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Abstract. Many populations of animals are fluid in both space and time, making
estimation of numbers difficult. Much attention has been devoted to estimation of bias in
detection of animals that are present at the time of survey. However, an equally important
problem is estimation of population size when all animals are not present on all survey
occasions. Here, we showcase use of the superpopulation approach to capture–recapture
modeling for estimating populations where group membership is asynchronous, and where
considerable overlap in group membership among sampling occasions may occur. We estimate
total population size of long-legged wading bird (Great Egret and White Ibis) breeding
colonies from aerial observations of individually identifiable nests at various times in the
nesting season. Initiation and termination of nests were analogous to entry and departure
from a population. Estimates using the superpopulation approach were 47–382% larger than
peak aerial counts of the same colonies. Our results indicate that the use of the
superpopulation approach to model nesting asynchrony provides a considerably less biased
and more efficient estimate of nesting activity than traditional methods. We suggest that this
approach may also be used to derive population estimates in a variety of situations where
group membership is fluid.
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INTRODUCTION

The need for reliable demographic information on

animal populations has increased as scientists attempt to

use attributes of populations to measure ecological

change (Rosenstock et al. 2002, Thompson 2002) and to

monitor endangered and game species (Gould et al.

2005). However, it is rare that entire breeding popula-

tions can be counted directly, and most attempts at

estimating population size are approximations derived

from incomplete surveys with various potential sources

of bias (Williams et al. 2002, Frederick et al. 2006).

A huge amount of scientific inquiry has been directed

toward understanding bias in animal population survey

counts (as reviewed in Pollock and Kendall 1987, Bart et

al. 2004), including visibility problems, interobserver

variation in counting error, and misidentification of

species (Rodgers et al. 1995, Frederick et al. 2003,

Williams et al. 2008). Most studies of estimation error to

date have focused on estimating animals that are present

at the time of survey, and have only rarely recognized

the problem of estimating animals that are present at

some point during the period of interest but that are not

present at the time of survey (Frederick et al. 2006). This

latter issue can arise when individuals are not individ-

ually identifiable, and they join and leave surveyed

populations at an unknown frequency. This problem has

been recognized in colonially breeding birds (Frederick

et al. 2006), ungulates (Gould et al. 2005), and spawning

fishes (Schwarz et al. 1993), among other taxa, as well as

being a common circumstance at migration stopover

sites (Williams et al. 2002).

Asynchronous group membership in the statistical

population of interest, whether at large migratory

stopover sites (Farmer and Durbian 2006) or within a

defined breeding season, as for colonially nesting birds

(Piazza and Wright 2004), can confound estimates of

group size because individuals may be present before

surveys begin during a season, after they end, or between

consecutive survey occasions. Estimates of unmarked

animals on any given date may not reflect true numbers,

partly because some individuals may be present outside

the dates of survey, and partly because novel (previously

uncounted) individuals on any given survey may be

confused with those present on a previous survey date.

This is true even if the counts on each date are highly

accurate. While the resulting bias may be negligible

when aggregation or reproduction is highly synchro-

nous, the degree of error in less synchronous species can

be substantial (e.g., 47% in breeding wading birds
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[Frederick et al. 2006], 69–79% in shorebird populations

at stopover sites during migration [Farmer and Durbian

2006]).

The magnitude of these underestimates illustrates the

need for methods for estimating the size of populations

where group membership or site fidelity is fluid. This

problem may be approached by estimating the turnover

of individuals within a population and incorporating

this information into a population estimate using a

mark–resight method. The superpopulation approach

(Crosbie and Manly 1985, Schwarz and Arnason 1996),

offers some potential for a solution. This method is a

variation on the Jolly-Seber open-population capture–

recapture model (Jolly 1965, Seber 1965). The approach

includes inference about probabilities of entry into the

sampled population, and the superpopulation is defined

as the total number of animals that ever enter the

sampled population between the first and last survey

occasions. As such, estimating superpopulation size can

be useful for populations in which group membership is

dynamic and temporally unpredictable.

A key to the superpopulation approach is the ability

to track individuals over time and sampling occasions.

Typically this involves marking a subset of individual

animals or using a recognizable physical characteristic

so that individuals that move around in space may be

reliably identified or resighted. But in some cases, even

unmarked individuals may be reliably identified and

resighted based on location (Thompson and Gidden

1972, Albers 1976). Bird nests, for instance, are fixed in

space, if not time, and individuals may be differenti-

ated during the breeding period based on their

association with a particular reproductive structure or

location. As examples for this modeling approach, we

use Great Egrets (Ardea alba) and White Ibises

(Eudocimus albus) in breeding aggregations in the

Everglades. These birds are conspicuous colonial

nesters with different life histories and temporal nesting

patterns.

For highly asynchronous or fluid populations such as

wading bird colonies in the Everglades, we suggest that

simple (raw) population counts may significantly under-

estimate true population size, depending upon how the

raw counts are used. For example, we believe that

underestimation will be common when investigators use

either a single count/survey or the maximum count from

multiple surveys over the period of interest to draw

inference about abundance. We expect the difference

between raw counts and model-based estimates to vary

by species according to differences in reproductive

phenology, timing of nesting, and nest failure rates

(Frederick and Collopy 1989a, McCrimmon et al. 2001,

Heath et al. 2009). And we expect that, though there

may be interobserver variation in model-based esti-

mates, this variation will be small compared to the

difference between raw counts and superpopulation

estimates.

METHODS

Survey methodology: peak counts

and superpopulation estimates

We conducted monthly aerial surveys of breeding

colonies of Great Egrets and White Ibises in the central

and northern Everglades in 2005 and 2006 (Broward,

Dade and Palm Beach counties, Florida, USA).

Colonies were located using a systematic, 100% coverage

search pattern on a monthly basis from January through

June, and photographed each time with a high-

resolution digital camera. Breeding individuals were

easily distinguished as white targets on a green

background, and the assumption that one nest means

one bird is quite accurate during the incubation period

(McCrimmon et al. 2001, Heath et al. 2009). We

accepted the largest single-month count of the breeding

season from these aerial photographs as the peak

seasonal count for each species.

We also took aerial photographs on a semiweekly

basis of areas of individually identifiable nests, in order

to model population emigration and immigration (losses

of nests and new entries to the colony). Nest locations

were identified using natural or artificial landmarks, and

nest locations were compared in printed photographs

from week to week to document longevity of existing

nests and occurrences of new nests. We conducted these

surveys in three small Great Egret colonies and one large

mixed-species colony in the central Everglades in one or

both of the 2005 and 2006 breeding seasons. The mixed-

species colony, Alley North (approximately 50 000 m2),

was too large to conduct a complete survey, so we

concentrated on subsections of the colony.

Presence–absence information for each uniquely

numbered nest was coded as 0 (nest activity unknown,

including cases in which the nest and parent/chicks were

not visible, and cases where there was no photo of the

nest area available on that date) or 1 (nest active, parent

and/or chicks were visible). We only assumed that a nest

had failed if it was found to be inactive on four

consecutive survey dates. After that time, we treated any

nest activity in that location as a new nest start. Three

independent observers analyzed the same set of semi-

weekly photographs for one colony (Vacation Island)

from the 2006 breeding season, to test the repeatability

of the nest coding method.

Although we used the presence of a large white bird as

an indication of nesting, these could have initially been

roosting birds or birds temporarily standing away from

their nests. We therefore eliminated first observations of

all nests from the database, and so deleted ‘‘nests’’ that

were seen only once. This may have caused some

underestimation of total number of nest starts if the

nest actually had been built and failed very early.

Additionally, the use of the four consecutive zero rule

(as above) may have missed some nests that failed,

restarted, and failed again within the period of four

visits. Both these types of possible errors seem unlikely
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to be very important given the relatively long courtship

and egg-laying periods of these birds (McCrimmon et al.

2001, Heath et al. 2009) and the semiweekly frequency of

aerial surveys. However, if either of these assumptions is

incorrect, the effect in both cases is conservative, and

results in an underestimation of the true numbers of

nesting pairs.

The superpopulation modeling approach

to population estimation

The superpopulation approach (Schwarz and Arnason

1996) is a variation on a Jolly-Seber open-population

capture–recapture model that includes as a derived

parameter the gross births within the population. This

parameter includes all animals that enter the population

at some time during the entire study period and either

survive until the next survey occasion or emigrate or die

before they are available to be sampled (Schwarz et al.

1993, Schwarz and Arnason 1996). The model’s calcu-

lated gross superpopulation size was originally defined as

the total number of organisms that were part of the

population of the study location, in the sense that they

were present at some time during the period between the

first and last sampling occasions (Cooch and White

2007). In our case, the superpopulation is the total

number of nest starts over the entire sampling period.

Detectability of nests is included in the model as an

encounter probability term for each survey.

We fit population models to the capture–recapture

data from colonies using Program MARK version 4.3

(White and Burnham 1999). We used the POPAN data

type (Arnason and Schwarz 1995), which utilizes a

parameterization of the Jolly-Seber model (Schwarz and

Arnason 1996). We set time intervals to fractions of

weeks between each set of consecutive surveys, and

allowed three parameters (survival /, encounter prob-

ability p, and entry probability b) to vary with time,

depending upon the model. For each colony, we tested a

set of four candidate models: a fully time-dependent

model (all parameters are time dependent, with a

superpopulation estimate, N, for which there is a single

estimate for the colony), a model with no time

dependence for survival or encounter variables, and

two models in which either encounter probability or

survival probability was allowed to vary with time while

the other was held constant (Cooch and White 2007).

Probability of entry into the population would not be

expected to hold constant throughout the season, since

both bird species tend to exhibit a surge of initial nesting

in an area followed by lower levels of nest initiation

thereafter (McCrimmon et al. 2001, Heath et al. 2009).

Thus, entry probabilities were allowed to be time-

dependent in all models. For models with constrained

p values, the initial p was not allowed to differ from p

values in subsequent sampling occasions; detection

probability varied primarily with presence/absence of

an adult bird on the nest, and with the quality of aerial

photographs. Neither of these sources of variation was

expected to cause differences in initial capture vs.

recapture probabilities.

For models in which survival probability / and

encounter probability p varied with time, not all

parameters in the model were estimable (Schwarz and

Arnason 1996). We set p1¼ p2 and pk¼ pk�1 (where k is

the final sample occasion) so that all survival and entry

parameters were estimable in the model. In the model in

which survival was held constant and encounter

probability varied, the initial p value was still inestima-

ble, so for this model we set p1¼ p2 and allowed all other

encounter probabilities to vary. We used a sin link

function to estimate survival and encounter parameters,

a mlogit(1) function to estimate entry parameters, and a

log link function to estimate superpopulation size N.

The gross superpopulation size N* is a derived

parameter of the POPAN model. It includes both the

net superpopulation size N (all nests that enter the

population and are available to be detected during at

least one survey) and nests that enter and leave the

population between consecutive surveys and thus are

never available to be sampled. Using the counts from

each survey date and the estimated encounter and

survival probabilities from each survey date or interval

(adjusted for time elapsed between surveys), the number

of new entries (‘‘births’’) into the population between

each consecutive set of surveys can be estimated. This

value can then be used to estimate gross entries, which

includes new animals that are never available to be

detected at a sampling occasion (Schwarz et al. 1993,

Schwarz and Arnason 1996). The gross superpopulation

size is estimated in MARK by summing these gross

entries between each consecutive set of survey dates, and

adding the sum to the estimated number of nests present

during the first survey (after Schwarz et al. 1993,

Schwarz and Arnason 1996):

N̂i ¼ ni=p̂i

B̂i ¼ N̂iþ1 � N̂ið/̂iÞti

B̂
�
i ¼

B̂i lnð½/̂i�tiÞ
½/̂i�ti � 1

N̂� ¼ N̂1 þ
Xk�1

i¼1

B̂
�
i

where N̂i is the estimated total number of individuals (or

active nests) in the population at sampling occasion i; ni
is the number of individuals seen at occasion i; pi is the

encounter probability at occasion i; B̂i is the estimated

number of individuals entering the population between

sampling occasions i and iþ1 and available for detection

at occasion i þ 1; /i is the survival probability per

sampling interval (expressed as a proportion of a week)

between occasions i and i þ 1; ti is the time between

surveys i and iþ 1 (expressed as a proportion of a week);
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B̂
�
i is the estimated gross number of individuals entering

the population between i and iþ 1 (including nests that

entered and departed between i and i þ 1, estimated

assuming a constant recruitment rate over time during

the interval, after Schwarz et al. [1993] and Crosbie and

Manly [1985]); N̂* is the estimated gross superpopulation

size; and k is the total number of surveys.

We fit the four models to the data from the records of

nest observations at each colony (Appendix A). We used

an information-theoretic approach to model selection,

and considered that a model with a DAICc value of less

than 2 was relatively well supported by the data, while a

model with a DAICc value of greater than 10 was not

supported by the data (Burnham and Anderson 2002,

Williams et al. 2002). We quantified the goodness of fit

(GOF) of the most general model using chi-square tests

to see if observed values varied from the expected

number of surviving and encountered nests (Burnham et

al. 1987). These tests evaluated the following assump-

tions inherent in Jolly-Seber models (Pollock et al. 1990,

Cooch and White 2007): one, that there is no

heterogeneity in capture probability, either among

individuals or among cohorts (cohorts in this case

meaning all nests that were seen for the first time on the

same date); and two, that there is no heterogeneity in

survival probability among individuals or cohorts.

We calculated GOF chi-square values using Program

RELEASE (Burnham et al. 1987), available within

MARK. The chi-square values generated for each test

component were summed for the entire sampling period,

and were divided by the degrees of freedom to obtain a

variance inflation factor, ĉ (a measure of overdispersion

in the data; Appendix A). Following Cooch and White

(2007), we accepted that a ĉ value of 1 indicated good

model fit, values of 1–3 indicated moderately good fit,

and .3 indicated probable violation of model assump-

tions. For ĉ values of ,1 (essentially meaning that the

data are underdispersed), we followed the recommen-

dation of Cooch and White (2007) in using a ĉ value of

1. The calculated ĉ values were used to adjust model-

based precision estimates and modify AICc values to

produce QAICc for use in model selection (Burnham

and Anderson 2002).

Variance estimation

We used MARK’s model averaging capability to

compute the weighted average values and variances for

parameters across all models. Unconditional standard

errors (which incorporate uncertainty due to both

variance within models and to uncertainty in model

selection) were used to manually calculate 95% confi-

dence intervals according to the following estimation

procedure, which focuses on f0, the number of animals

not captured (Rexstad and Burnham 1992, Williams et

al. 2002):

Lower and upper confidence interval bounds for N̂*:
Mkþ1 þ f̂0/C, Mkþ1 þ f̂0C, where Mkþ1 is the number of

individual animals captured in k samples, f̂0¼ N̂*�Mkþ1,

and C ¼ exp(1.96[ln(1þ var[N̂*]/f̂
2

0)]
1/2). This estimation

method assumes that f0 is lognormally distributed (rather

than requiring an assumption of normality for super-

population estimates, which is often not the case for

situations with small numbers of captures and recap-

tures; Williams et al. 2002).

Colony counts were treated as binomial random

variables. Thus, the variance of a peak count value P

was estimated as var(Pi ) ¼ (1 � p)pN̂
�
i , where p is the

probability that a member of the superpopulation (nest)

was included in the peak count. The probability p was

estimated using the inverse of the proportional differ-

ence between the peak count and gross superpopulation

estimate, Pi/N̂
�
i , and thus the variance of this propor-

tional difference could be calculated using the delta

method (Mood et al. 1974) as follows:

v̂ar
N̂
�
i

Pi
’
ðN̂�i Þ

2

P2
i

vârðN̂�i Þ
ðN̂�i Þ

2
þ vârðPiÞ

P2
i

" #
’
ðN̂�i Þ

2

P2
i

vârðN̂�i Þ
ðN̂�i Þ

2

"

þ 1� Pi

N̂
�
i

 !
Pi

P2
i

#
’

vârðN̂�i Þ
P2

i

þ N̂
�
i ðN̂
�
i � PiÞ
P3

i

" #
:

Subsampling large breeding aggregations

For the smaller Great Egret colonies (120–200 m

longest dimension), all or most of the colony could be

covered in one or two photographic passes, and our

counts and superpopulation estimates were for the entire

colony. For the very large Alley North colony (approx-

imately 2000 m longest dimension), we subsampled the

colony during aerial surveys, resulting in a collection of

geographically distinct year- and species-specific esti-

mates of superpopulation size. We could not sample the

colony randomly, as we had to rely on landmarks of

some kind in order to have areas that could be relocated.

However, despite this restriction, we were able to select

sample areas in a variety of habitat types and nesting

densities, and based on our knowledge of the colony and

visual examination on nesting patterns from aerial

photos, we believe our samples to be representative of

the colony as a whole. We calculated a gross super-

population size estimate for each combination of

species, year and location (we refer to this as a sample)

within the colony and compared it to the number of

nests counted in that same sample on the survey date

closest to the peak count date for the entire colony (‘‘raw

count’’). We averaged the proportional differences

between the gross superpopulation estimates and the

raw counts across all samples. The ratio of averages (in

our case, summed superpopulation estimates divided by

summed raw counts) is less biased in some cases and has

a smaller variance estimate than the average of ratios

(Rao 2005), but it weights all nests in all samples

equally, assuming that there is one underlying ratio

between raw counts and superpopulation estimates that

characterizes the entire colony. As nesting cohorts

within the colony are likely to have varying levels of
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nest turnover throughout the breeding season, we chose

to take such variation into account when estimating an

overall proportion for the colony, and used the average

of ratios for the estimation procedure.

The averaged proportional error across all samples

was our estimated colony-wide proportional difference

between the peak count and extrapolated superpopula-

tion count, as follows:X
i

ðN̂�i =RiÞ

n
¼

N̂�colony

Pcolony

where N̂�i is the gross superpopulation estimate for

sample i; Ri is the raw count for sample i; n is the number

of samples in the colony for that year and species; and

Pcolony is the peak count for the colony. Cumulatively,P
i(N̂
�
i /Ri )/n is the average number of estimated nest

starts per nest detected in the raw count. We solved the

above equality for N̂�colony to obtain the entire colony’s

extrapolated superpopulation estimate:

N̂
�
colony ¼

ðPcolonyÞ
X

i

ðN̂�i =RiÞ

n
:

Raw counts may be treated as binomial random

variables, and we can thus estimate the approximate

variance of the average ratio (e.g., Mood et al. 1974),

and compute the variance of the colony-wide super-

population estimates (Appendix B; e.g., Goodman

1960). Confidence intervals were estimated using this

colony-wide variance estimate, with the peak count for

the entire colony equating to Mkþ1.

RESULTS

Interobserver error in tallying individual nest histories

from photographs

For the Vacation Island colony in 2006, the super-

population estimates derived from three different photo-

interpreters were 509 nests (upper and lower confidence

intervals, or CIs, 500–518 nests); 409 nests (CIs 403–

414); and 480 nests (CIs 476–491). Average interob-

server error rate was 8% relative to the mean estimate of

466 nests. These estimates were 264–328% greater than

the peak count of 155 nests (300% on average). The

results presented below for all colonies are from the

analysis of data by Observer 3.

Superpopulation estimates

Depending upon the individual colony, the best-

supported model was fully time-dependent; allowed only

the entry probability b to vary with time; or, in the case of

some Alley North subsamples, allowed / or p to vary

with time (Appendix A). There was no single model that

appeared to best fit all colonies for either species.

Likewise, the QAICc weight for the best-supported model

varied considerably by colony. However, the difference

among estimated N̂* values derived from different

models, even those with quite dissimilar QAICc weights,

was small (less than 5% in all cases; Appendix A). So the

differences among high-ranking models in details about

the processes generating the data did not translate into

substantive differences in estimates of colony size.

Superpopulation estimates for Great Egret colonies

were 147–482% of the peak counts, while White Ibis

superpopulation estimates were 216–300% of peak

counts (Table 1). In all eight year–colony situations,

the peak counts for colonies were well outside the 95%
confidence intervals for the superpopulation estimates.

These results collectively suggest that the bias intro-

duced by asynchrony and associated counting problems

is quite large. However, although peak counts consis-

tently underestimated numbers of nest starts, the degree

of underestimation varied widely among colonies and

years (Table 1). This was true even for colonies as little

as 25 km apart (Cypress City and Vacation Island

colonies).

There were some possible violations of model

assumptions related to homogeneity in survival and

capture probability. Survival and capture probability are

TABLE 1. Peak counts and weighted superpopulation estimates for breeding colonies of White Ibises and Great Egrets in the
Everglades.

Database Species Year
Peak count
for sample N̂* (LCI–UCI)

Proportional difference between
N̂* and peak count (LCI–UCI)

Vulture Great Egret 2005 121 583 (539–674) 4.82 (4.46–5.57)
Vacation Island Great Egret 2005 79 233 (223–252) 2.95 (2.83–3.19)
Vacation Island Great Egret 2006 155 480 (476–491) 3.10 (3.07–3.17)
Cypress City Great Egret 2005 107 268 (258–285) 2.50 (2.41–2.66)
Cypress City Great Egret 2006 173 254 (251–260) 1.47 (1.45–1.50)
Alley North Great Egret 2006 1193 2538 (2226-2943) 2.13 (1.87–2.47)
Alley North White Ibis 2005 12 750 38 275 (25 443–64 080) 3.00 (2.00–5.03)
Alley North White Ibis 2006 13 566 29 287 (26 448–32 706) 2.16 (1.95–2.41)

Notes: Peak counts are the maximum monthly one-time aerial survey counts of numbers of nests in colonies. N̂* is the model-
averaged gross superpopulation estimate, with lower and upper confidence interval estimates (LCI and UCI). The Alley North N̂*
estimates were derived from subsamples and extrapolated to the entire colony (Appendices A and B). The proportional difference
between N̂* and peak counts, or raw counts, was calculated as N̂*/(raw count). The CI estimates for these colonies were developed
using the variance in the average ratio between peak and raw counts, and under the assumptions that peak count values follow a
binomial distribution and the difference in numbers of nests between peak counts and extrapolated superpopulation estimates will
follow a lognormal distribution (Chao 1989, Rexstad and Burnham 1992, Williams et al. 2002).
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both unlikely to be the same for all nests, due to

differences in nesting stage and nest microhabitat

(Mayfield 1975, Frederick and Collopy 1989b). Howev-

er, estimates in Jolly-Seber models tend to be robust to

this type of heterogeneity, so long as average encounter

probability is high (.0.5; Pollock et al. 1990), which it

was for all locations and years.

DISCUSSION

The estimates of numbers of nest starts that incorpo-

rated asynchrony and detectability bias were significant-

ly different from, and very much larger than, the peak

counts in all eight colonies and years. Asynchrony in

nest initiation and failure, rather than problems with

nest detectability, was the major source of bias in our

peak count estimates. Independent estimates of visual

bias for Great Egrets and White Ibises (Kushlan 1979,

Williams et al. 2008) are at least an order of magnitude

smaller than the combined effects of asynchrony and

detectability reported here (47–382%). Due to the large

sample sizes in our study, we had very good power for

our goodness-of-fit tests to detect tested deviations from

model assumptions. Problems with model fit, while in

some cases detectable, were probably not biologically

significant in terms of estimated numbers of surviving or

encountered nests.

While superpopulation estimates from different ob-

servers were relatively similar (and hugely different from

peak counts), inter-observer comparisons indicate a

potential problem with initial detectability—that is,

recognizing a nest as such, and beginning to follow it

in photographs. Once a nest has been identified in a

previous photograph, it may be more likely to be looked

for and found again on later dates. This would lead to

an underestimate of nest starts, an underestimate of

population size, and an overestimate of precision of the

population estimate. Depending upon the population of

interest and available survey techniques, in some cases

superpopulation estimates could be selectively ‘‘ground-

truthed,’’ to determine initial detectability for observers.

A more versatile alternative would be to estimate

detection probabilities for new nests using data from

multiple observers; extending the superpopulation ap-

proach to the robust design would incorporate such data

and provide a reasonable approach to dealing with this

potential problem. However, visibility bias in our

particular study system is a problem for a variety of

reasons (Williams et al. 2008), and problems with initial

detectability are likely to be inherent to this system,

rather than common to most uses of the technique.

Error rates for peak counts, relative to nest start

estimates, were similar between Great Egrets and White

Ibises. Variation in error rates was much larger between

years and between colonies during the same year than

between species (Table 1; see also Frederick et al. 2006).

This suggests that factors affecting nest success and

asynchrony are quite variable over time and/or space.

Because of this high temporal and spatial variation,

population estimation cannot be easily generalized, and

populations may need to be estimated for individual

colonies and seasons, as we have done here. The removal

of all first nest sightings prior to analysis allowed for a

conservative handling of first detection, and we have

focused in this example on providing estimates of total

numbers of nest starts occurring throughout a nesting

season. However, in species with high nest failure and

renesting frequencies, the nesting population (numbers

of pairs) would be expected to be smaller than the

numbers of nest starts (Piazza and Wright 2004). Since

this difference could in some cases be substantial, this

technique should be used in conjunction with studies of

renesting frequency as necessary.

Peak counts and other incomplete survey methods

have long been recognized as likely to provide poor

estimates of true population size, but in the absence of

alternatives, they have been used as indicators of relative

change in population size (James et al. 1996, Link and

Sauer 1998, Farmer and Durbian 2006). In the examples

we have presented, it seems clear that peak counts or

uncorrected survey information will reflect different

proportions of the true breeding population size from

year to year, and therefore cannot be used reliably even

as an indicator of population dynamics. Peak counts

and other incomplete survey methods may be relatively

cheap and logistically easy to conduct, but our examples

suggest that with the potentially large and variable bias

associated with these methods, they are no bargain.

General use of the superpopulation approach

This type of analysis is applicable to many other

animal populations with large aggregations and fluid

group membership, including both breeding and migra-

tory groupings. We caution that random or stratified

random sampling designs may be advisable in some

cases to capture the full heterogeneity in population

membership and detectability among cohorts within the

population. For example, detectability may vary due to

individual habitat selection, or due to sex- or age-specific

differences in behavior. This problem may also be

approached through the use of visibility (e.g., as assessed

by the investigator) as a grouping variable or individual

covariate in the model. It is essential that all uses of the

superpopulation approach include an examination of

model fit for potential violation of model assumptions.

In our case, individuals were tracked over a five- to

six-month breeding season, but it might be equally

useful to estimate emigration and immigration over a

shorter period (hours, days, or weeks) at aggregation

points, such as migratory stopover sites. In cases where

individual animals are not physically marked, there may

be alternative options to identify and track individuals,

such as continuous video surveillance or the technique

illustrated in this paper.

Number of nests (breeding pairs) was a quantity of

primary interest in our study, as an estimate of system

state needed to make state-dependent management
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decisions. However, in some situations the rate of

population change (k̂
�
t ) may be of equal or more interest

than N̂
�
t , and, when it is, there are some advantages to

estimating k̂
�
t . Estimates of abundance based on models

for open populations have long been known to exhibit

substantial bias in the face of certain common violations

of model assumptions (e.g., Carothers 1973, Pollock et

al. 1990, Williams et al. 2002). For some violations (e.g.,

heterogeneous detection probabilities) estimators for

ratios of abundance such as kt¼Ntþ1/Nt exhibit less bias

than those for abundance itself (Hines and Nichols 2002,

Williams et al. 2002). Indeed, kt is the quantity of

primary interest in some studies and is closely related to

the concept of ‘‘trend,’’ which is a focal quantity for

many monitoring programs. Rate of change in super-

population size from year to year can be estimated as a

derived parameter using the approach presented here, k̂
�
t

¼ N̂
�
tþ1=N̂

�
t , where t denotes year or breeding season. It

might also be possible to develop methods to estimate it

more directly, as has been done for standard open

models (e.g., Pradel 1996).

CONCLUSIONS

We believe that asynchronous population member-

ship is a more common problem in population counts

than has been recognized in the literature. We suggest

that peak or ‘‘snapshot’’ counts of mobile or asynchro-

nously occurring animals will often result in significant

undercounts of true population size, and that especially

where group membership is staggered and/or temporally

unpredictable, simple counts may be misleading even

when used as qualitative indicators of change in

population size. Although we examined an extreme case

(long nesting period and substantial potential for

asynchrony, highly variable annual nest failure rates,

and potential for poor nest visibility), many animal

populations may show similar characteristics, such as

seabird colonies, ungulate herds (Gould et al. 2005), fish

aggregations (Schwarz et al. 1993) birds at migration

stopover locations, and many kinds of animal social and

mating aggregations. Given the strong biases that have

now been demonstrated for peak counts as population

estimates (this study, Frederick et al. 2006) it seems wise

to use alternative approaches wherever possible. We

believe that the superpopulation approach developed

here deserves serious consideration in other studies of

abundance for asynchronous systems.

ACKNOWLEDGMENTS

The authors thank C. Hand, S. Edmonds, C. Enloe, K.
Lung, S. Robinson, B. Shoger, K. Sieving, R. Smith, A. Spees,
E. Trum, and most particularly J. Simon. We thank two
anonymous referees for constructive comments on the manu-
script. The field research was funded by a grant from the U.S.
Army Corps of Engineers.

LITERATURE CITED

Albers, P. H. 1976. Determining population size of territorial
Red-winged Blackbirds. Journal of Wildlife Management
40(4):761–768.

Arnason, A. N., and C. J. Schwarz. 1995. POPAN-4:
enhancements to a system for the analysis of mark–recapture
data from open populations. Journal of Applied Statistics
22:785–800.

Bart, J., S. Droege, P. Geissler, B. Peterjohn, and C. J. Ralph.
2004. Density estimation in wildlife surveys. Wildlife Society
Bulletin 32(4):1242–1247.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and multimodel inference: a practical information-theoretic
approach. Second edition. Springer-Verlag, New York, New
York, USA.

Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie,
and K. P. Pollock. 1987. Design and analysis of methods for
fish survival experiments based on release–recapture. Amer-
ican Fisheries Society Monograph 5:1–437.

Carothers, A. D. 1973. The effects of unequal catchability on
Jolly-Seber estimates. Biometrics 29:79–100.

Chao, A. 1989. Estimating population size for sparse data in
capture–recapture experiments. Biometrics 45:427–438.

Cooch, E., and G. C. White. 2007. Program MARK: a gentle
introduction. Fifth edition. hhttp://www.phidot.org/software/
mark/docs/book/i

Crosbie, S. F., and B. F. J. Manly. 1985. A new approach for
parsimonious modelling of capture–mark–recapture experi-
ments. Biometrics 41:385–398.

Farmer, A., and F. Durbian. 2006. Estimating shorebird
numbers at migration stopover sites. Condor 108:792–807.

Frederick, P. C., and M. W. Collopy. 1989a. Nesting success of
five ciconiiform species in relation to water conditions in the
Florida Everglades. Auk 106:625–634.

Frederick, P. C., and M. W. Collopy. 1989b. Researcher
disturbance in colonies of wading birds: effects of frequency
of visit and egg-marking on reproductive parameters.
Colonial Waterbirds 12:152–157.

Frederick, P. C., J. A. Heath, R. E. Bennetts, and H. Hafner.
2006. Estimating nests not present at the time of breeding
surveys: an important consideration in assessing nesting
populations. Journal of Field Ornithology 77:212–219.

Frederick, P. C., B. A. Hylton, J. A. Heath, and M. Ruane.
2003. Accuracy and variation in estimates of large numbers
of birds by individual observers using an aerial survey
simulator. Journal of Field Ornithology 74:281–287.

Goodman, L. A. 1960. On the exact variance of products.
Journal of the American Statistical Association 55:708–713.

Gould, W. R., S. T. Smallidge, and B. C. Thompson. 2005.
Mark–resight superpopulation estimation of a wintering elk
Cervus elaphus canadensis herd. Wildlife Biology 11:341–349.

Heath, J. A., P. C. Frederick, J. A. Kushlan, and K. L.
Bildstein. 2009. White Ibis (Eudocimus albus). In A. Poole,
editor. The birds of North America online. hhttp://bna.birds.
cornell.edu/bnai

Hines, J. E., and J. D. Nichols. 2002. Investigations of potential
bias in the estimation of lambda using Pradel’s (1996) model
for capture–recapture data. Journal of Applied Statistics
29:573–587.

James, F. C., C. E. McCulloch, and D. A. Wiedenfield. 1996.
New approaches to the analysis of population trends in land
birds: a comment on statistical methods. Ecology 77:13–27.

Jolly, G. M. 1965. Explicit estimates from capture–recapture
data with both death and immigration: stochastic model.
Biometrika 52:225–247.

Kushlan, J. A. 1979. Effects of helicopter censuses on wading
bird colonies. Journal of Wildlife Management 43:756–760.

Link, W. A., and J. R. Sauer. 1998. Estimating population
change from count data: application to the North American
Breeding Bird Survey. Ecological Applications 8:258–268.

Mayfield, H. F. 1975. Suggestions for calculating nest success.
Wilson Bulletin 87:456–466.

McCrimmon, D. A., J. C. Ogden, and G. T. Bancroft. 2001.
Great Egret (Ardea alba). In A. Poole, editor. The birds of
North America online. hhttp://bna.birds.cornell.edu/bnai

April 2011 827USE OF THE SUPERPOPULATION APPROACH
R

ep
orts



Mood, A. M., F. A. Graybill, and D. C. Boes. 1974.
Introduction to the theory of statistics. Third edition.
McGraw-Hill, New York, New York, USA.

Piazza, B. P., and V. L. Wright. 2004. Within-season nest
persistence in large wading bird rookeries. Waterbirds
27:362–367.

Pollock, K. H., and W. L. Kendall. 1987. Visibility bias in aerial
surveys: a review of estimation procedures. Journal of
Wildlife Management 51:502–510.

Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines.
1990. Statistical inference for capture–recapture experiments.
Wildlife Monographs 107:1–97.

Pradel, R. 1996. Utilization of capture–mark–recapture for the
study of recruitment and population growth rate. Biometrics
52:703–709.

Rao, P. S. R. S. 2005. Ratio estimators II. Pages 6978–6983 in
S. Kotz, C. B. Read, N. Balakrishnan, and B. Vidakovic,
editors. Encyclopedia of statistical sciences, Volume 10.
Wiley-Interscience, New York, New York, USA.

Rexstad, E. A., and K. P. Burnham. 1992. User’s guide for
interactive program CAPTURE. Abundance estimation of
closed animal populations. Colorado State University, Fort
Collins, Colorado, USA. hhttp://www.mbr-pwrc.usgs.gov/
software/doc/capturemanual.pdf i

Rodgers, J. A., S. B. Linda, and S. A. Nesbitt. 1995. Comparing
aerial estimates with ground counts of nests in Wood Stork
colonies. Journal of Wildlife Management 59:656–666.

Rosenstock, S. S., D. R. Anderson, K. M. Giesen, T. Leukering,
and M. F. Carter. 2002. Landbird counting techniques:
current practices and an alternative. Auk 119:46–53.

Schwarz, C. J., and A. N. Arnason. 1996. A general
methodology for the analysis of capture–recapture experi-
ments in open populations. Biometrics 52:860–873.

Schwarz, C. J., R. E. Bailey, J. R. Irvine, and F. C. Dalziel.
1993. Estimating salmon spawning escapement using cap-
ture–recapture methods. Canadian Journal of Fisheries and
Aquatic Sciences 50:1181–1197.

Seber, G. A. F. 1965. A note on the multiple-recapture census.
Biometrika 52:249–259.

Thompson, R. L., and C. S. Gidden. 1972. Territorial basking
counts to estimate alligator populations. Journal of Wildlife
Management 36(4):1081–1088.

Thompson, W. L. 2002. Towards reliable bird surveys:
accounting for individuals present but not detected. Auk
119:18–25.

White, G. C., and K. P. Burnham. 1999. Program MARK:
survival estimation from populations of marked animals.
Bird Study 46S:120–138.

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002.
Analysis and management of animal populations. Academic
Press, New York, New York, USA.

Williams, K. A., P. C. Frederick, P. S. Kubilis, and J. C. Simon.
2008. Bias in aerial estimates of the number of nests in White
Ibis and Great Egret colonies. Journal of Field Ornithology
79(4):438–447.

APPENDIX A

Superpopulation model output (POPAN data type) for all colonies (Ecological Archives E092-070-A1).

APPENDIX B

Calculation of standard errors, superpopulation estimates, and confidence intervals for Alley North samples (Ecological Archives
E092-070-A2).
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