invasion speed.
the small, original Laplace kernels generally led to underestimation of dispersal,
requiring too many dispersal steps to reach the goal. Correcting the kernels with Eq.
(11) dramatically reduced that error.

4. Conclusions

This work demonstrates the danger inherent in using coarse-
grained dispersal kernels in discrete spatial models. As discrete
dispersal kernels are made smaller in size, the spatial error inher-
ent in the kernel increases. This error propagates through repeated
dispersal cycles until the population distribution looks nothing
like its expected distribution. These errors can produce serious
problems in interpretation if the model is to be used to pre-
dict real-world events, such as the time an invading population
will take to reach a certain location. Correction of small kernels
is required to make output from the discrete model equiva-
lent to theoretical predictions. Correction of the width (� for
Gaussian, b for Laplace) of the kernel may be sufficient to fix
the overall spatial error of dispersion, so discrete dispersal ker-
nels can thus give accurate results, even when they are very
small.

Exhaustive tests of kernel shapes other than Gaussian and
Laplace were not performed because of the large number of possi-
ble kernel shapes (Chesson and Lee, 2005). If multiple convolutions
of the kernel cannot be analyzed directly, then correcting the kernel
based on an invasion test with a known expected result is possible.
The polynomial correction equations (Eqs. (9)–(11)) were devel-
oped to correct for any arbitrary Gaussian or Laplace kernel, but
this step would not be necessary for single dispersal kernels. In
this case, only a single comparison and correction with the com-
parable analytical model would be required. Recent papers (e.g.
Lindström et al., 2008; Sebert-Cuvillier et al., 2008) that focused on
discrete invasion models demonstrate the research applicability of
testing dispersal kernels for dispersal bias or lack thereof with an
invasion model. Explicit testing for movement bias in models has
been called for recently (Holland et al., 2007) due to demonstrated
errors from individual-based movements in coarse-grained regular
lattices. The results shown here that demonstrate significant errors
from kernel-based movements in similar lattices also indicate the
need for such testing.

If small spatial error is desired without correction, a conserva-
tive rule of thumb that has consistently worked for the author is that
the kernel be large enough that at least half of the dispersing popu-
lation of each cell leaves the cell during each convolution. With the
Gaussian kernel this occurred with � > 0.56 and with Laplace ker-

nel this occurred with b > 0.33. It appears that kernels with fatter
tails (e.g. Laplace) are less susceptible to error as the kernel shrinks,
because more propagules are moved farther away from the center
cell, and these far-flung propagules continue to provide mass to the
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uter edges of the kernel, even when most of the mass remains in
he center cell.

For discrete spatial models, the best mix of spatial and temporal
ccuracy, combined with speed of execution, may involve a large
patial domain and a small kernel that will be iterated several times
uring a simulation. A larger, more inherently accurate kernel may
ot be an optimum choice, because it would require fewer time
teps to reach the goal, and so become temporally imprecise (large
umps in time between iterations). The spatial inaccuracy of small
ernels can be overcome through the correction techniques pre-
ented here, making temporally fine spatial models more accurate
nd useful as management tools for real-world problems.
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