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Abstract A massive effort is underway to restore the

Florida Everglades, mainly by re-engineering hydrol-

ogy to supply more water to the system at appropriate

times of the year. However, correcting water flow

patterns alone will not restore the associated plant

communities due to habitat-transforming effects of

invasive species, in particular the Australian wetland

tree Melaleuca quinquenervia (Cav.) S. T. Blake

(Myrtales, Myrtaceae), which has invaded vast areas

and transformed sawgrass marshes into dense, bio-

logically impoverished, structurally altered forest

habitats. To address this threat, an invasive species

reduction program was launched that combined

mechanical removal and herbicidal control to remove

mature trees with the release of specialized insects to

suppress seed production and lower seedling survival.

Melaleuca has now been removed from most public

lands while biological control has limited its ability to

regenerate and reinvade from nearby infestations

often located on unmanaged privately held lands.

This case illustrates how restoration of highly mod-

ified ecosystems may require both restoration of

physical conditions (water flow), and suppression of

high impact or transformative invaders, showing well

the need to integrate biological control into conserva-

tion biology.
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Description of the everglades, a threatened

ecosystem

Located in a transition zone between temperate and

tropical ecosystems (Gunderson 1994), the Florida

Everglades is a 500,000 ha subtropical freshwater

wetland (Craft et al. 1995), unique in character and

stunning in its beauty. With an average water depth of

only about 10 cm, it has been described as ‘‘a river of

grass.’’ Its conservation and preservation has long

been a national conservation priority, yet paradoxi-

cally it has been ditched, drained and extensively

manipulated for water management to serve human

needs. It has also been invaded by alien species that

are highly damaging to the ecosystem. The Australia

tree Melaleuca quinquenervia (Cav.) S. T. Blake

(Myrtales, Myrtaceae) is arguably the most important

among these because of its power to physically

transform the nature of the habitat and adversely

affect biodiversity (Austin 1978). Here we describe

an integrated control project targeting this tree, which

has been conducted within the context of a larger re-

engineering project aimed at restoring more natural

water flows to the region.
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The Everglades are part of a larger watershed that

originates near Orlando in central Florida, USA and

flows through Lake Okeechobee to the southern tip of

the peninsula. It now occupies a basin approximately

170 km long by 65 km wide (Rader and Richardson

1992) inclusive of most of the southern tip of Florida.

The topography is flat with a slight elevation change

from the north to the south of only about 3–5 cm

km-1 creating a slowly southward flowing system

(ca. 0.8 km d-1) emanating from the southern end of

Lake Okeechobee and terminating in the mangrove

estuaries of Florida Bay (George 2008; Kushlan 1990).

It is geologically young with the oldest soils only

about 5000 years old (Gleason and Stone 1994).

It encompasses one of the largest freshwater marshes

on the North American continent and the largest

single body of organic soils in the world (Loveless

1959; Stephens 1956). It is composed of a variety of

habitats including marshes, sloughs, wet prairies, and

tree islands. The global importance of the Everglades

is reflected in its designations as an International

Biosphere Reserve, a World Heritage Reserve, and

a Wetland of International Importance (Maltby and

Dugan 1994).

Everglades plant communities contain elements

of tropical (primarily Caribbean) and temperate floras,

along with numerous endemic species (Gunderson

1994). These communities are largely defined by their

hydrology, i.e., the depth and duration of inundation

(hydroperiod), which is governed by slight differ-

ences in elevation. Sawgrass (Cladium jamaicense

Crantz), the quintessential Everglades plant commu-

nity, covers about 70% of the area either as mono-

cultures or intermixed with other emergent species

(Loveless 1959). The average hydroperiod for a

sawgrass marsh is about ten months, ranging from

less than six months to continuous (Lodge 2004).

Shallow-water sloughs, which traverse sawgrass

marshes, are flooded year round and are dominated

by floating and emergent aquatic species. Tree islands

(bayheads, willow heads, and cypress heads) are

interspersed within a matrix of shorter vegetation,

primarily sawgrass prairie (Rader and Richardson

1992). Upland, drier habitats include tropical hard-

wood hammocks and pinelands (Gunderson 1994).

The climate of the Everglades region is character-

ized by long, hot, wet summers and mild, dry winters

(Rader and Richardson 1992). Historically, Ever-

glades habitats were drier in winter and wetter in

summer. Drainage and water conservation programs,

however, have largely reversed this pattern by

retaining water during dry periods and discharging

water through drainage canals during high rainfall

events to meet urban and agricultural needs (Rader

and Richardson 1992). This has had profound neg-

ative effects on the associated flora and fauna and has

increased susceptibility to invasion by non-indige-

nous species (Doren et al. 2009; Duever 2005).

Adjacent urban neighborhoods provide staging areas

for the invasion of numerous alien species, both plants

and animals, into Everglades systems (Bodle et al.

1994; Cox 1999; Gordon 1998). Over 400 introduced

plant species have naturalized in south Florida. As a

result, 26% of the 840 plant species in Everglades

National Park are not native (LaRosa et al. 1992).

While many of these invaders are seemingly benign

(see Williamson and Fitter 1996), some are truly

transformer species capable of altering the structure

and functioning of the afflicted systems (Williamson

and Fitter 1996). The Australian tree M. quinquenervia

is one such example due to its ability to alter ecosystem

structure and functioning (Gordon 1998).

Melaleuca: the target invader and its ecological

impacts

Melaleuca quinquenervia is native to north-eastern

Australia, parts of New Guinea, and New Caledonia.

It is a member of a larger group of 10–15 allied

broad-leaved species that show evidence of genetic

introgression among these species (Barlow 1988;

Blake 1968; Brown et al. 2001; Cook et al. 2008).

These are often referred to as the ‘‘Melaleuca

leucadendra’’ complex with a center of diversity in

northern Queensland. It has been present in south

Florida since the late ninteenth century (Dray et al.

2006), but exhibits substantial genetic heterozygosity

and geographic population structuring (Dray et al.

2009). Invasion of natural areas by this tree appar-

ently began soon after the first trees attained seed-

bearing size. Dispersal was assisted by nurserymen

who are believed to have deliberately spread seeds into

natural areas as a cheap and easy means of propaga-

tion (Austin 1978; Dray et al. 2006; Meskimen 1962).

The US Army Corps of Engineers planted trees in the

marshes of Lake Okeechobee during 1938–1941 to

create offshore tree islands to protect the southern
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levee from erosion (Dray et al. 2006). Altered

hydrology from flood control and drainage projects

during the 1950s undoubtedly contributed to its

invasion. Stand coverage proceeds exponentially

after initial colonization of suitable habitat (Laroche

and Ferriter 1992) so by the late 1990s, it infested

about 400,000 ha and the Everglades was at risk of

being totally overwhelmed (Laroche 1998).

Although data are scant and some of the putative

effects are dubious [e.g., increased transpiration

(Allen et al. 1997)], M. quinquenervia clearly alters

fire regimes, soil elevations, water table depth, surface

flows, nutrient mineralization, disturbance regimes,

vertical structure of plant communities, recruitment

of native species, light availability, and nutrient

availability (Gordon 1998; Turner et al. 1998). One of

the important impacts of melaleuca has been its

effects on Everglades fire regimes. Sawgrass marshes

are shallow-water communities that are well adapted

to fire. They recover quickly after burning so long

as water levels are not too deep and the organic soils

do not burn (Kushlan 1990; Lodge 2004). However,

M. quinquenervia, by virtue of its thick corky bark,

also resists fire. Fires fueled by stands of this tree are

very different in character from those fueled by

sawgrass. In dense M. quinqueneriva stands, flames

are quickly and explosively carried into the canopy as

volatile essential oils in the foliage ignite (Flowers

1991). The resultant fires are extremely hot and often

ignite the underlying muck soils, which can burn for

weeks. The intense heat kills sawgrass and other

native plants that normally survive the cooler ground

fires that often occur in sawgrass dominated areas.

Fires induce massive seed release from M. quinquen-

ervia, which retains seeds in persistent serotinous

capsules on branches with individual trees storing as

many as nine million viable seeds (Rayamajhi et al.

2002). Burning induces the capsules to open a few

days after a fire discharging massive quantities of

seeds onto the enriched mineral soil (Wade 1981).

Devoid of competition and surface litter, the dense

carpets of M. quinquenervia seedlings that emerge

prevent establishment of other plant species (Wade

1981). These initial recruitment events often evolve

into nearly pure stands of mature trees achieving den-

sities of up to 10,000 mature trees ha-1 (Rayamajhi

et al. 2006b; Rayamajhi et al. 2009) and standing

biomasses (dry) of 129–263 MT ha-1 (Van et al.

2000). Seeds in the soil can remain viable for up to

2.3 yrs (Van et al. 2005) if conditions for germination

are not immediately suitable.

Community transformation by melaleuca in long

hydroperiod areas is driven by its ability to accelerate

soil accretion. As mentioned above, slight elevation

differences determine hydroperiod durations and lead

to large differences in plant communities. In contrast,

M. quinquenervia, once established, is not much

affected by hydroperiod (Woodall 1981a). Individual

M. quinquenervia trees growing in flooded environ-

ments produce adventitious ‘water’ roots surrounding

the base of the trunks up to the water line (Gomes

and Kozlowski 1980; McJannet 2008; Myers 1983).

These directly add to the organic accumulation at the

base of the tree while also binding soil and trapping

sediments (McJannet 2008). In addition, litterfall

adds as much as 4–10 MT year-1 to the organic layer

in a mature forest (Rayamajhi et al. 2006b). Unlike

the subsiding exposed muck soils of reclaimed

Everglades marshes (Stephens 1956), this material

decomposes slowly (Greenway 1994). Consequently

12–25 MT ha-1 of undecomposed organic matter

accumulates on the forest floor (Rayamajhi et al.

2010a), leading to increased soil elevation. The

mulching effect inhibits germination of native plant

seeds while providing a moist substrate for germina-

tion of the slow, steady rain of M. quinquenervia

seeds (Woodall 1982). Seedlings grow best on moist

sediments (Myers 1983) so, as the organic layer

builds, conditions for recruitment at the periphery

become more favorable allowing for expansion of

stands, which coalesce with outlying populations and

become ever more extensive (Woodall 1981b). Soil

accretion inevitably produces shorter hydroperiods

over extensive areas thus creating conditions condu-

cive to further invasion. This ‘legacy effect’ persists

long after the trees are removed so that while site

rehabilitation may be possible, full restoration to a

pre-invasion status may be difficult.

Components of an everglades restoration plan

Alarm over the deterioration of the Everglades led to

a widespread desire to preserve and restore the

system. Re-establishment of hydrological regimes

was widely recognized by engineers as the essential

foundation of restoration. However, biologists argued
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that correcting water flow patterns alone would not

restore ecosystem functioning (Weaver 2000) without

addressing the invasive species problem (Doren et al.

2009). Chief among these was the need to reduce the

effects of M. quinquenervia. Accordingly, a task

force was assembled during the late 1980s to

formulate a plan to reduce infestations of M. quin-

quenervia. This plan included biological control as

one component within an overall management strat-

egy (Center et al. 2008; Laroche 1998). The plan

called for traditional weed control measures (e.g.,

herbicide applications and mechanical harvesting) to

remove the massive standing biomass and thus

eliminate the tree from infested areas. However,

anything done to kill the trees caused capsules to

desiccate resulting in mass seed releases thus exac-

erbating the problem. To impede the reinvasion of

cleared areas and to slow the rate of spread to new

areas, a biological control program was designed with

a primary goal of inhibiting stand regeneration.

The high seed production of melaleuca is rooted in

several of the plant’s characteristics. Saplings are

able to produce flowers quite early, within a year or

two after germination (Meskimen 1962). Flowers are

produced on indeterminate stem tips involving the

direct conversion of the stem axis into a flower

cluster (Tomlinson 1980). Thus, each stem axis can

produce flowers many times, even during the same

year (Rayachhetry et al. 1998). Each flowering cluster

produces 30–70 persistent capsules and each capsule

holds about 250 seeds (Hofstetter 1991). Even though

viability is low (7–8%) massive numbers are pro-

duced [as many as 51 million seeds on a single

mature tree (Rayachhetry et al. 1998)]. While

synchronous seed release occurs in response to

various stresses, there is also a lighter, continuous

seed rain of ca. 40–120 viable seeds m-2 d-1

(Hofstetter 1991; Rayamajhi et al. 2006b; Woodall

1982).

The biological control program (described below),

therefore required agents that could prevent flowering

or seed production or increase mortality of seedlings

and saplings. Finding agents that attacked stem tips,

thus preventing formation of flowers either directly

by destroying apical meristems, or indirectly by

inhibiting allocation of photosynthate to reproduc-

tion, was an early priority of the project. Alterna-

tively, it was posited that attack on the foliage might

also reduce seed production by forcing the plant to

redirect resources. This seemed plausible because of

its leaf characteristics (scelerophyllous, defended

with essential oils, and long-lived). The leaves persist

2–4 years (Van et al. 2002) and are therefore assumed

to be metabolically costly to produce (Chabot and

Hicks 1982; Johnson and Tieszen 1976). This

suggested that defoliators might divert resources

from reproduction by forcing compensatory foliage

production. Sustained defoliation pressure should

then deplete carbohydrate reserves and reduce tree

performance (Hudgeons et al. 2007; Kosola et al.

2001).

Selection of prospective biological control agents

Faunal surveys

Preliminary surveys to find suitable candidate species

for introduction against melaleuca begun in 1986

built upon a brief 1977 survey in Australia and New

Caledonia (Balciunas and Center 1991; Habeck

1980). The later surveys were conducted mainly out

of Townsville and Brisbane, Queensland. Collabora-

tors at both laboratories were engaged primarily on

research of other weeds, so the survey intensity began

low and escalated as funding increased. Faunal

inventories continue, although at a more-or-less

opportunistic level, to this day (2011). The most

intensive faunal studies were done from 1989 to 1995

when more than 400 species of plant-feeding insects

were recorded from the M. leucadendra species

complex (Balciunas 1990; Balciunas et al. 1993a, b;

1995a, b, c; Burrows et al. 1994, 1996; Gagné et al.

1997; Gagné and Boldt 1995; Knihinicki and Boczek

2003; Purcell and Goolsby 2005). This large potential

pool of candidates was then narrowed down using a

variety of filters.

Agent selection

Housecleaning filter

Many of the species associated with M. quinquener-

via were known generalists, transients, not damaging,

or not encountered with enough regularity to be

available for study and were therefore of no interest.

Several other species had unknown immature stages

and were impossible to rear under laboratory
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conditions and were not further studied. Subsequent

observations were made on about 61 species but only

26 species were considered further (Table 1). We

voluntarily disqualified one of the most promising

species, the defoliating sawfly Lophyrotoma zonalis

Rohwer (Hymenoptera: Pergidae) when it was dis-

covered that its larvae contained toxins (Oelrichs

et al. 1977, 1999, 2001), even though it was fully

tested, its host range was sufficiently narrow, and it

defoliated large M. leucadendra (L.) L. trees in its

native range (Buckingham 2001; Burrows and

Balciunas 1997). All of the other pergid sawfly

species were rejected on the same basis.

Species selected for further consideration were

those whose feeding patterns affected the growth of

the stem tips or buds. These were expected to reduce

flower and seed production either by destroying

meristematic tissues or by stressing the plant (e.g., by

way of defoliation) forcing it to divert resources to

essential but non-reproductive structures (Silvers

et al. 2008). Flower feeders were not considered

due the difficulty of maintaining a supply of flowers

for rearing and testing purposes. Persistence of these

species in Australia likely depends on asynchronous

flowering of alternate hosts. The intermittent avail-

ability of flowers in Florida (Van et al. 2002)

suggested that such species would have difficulty

persisting.

Host range filter

Subsequent vetting narrowed the list to 15 species,

four of which were disqualified as it became apparent

that laboratory studies would be unable to clearly

define the host range or that critical species might be

at risk. The mirid Eucerocoris suspectus Distant

seemed promising because it attacked new growth

causing stem tips to wilt (Burrows and Balciunas

1999), but it was dropped from consideration due to

its unacceptably broad host range (Buckingham et al.

2011) despite initial promising results (Burrows and

Balciunas 1999). The tube-dwelling moth Poliopas-

chia lithochlora (Lower) seemed an effective defoli-

ator and was of interest because of its preference for

wetter habitats (Galway and Purcell 2005). However,

it also fed and developed on bottlebrush (Melaleuca

viminalis (Sol. Ex Gaertner)) (Purcell, unpub. data), a

widespread ornamental species in the southern and

western US. Likewise, the coreid bug Pomponatius

typicus Distant was rejected because it readily

accepted M. viminalis (Burrows and Balciunas

1998). Similarly, the twig girdling weevil Haplonyx

multicolor Lea has recently been found to utilize M.

viminalis and M. citrina (Curtis) Dum. Cours (another

ornamental bottlebrush) as fully as M. quinquenervia.

It will likely be disqualified.

Four species not rejected based on the above

considerations were subsequently released and two

remain of interest. Host ranges were validated in field

studies for two important species, O. vitiosa and

B. melaleucae after they were released (Center et al.

2007; Pratt et al. 2009). This substantiated the

predictive value of the laboratory host range assess-

ments made on these species (Balciunas et al. 1994;

Purcell et al. 1997; Wineriter et al. 2003).

Efficacy filter

Ideally, one would release only species able to have a

significant effect on the target plant. However,

reliable methods for making such predictions have

not been developed. From our initial list of species

seen in field surveys, only those perceived to be

potentially effective based on field, laboratory and

glasshouse observations of damage to vital plant

tissues were considered for intensive investigation.

Departing from suggestions in recent literature (e.g.,

McClay and Balciunas 2005), we placed emphasis on

which plant tissues agents damaged rather than just

agent per capita consumption of plant tissue. Obser-

vations of mortality in glasshouse plants were also

important in electing high priority species. However,

agent selection in this program was an exercise in

‘‘adaptive management’’ inasmuch as knowledge

gained after the release of the first of these agents

shaped later decisions. As the established suite of

introduced agents grew, we used direct observation of

their effects to guide choice of additional agents, with

the hope of developing a guild of agents with

complementary biologies in terms of the timing of

their effects, plant parts damaged, and habitat choice

(especially habitat hydrology).

Although some insecticide exclusion studies were

done in Australia (the native range) (Balciunas and

Burrows 1993), they failed to simulate a realistic

biological control scenario wherein only a select few

species (as opposed to dozens of species, including

generalists, that are limited by parasitoids) would
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Table 1 Prospective biological control agents from the complete faunal inventory (Balciunas et al. 1995b)

Order: Family Candidate species Feeding guild Disposition

Released

Coleoptera:

Curculionidae

*Oxyops vitiosa Pascoe Leaf feeder Released 1997; established; effective

Diptera:

Cecidomyiidae

*Lophodiplosis trifida Gagné Stem galler Released 2008; established; effective

Diptera:

Fergusoninidae

*Fergusonina turneri Taylor Bud galler Released 2005; failed to establish

Hemiptera: Psyllidae *Boreioglycaspis melaleucae
Moore

Sap feeder Released 2002; established; effective

Testing underway

Diptera:

Cecidomyiidae

*Lophodiplosis indentata Gagné Leaf galler Host range studies initiated

Homoptera:

Pseudococcidae

*‘Sphaerococcus’ ferrugineus
(Froggatt)

Bud galler Unable to colonize in quarantine,

but still of interest

Lepidoptera: Nolidae *Chora plana Warren Defoliator Of interest; difficult to rear

Tested-non specific

Coleoptera:

Cerambycidae

Sub-family Strongylurini Stem borer Unable to colonize; field host range

unsuitable

Coleoptera:

Curculionidae

*Haplonyx multicolor Lea Twig girdler Imported; unsuitable host range; difficult

to rear

Hemiptera: Coreidae *Pomponatius typicus Distant Sap feeder Unsuitable host range

Hemiptera: Miridae *Eucerocoris suspectus Distant Sap feeder Imported; unsuitable host range

Lepidoptera:

Noctuidae

Characoma vallata (Meyrick) Flower feeder and tip

binder

Unsuitable host range (Eucalyptus)

Lepidoptera: Pyralidae *Poliopaschia lithochlora
(Lower)

Defoliator Unsuitable host range (ornamental

Melaleuca spp.)

Low efficacy or potentially toxic

Hemiptera:

Cicadellidae

Hishinomus melaleucae
(Kirkaldy)

Sap feeder Not damaging

Hemiptera:

Eurymelidae

Ipo conferata Kirkaldy Sap feeder Not damaging

Hemiptera:

Eurymelidae

Ipoides melaleucae Evans Sap feeder Not damaging

Hymenoptera:

Pergidae

Acanthoperga cameronii
(Rohwer)

Defoliator Possibly toxic

Hymenoptera:

Pergidae

*Lophyrotoma zonalis (Rowher) Defoliator Contains toxins; disqualified

Hymenoptera:

Pergidae

Pergagrapta sp. Defoliator Possibly toxic

Hymenoptera:

Pergidae

Pterygophorus insignis Kirby Defoliator Unsuitable host range; possibly toxic

Lepidoptera: Pyralidae Syntonarcha irastis Lucas Flower feeder Insufficient information; damage

questionable

Lepidoptera: Tortricidae Strepsicarates semicanella Flower feeder and tip

binder

Insufficient information; damage

questionable

Unable to colonize

Coleoptera:

Cerambycidae

*Rhytiphora spp. Stem borer Unable to rear pending artificial diet
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attain higher than normal population levels in habitats

similar to those likely to be encountered in Florida.

Indeed, the most abundant species in that study

appeared to be generalists, such as white-flies (Ho-

moptera: Aleyrodidae) and scale insects (Homoptera:

Coccoidea). None of the species that proved ulti-

mately to be of greatest interest were represented.

While this demonstrated some vulnerability of the

plant to herbivory, it did little to aid in the selection

of prospective candidates.

Limited efficacy trials shown in laboratory studies

done in Australia did not eliminate potential agents

from further evaluations, but demonstrations of

substantial impact were used to prioritize insects for

introduction into US quarantine facilities. These

included the two gall midges Lophodiplosis trifida

Gagné and Lophodiplosis indentata Gagné. The

former species was released and appears to be very

effective (pers. obs.) and the latter species is under

study in quarantine.

Climatic filters

Climatic filters proved of limited value in selecting

agents because of the restricted native and adventive

ranges of M. quinquenervia and the climatic similar-

ity between the two areas (coastal Queensland and

southern Florida).

Agents released

Five biological control agents have been released

against melaleuca in Florida: the weevil Oxyops

vitiosa Pascoe, the psyllid Boreioglycaspis melaleu-

cae Moore, the gall fly Fergusonina turneri Taylor

(along with a mutualistic nematode Fegusobia

melaleucae Davies & Giblin Davis), and the gall

midge Lophodiplosis trifida Gagné.

The melaleuca weevil

The weevil O. vitiosa (Coleoptera: Curculionidae)

was released in 1997 (Center et al. 2000). It had been

highly ranked because of its ability to defoliate young

foliage and kill stem tips (Balciunas et al. 1994;

Center et al. 2000), thus potentially reducing the

reproductive potential of M. quinquenervia. Also,

populations attained high densities in the native range

despite high rates of parasitism. Foliage and flower-

ing were markedly reduced on trees persistently

attacked by this weevil in Australia (Purcell and

Balciunas 1994). However, its behavior of pupating

in the soil suggested it might be limited to sites with

short hydroperiods. Oviposition occurs on emerging

buds of actively growing tips. Early instars feed on

the youngest, expanding leaves while older larvae

exploit progressively older, but mainly immature,

foliage. Larvae coat themselves with a slimy defen-

sive secretion that contains essential oils sequestered

from the host plant (Montgomery and Wheeler 2000;

Wheeler et al. 2003). Fully grown larvae drop from

the tree and enter the soil to pupate. Pupation occurs

in a spherical cocoon covered with soil particles.

Larvae that drop from the trees at inundated sites

usually drown.

The melaleuca psyllid

The psyllid B. melaleucae was of interest because it

seemed unaffected by hydroperiod. It was elevated in

rank when it erupted as a pest of the trees grown in

greenhouses in Australia (Purcell, pers. obs.), which

suggested that populations were highly regulated by

Table 1 continued

Order: Family Candidate species Feeding guild Disposition

Diptera:

Cecidomyiidae

*Lophodiplosis bidentata Gagné Tip galler Unable to colonize

Lepidoptera:

Gracillaridae

Acrocercops sp. Leaf miner Not damaging; difficult to rear

Lepidoptera:

Xyloricidae

Clerarcha poliochyta Turner Stem borer and leaf

feeder

Unable to rear

Species designated with an asterisk (*) were ranked highly for further evaluation
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natural enemies and would benefit from ‘‘enemy

release’’. It was released in Florida during 2002

(Center et al. 2006). Females oviposit on leaves or

stems. All stages are free-living but late instars

usually remain in one spot, possibly by attaching and

feeding through stomata. It is a sap-feeder and

completes its life cycle entirely on the plant (Purcell

et al. 1997).

The gall fly and nematode

The mutualistic nematode, Fergusobia melaleucae,

and gall fly Fergusonina turneri, induce galling of

vegetative and reproductive tissues (Davies and

Giblin-Davis 2004; Giblin-Davis et al. 2001a, b,

2004; Taylor 2004). These two species were ranked

highly because of their potential to terminate stem

growth and reduce flowering. Together, they form

multi-chambered galls that compromise both vegeta-

tive and reproductive meristems, thereby curtailing

growth of stems and reproduction of the plant. Flies

deposit juvenile nematodes while inserting their eggs

into vegetative and reproductive buds. Nematodes

initiate gall formation inducing hypertrophied plant

tissue before the fly eggs hatch. The fly maggots then

feed on the primed nutrient-rich tissues while

presumably inducing further enlargement of the galls.

Meanwhile, the parthenogenetic nematodes produce a

second sexual generation. The mated female nema-

todes invade the hemocoel of fully grown female (3rd

instar) fly larvae. They produce juveniles that invade

the rudimentary ovaries of pupating female flies. The

adult fly then emerges from the gall with juvenile

nematodes in her ovaries. All female flies contain

nematodes, which are deposited in buds during

oviposition allowing the cycle to begin anew.

Molecular analyses of related Melaleuca species

and host range studies demonstrated extreme host

fidelity of both species (Scheffer et al. 2004; Ye et al.

2007). They were released in south Florida beginning

in 2005 and temporarily colonized release sites, but

disappeared completely after about three generations.

The more recent release and establishment of another

gall former, the midge Lophodiplosis trifida Gagné

(see following section), precluded the need for further

efforts with this pair of organisms. Nonetheless, this

is the first time that a mutualistic combination of two

agents has been approved and attempted for use in a

weed biological control program.

The gall midge

The stem-galling midge L. trifida (Diptera: Cec-

idomyiidae), in contrast to O. vitiosa, prefers wet,

humid conditions (Purcell et al. 2007; Wineriter

Wright and Center 2008). It was released during 2008

and has established widely (Pratt, pers.obs.). Females

oviposit on leaf, stem, and bud surfaces (Wineriter

Wright and Center 2008). Larvae penetrate actively

growing tissue and form galls on young shoots

(Purcell et al. 2007). The lignified multilocular galls

(Gagné et al. 2009) were expected to compromise

stem elongation, distort growth, and reduce flower

production.

Impact of released agents on target plant

Predictions made concerning efficacy

The leaf weevil O. vitiosa was expected to establish

at drier sites, attack new growth, and defoliate stem

tips, thereby forcing allocation of photosynthate

towards refoliation and reduce flowering (Purcell

and Balciunas 1994). Adults were thought to be

capable of moving from adjacent dry sites to trees

in inundated areas, possibly in sufficient numbers

to become damaging, but populations were not

expected to persist in permanently wet habitats.

Larvae require young foliage (Purcell and Balciunas

1994; Rayamajhi et al. 2006a; Wheeler 2001) so we

predicted abundance to be affected by the phenology

of the plant because young foliage became available

mainly during winter and spring (Van et al. 2002).

Some data also suggested that plant chemotype could

be limiting (Dray 2003; Dray et al. 2004; Wheeler

2006).

The psyllid B. melaleucae completes development

entirely on the host plant (Purcell et al. 1997) so it

was expected to establish over a broader range of

habitat types, including permanently flooded areas

(Wineriter et al. 2003). It was also thought to be less

sensitive to tree chemotype than O. vitiosa (Chiarelli

et al. 2011; Wheeler and Ordung 2005). Large

populations were expected to develop quickly, forc-

ing psyllids to feed on stems as well as young and

mature foliage (Wineriter et al. 2003) causing

premature leaf drop and mortality of smaller plants.

However, high temperatures and possibly rainfall
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seemed detrimental so it was thought that summer

conditions might be limiting (Chiarelli et al. 2011).

The gall fly F. turneri (with the nematode Ferguso-

bia quinquenerviae) was expected to infest flower and

stem buds and curtail flowering and stem elongation.

Galls were also expected to act as moderately powerful

metabolic sinks (Goolsby et al. 2000). It was antici-

pated that galling of meristems would pre-empt stem

elongation and inhibit flowering.

The stem gall midge L. trifida was expected to

infest seedlings and small saplings, curtailing growth,

sometimes leading to the death of small plants

(Purcell et al. 2007). It also seemed capable of

galling stem tips of young shoots on mature trees

(Purcell, pers. obs.) possibly reducing seed produc-

tion. It was expected to establish quickly if plants

with suitable tips were present. However, it was

thought that it would be confined to low-growing

seedlings and saplings and lower branches of trees

because of its need for high humidity, being found

mainly in low-lying areas near the ground in its

native range (Purcell, pers. obs.). It was also thought

to prefer young growth and thereby likely to be

influenced by host phenology, becoming most abun-

dant during winter and spring (Purcell et al. 2007;

Van et al. 2002).

Post-release validation of efficacy

Oxyops vitiosa established readily at dry and season-

ally wet sites but establishment failed at permanently

flooded sites (Center et al. 2000). It dispersed

relatively slowly (Pratt et al. 2003) but is now widely

distributed (Balentine et al. 2009) and even occurs in

the Bahamas (Pratt et al. 2008). Populations increased

at rates comparable to other effective weed biological

control agents but were influenced by availability of

young shoots (Pratt et al. 2002, 2004). Damage to the

stem tips virtually eliminated flowering and seed

production (Pratt et al. 2005; Tipping et al. 2008).

However, the accompanying defoliation caused buds

to erupt at other times of the year thus extending

feeding opportunities. Coppicing from stumps was

severely curtailed, especially when the adventive rust

fungus (P. psidii G. Wint.) also infected the shoots

(Rayamajhi et al. 2006a, b). Growth of saplings was

dramatically reduced and termination of apical

growth produced a bushier habit (Tipping et al.

2008). However, larvae became abundant mainly

during winter and spring coincident with seasonal

production of young foliage (Center et al. 2000). This

allowed some ‘escape’ at other times of the year.

After attainment of large populations, weevils regu-

larly moved into flooded sites causing significant

damage. Although many fully grown larvae drowned,

some managed to find pupation sites allowing small

populations to persist (Center, pers. obs.). There is no

evidence from field studies that chemotype influenced

their abundance or distribution (Tipping & Pratt,

unpub. data). A common garden study suggested that

Florida plants were not less resistant to herbivory

than Australian plants (Franks et al. 2008a, b).

The psyllid B. melaleucae established quickly

(Center et al. 2006) and dispersed rapidly throughout

the range of M. quinquenervia in Florida. Enormous

populations developed during the spring dry season in

all habitat types but populations declined during the

summer rainy season. This was probably more of an

effect of high temperatures rather than of precipita-

tion (Chiarelli et al. 2011). Psyllids caused high

mortality of seedlings and premature leaf drop from

mature trees (Franks et al. 2006; Morath et al. 2006).

Mortality of coppicing stumps also increased in

conjunction with infestations of O. vitiosa and the

rust (Center et al. 2007; Rayamajhi et al. 2010b).

Populations spread at a rate of approximately 7 km

year-1 and are now widely distributed (Balentine

et al. 2009). Melaleuca psyllids have recently been

found on M. quinquenervia in Puerto Rico, more than

1600 km from the nearest known release (Pratt et al.

2006).

The gall fly/nematode mutualistic pair (Ferguson-

ina turneri/Fergusobia quinquenerivae) failed to

establish. Rearing was difficult so only small num-

bers were available for release. Galls imported from

Australia were heavily parasitized and produced

insufficient numbers for large releases. Establishment

temporarily occurred at one site but numbers pro-

gressively dwindled and disappeared after about three

generations.

The stem-galling midge L. trifida was initially

released at 24 sites distributed throughout southern

Florida in M. quinqueneriva stands of varying sizes

and hydrology. Both small and large numbers of

individuals were used in an attempt to determine an

optimal release strategy. Establishment was univer-

sally successful (Pratt, unpub. data). Areas where

M. quinquenervia stands were regenerating from seed
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or coppicing stumps were heavily galled with a high

percentage of the plants being killed, possibly due to

interactions with fire or frost. While galls occurred

most abundantly in the lower strata, near ground

level, they were also found as high as 13 m in the

upper canopy (Pratt & Rayamajhi, unpub. data).

Dispersal is occurring at a rate estimated to be 20 km

year-1 (Pratt, pers. obs.).

Adventive species not deliberately released

An adventive rust fungus (Puccinia psidii G. Winter)

was discovered infecting young leaves of M. quinq-

ueneriva in Florida during spring 1996 (Rayachhetry

et al. 1997). It was initially most common during

flushes of new foliage but became more prevalent at

other times after the introduction of O. vitiosa. This

was thought to be related to the non-seasonal produc-

tion of new foliage induced by defoliation, which

extended the time that innocula remained present.

Interaction of biological control with other

management efforts

The processes followed in the successful implemen-

tation of a biological control program for M. quin-

quenervia serve as a model for future and existing

biological control projects. Achievable goals were set

at the beginning of the project after extensive

consultation with all relevant stakeholders. Progress

was maintained through continued consultation with

these stakeholders and their committed investment in

this project. A thorough inventory of all potential

agents throughout the native range of M. quinquen-

ervia in Australia was compiled and agents for further

study were prioritized through a tiered screening

process as outlined above. Comprehensive demo-

graphic studies in both the native and introduced

range confirmed that curtailing seed production was

the key to controlling invasive M. quinquenervia.

Agents chosen for release specifically addressed this

criterion and proved to be very effective at reducing

the reproductive capacity of this tree resulting in

reductions in flowering, seed production, foliage,

seedling recruitment, stand densities and tolerance to

fire and herbicide treatment. Importantly, although

some minor transitory feeding occurred on non-target

plants growing adjacent to melaleuca trees, no

significant non-target damage has occurred. The

reduced control measures required to arrest the

invasiveness of this tree as well as the restoration

of native plants in ecosystems previously invaded by

M. quinquenervia (Rayamajhi et al. 2009) is testa-

ment to the success of this project.

Biological control, however, was not expected to

remediate infestations of mature M. quinquenervia

trees over large areas. The total biomass at these

sites has been estimated at 129–263 MT ha-1, most

of which is wood (Rayachhetry et al. 2001; 2008;

Van et al. 2000). Even if insects had killed these

large trees, tremendous quantities of standing bio-

mass would remain to be removed or left to decay.

Therefore, removal of large stands was accomplished

using herbicidal treatments and/or mechanical har-

vesting (Silvers et al. 2007). As a result, lands held

by the South Florida Water Management District

have been largely cleared through the prodigious

efforts of extremely effective contractors (Laroche

1998). The combination of biological, herbicidal,

and mechanical control efforts has yielded an

Everglades Protection Area that is now largely free

of M. quinquenervia. The original infestions, which

occupied over 200,000 ha, have been reduced to

about 110,000 ha most of which are on private lands

(Ferriter et al. 2008; Silvers et al. 2007).

Infestations adjacent to cleared sites previously

provided seed sources for reinvasion and were often

inaccessible to land managers. The character of the

trees has changed, however, due to the chronic

herbivory that they now experience. They are now

much less invasive (Tipping et al. 2009). Insecticide

exclusion studies (done prior to the establishment of

L. trifida) showed decreases in tree density following

recruitment after a fire and greatly reduced seed

production. Saplings grow more slowly, attain

smaller stature, and develop a bushier habit with a

much reduced canopy (Tipping et al. 2008). The trees

are more susceptible to natural and manmade distur-

bances (e.g., frost, fires, and herbicide treatments).

Herbivory also now interferes with the ability of the

trees to recover from such disturbances. Overall

control efforts in areas cleared by the South Florida

Water Management District have been reduced to

maintenance activities and biological control has

assisted by making this a much more manageable

situation.
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In 2001, the USDA/ARS established The Area-

wide Management and Evaluation of M. quinquen-

ervia (TAME Melaleuca) to facilitate the landscape

level adoption and integration of biological control

with conventional control tactics (Silvers et al. 2007).

The TAME Melaleuca program was primarily an

outreach effort, which culminated in a series of

training workshops and field tours that were held at

demonstration sites throughout southern Florida.

Field tours facilitated the side by side comparison

of various conventional control tactics when inte-

grated with biological control as well as areas

impacted solely by the introduced insects. Represen-

tatives responsible for invasive species control efforts

on [1.4 million acres from [40 public agencies,

private companies and non-governmental organiza-

tions attended the events. In addition, over two

million biological control agents (O. vitiosa and

B. melaleucae) were redistributed throughout the

melaleuca infested regions of the state to augment

their natural dispersal and promote biologically based

management on private lands. Information produced

during the lifetime of the TAME Melaleuca project is

archived electronically (http://tame.ifas.ufl.edu/) as a

lasting resource on sustainable melaleuca manage-

ment for land and resource managers.
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