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Abstract South Florida ecosystem is dictated by a large wetland, karst hydrogeology and
extended coastal boundary with the Atlantic Ocean. The risks related to the ecosystem
include: disruption of groundwater flow as a result of frequent sinkhole formation; flooding
in urban areas as a result of the shallow water table; saltwater intrusion from the ocean; and
excessive nutrient load to surficial water bodies and subsequently eutrophication because of
the intensive utilization of wetlands for nutrient removal. Attempts to understand eco-
hydrological processes primarily focus on extensive monitoring and use of distributed
hydrological models. However, the relatively flat nature of the region and also the extended
coastal boundary with the ocean, makes watershed-based approaches less realistic. A
regional spatiotemporal groundwater level modeling approach was attempted using a Dy-
namic Factor Analysis (DFA) method. The daily water levels of 13 monitoring well sites
from major hydrogeologic regions and different land uses were used to conduct the DFA
analysis, and six dynamic factors were identified using minimum Akaike Information
Criterion (AIC). Further exploratory analysis to relate the dynamic factors with physically
attributable explanatory variables has helped to identify five of the major factors that govern
the groundwater dynamics in south Florida. Three of the factors were attributable to the Lake
Kissimmee water level in the north, Caloosahatchee River water level in the west, and
Hillsboro canal in the east. The other two factors identified were the regional averaged
rainfall and soil moisture. The spatiotemporal simulation involved interpolation of the
loadings of the dynamic factors using an inverse distance weighted method and convoluting
with the dynamic factors. The result has shown a good fit with the maximum RMSE of
0.12 m. Retrieval of rainfall, soil moisture, and surface water level from satellite imagery
makes spatiotemporal modeling of the groundwater level achievable.
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1 Introduction

Surface-groundwater interaction in southern Florida is dictated by a wetland ecosystem,
karst surficial aquifer, and the coastal boundary with the Atlantic Ocean (Gunderson 2001).
The wetland ecosystem interacts with the stream flow retaining flood during the wet season
and discharging subsurface water to the streams during the dry season. The karst hydro-
geology dictates direction of groundwater flow as well as the efficiency of nutrient removal
vis a vis the dissolution of limestone and hence formation of sinkholes (Genereux and Slater
1999). The coastal boundary with the Atlantic Ocean poses saltwater intrusion, especially
when groundwater head drops.

Apparently any subsurface water management in the SF should take into account: the
risks associated with ecological failure because of the connectivity of groundwater to the
wetlands at times of drought; the risk of contamination by saltwater in the coastal areas
where there is very thin vadose zone and over pumping of groundwater; flooding of urban
areas from groundwater surge because of the flat terrain and shallow water table; and the
risks associated with the use of STAs in the karst areas where nutrient attenuation could not
be achieved.

Recognizing such risks, South Florida Water Management District (SFWMD) uses
over 1854 networked stations as a tool to monitor the eco-hydrology of the region.
Harvey et al. (2004) reported the logistical challenge to monitor connectivity of
groundwater fed micro-ecosystems attributed to the large expanse of the wetland.
The karst hydrogeology setting of the district increases the complexity of monitoring
because of the dynamic property of the hydraulic conductivity potentially causing
flow directional changes (anisotropy), (Genereux and Slater 1999). Evidently, real-time
analysis and synthesis of the groundwater hydrology specifically spatiotemporal mod-
eling of surface-groundwater interaction at regional scale is vital for decision making.
Such analysis would not be met using watershed based distributed hydrological
models because of the absence of clearly delineated watershed boundary (indiscernible
from the flat topography) with no flow dividing lines, except for the Kissimmee River basin that
constitutes less than 25 % of the land mass. In addition, the watershed based models are
computationally expensive for operational prediction in karst hydrogeology region, as in SF,
because of the dynamic nature of the hydrogeological factors which raise parameterization
uncertainty whenever changes occur. Operational modeling and prediction in Karst areas
require low input models such as transfer functions that demand minimum parameterization
(Denic’ and Jukic’ 2003; Jukic’ and Denic’ 2004).

In this study, a regional scale spatiotemporal model capable of simulating the daily
groundwater level was developed making use of existing data. The regional scale spatio-
temporal model is intended to be linked with point scale groundwater operational prediction
for regional groundwater level forecasting. The model will be ultimately used to identify hot
spots of groundwater drop/rise and also as a predictor for soluble phosphorus load. The point
scale prediction was already developed for major hydrogeological regions from which the
model presupposes to use (Chebud and Melesse 2011). Therefore, the specific objectives of
the study were to:

* analyze the factors that influence regional groundwater level dynamics in South Florida,

* develop a regional scale spatiotemporal groundwater modeling approach
* develop regional scale operational prediction of groundwater dynamics.

@ Springer



Spatiotemporal Surface-Groundwater Interaction Simulation 4451

2 Factor Analysis

Water table fluctuation in karst regions is affected by precipitation (Park and Parker
2008; Knotters and Bierkens 2001), air pressure changes and Moon’s tide (Ma’rkus et
al. 1999), the soil moisture (Hoogland et al. 2010), surface water level (Ritter and
Mun’oz-Carpena 2006; Genereux and Slater 1999). The effects of some of the
variables are measureable and categorized as explanatory while the background effects
of other hidden variables are assumed as latent (Ma’rkus et al. 1999). The latent
factors could also represent unidentified explanatory factors (Zurr et al. 2003), or lack
of proper parameterization. The concept helps to reduce a complex interplay of factors
to a minimum number through factor reduction method (Aggarwal 1998).

For explanatory variables reduction, Ramsey and Shaffer (2002) suggested sequen-
tial forward/backward stepwise regression methods imposing Akaike’s Information
Criteria (AIC) or the Baye’s Information Criterion (BIC). The AIC and BIC inform
the log-likelihood of a model penalizing it for every addition of a parameter as
indicated on Egs. (1) and (2) (Claeskens and Hjort 2008). The difference in the two
criteria is that in the case of BIC, penalization increases with the increased number of
data and hence it is stricter than AIC. The penalization is used to avoid complication
from increased number of parameters.

AIC =21n(0) — 2length() (1)

BIC =21n(8) — log(n) length(0) (2)

where 0 is the parameter and n is the number of data, length is the number of components in
vector 6.

Another factor reduction method is a multivariate principal component analysis
(PCA) that trade off with ‘factor analysis’ method (Davis 2002). The PCA identifies
the eigen structure of factors using Singular Value Decomposition approach (SVD)
and retain the factors that give the maximum efficiency (highest content of the
explainable variance) and discards less informative ones. The method could theoret-
ically identify latent factors with prior knowledge of explanatory variables and factor
loadings. However, variables such as groundwater fluctuation would be affected by
the lag factors failing to meet independence assumption of factor analysis using PCA
(Ma’rkus et al. 1999).

Lopes et al. (2008), Zurr and Pierce (2004) and Zurr et al. (2003) reported
effectiveness of a dynamic factor analysis method to identify the latent factors and
explanatory variables from a time series of the response variables. The method is
reported to have flexibility and capture any patterns such as periodic, non-periodic
and multiple jumps of time series response variables (Zurr et al. 2003). The method
masks the seasonal elements in the model and hence the representation ultimately
captures all season simulation (http://www.brodgar.com/index.htm). The DFA was used
as a tool for spatiotemporal dynamic forecasting of groundwater fluctuation (Hoogland
et al. 2010). Ritter and Mun’oz-Carpena (2006) reported employment of dynamic
factor analysis for prediction of surface groundwater interaction in the Agricultural
areas, north of Everglades National Park.

@ Springer


http://www.brodgar.com/index.htm

4452 Y. Chebud, A. Melesse

The dynamic factor analysis formulates the response variable as a combination of the
effects of latent variables and explanatory variables as indicated on Egs. (3) and (4) after
Ritter and Mun’oz-Carpena (2006).

Yi(e) = Aijp,(0) + i+ > 0w () + g5(2) (3)
i=1 k=1
pi(t) = pilt — 1)+¢;(7) (4)

where Y(t) is the jth response variable at site j and time t; p; (t) is the i unknown trend at
time t; A;; represents the unknown factor loadings; y; is the trend parameter, w,; is a
regression parameter; y is the k™ explanatory variable; gj and @; are the observation error
and systemic error terms that are independent, normally distributed, and each of them with
zero mean but unknown covariance matrix.

In order to use DFA on surface-groundwater interaction, prior knowledge of the explan-
atory variables would simplify the model uncertainty. The most common explanatory
variables for the groundwater fluctuation includes rainfall (Park and Parker 2008), surface-
water level (Genereux and Slater 1999) and pedosphere soil moisture (Hoogland et al. 2010;
Visser et al. 2005). The unidentified hydrologic and climatic variables as well as the dynamic
karst aquifer properties could be captured by the latent factors.

3 Dynamic Factor Analysis and Spatial Structure

A peculiar application of dynamic factor analysis is to understand the common trends of a large
area that influence the response variable and their loadings. An important aspect of common
regional factors versus their loadings is the possibility of incorporating the spatial structure into
the later for a spatiotemporal dynamic modeling. Gamerman (2010), and Lopes et al. (2008)
suggested implicit framing of the spatial structure into the loading ‘A’ as indicated in Eq. (5),
while the common dynamic factors ‘p,” in Eq. (5) capture the temporal changes.

A~ N (B, 0,°82)
() = Mo (x) + wi(x) (5)

where A; the loading from Eq. (4), is independent and distance-based Gaussian Random field;
[3j is an N-dimensional mean vector; €2; is given by a correlation function f(Is;-sI) which could
be exponential, spherical etc.; t is time; and X is a coordinate point.

Other methods that exploit the spatial relationship of the loading factors for spatiotem-
poral dynamic formulation include geostatistical approach (Hoogland et al. 2010; Visser et
al. 2005; Knotters and Bierkens 2001), Bayesian methods (Diggle and Edith 2010; Lopes et
al. 2008), Neural and Networks (Nayak et al. 2006). Amongst the methods, using Bayesian
method is comparatively less advantageous for the intensity of computation whereas the
geostatistical approach is the most commonly used (Hoogland et al. 2010).

4 Study Area
The study was conducted over the geographical boundary of SFWMD that distinctively

constitutes the largest wetland, and extended coastal boundary with the Atlantic Ocean. The
direction of ground water flow (though dynamic with the management) was found generally
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from North to South, South East, and South west (Fig. 1a) similar to the surface water flow. The
contour lines are mean groundwater level ranging from 0 to 42 m.a.s.1. from South to Northern.
The surficial aquifers of the SFWMD could be broadly categorized as the Biscayne aquifer and
the undifferentiated aquifer system (Randazzo and Jones 1997). The same report indicates the
Biscayne aquifer covers the south eastern part of the district (Fig. 1b) namely the Miami Dade,
Broward, southern Palm Beach and eastern Marone counties. The lithographic layering

0 3060 120 180 240

a) SFWMD Groundwater flow lines b) SFWMD Hydrogeology

= _ Undifferentiate
02040 80 120 160 ~ |Anstasia
P Tamiami
I Shelly Sediments

I Miami limestone
Km

0 3060 120 180 240

Fig. 1 a) Direction of groundwater flow in SFWMD for the month of July, b) Hydrogeological units of SFWMD
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constitutes up to 6 m thick organic soils, 14 m Pamlico sand layer, 14 m thick Miami limestone,
150 m thick Forthompson formation, 40 m thick layer Ansatsia formation and 20 m thick Key
Largo formation in consecutive order from top to bottom. Other part of the district is dominated
by the undifferentiated formation whose Lithographic layering is similar to the Biscayne aquifer
except that the top layer is alluvium unlike the organic soils of Biscayne and also absence of the
Key Largo formation. The geographical exposition of the lithographic units in SFWMD is
dominated by Miami limestone, Tamiami formation, Undifferentiated and the Anstasia for-
mations as shown in (Fig. 1b). The Miami limestone extends in the Eastern and south eastern
part while the Tamimai formation covers the western and south western. The northern part is a
clastic sandy unidentified formation. The Anstasia formation, the smallest in proportion, covers
the north eastern part of the district.

The land use of the district is categorically proportioned as 60 % wetland, 20 %
pastureland, 10 % cropland, 6 % forest land, 1 % urban, and the rest 3 % are other
environmental service areas (Chebud et al. 2011).

5 Methodology

A stratified sampling was proposed at the outset to select groundwater wells from the
three major hydrogeological units splitting by soil type and four major land uses. The
selection was made from sites which were at least 5 miles from canals to avoid daily
influences of the canal operation. About 13 wells (Table 1 and Fig. 2) were selected
from the intersection of a given hydrogeological unit, soil type, and land use using
the Geographic Information Systems tool- ArcGIS analyst.

The DFA was conducted for the normalized daily groundwater level from the 13 wells
using Eq. (3). A coupled statistical package of R was used accordingly as suggested by Zurr
et al. (2003). Upon the DFA analysis, a search for the relationship of the identified factors
against explanatory factors was made to give the identified factors a physical meaning and
help for the development of a unified spatiotemporal model.

As a preliminary analysis of the explanatory factor search, the relationship of groundwa-
ter fluctuation with rainfall, canal water level, and soil moisture were observed for three
stations (ST3G, POS-12, G1213-G, Fig. 1a), situated in three different hydrogeologic units.
Daily rainfall as well as daily canal water level readings were obtained from the nearest
station of each well site (Fig. 1b). The data sets of groundwater level, rainfall and canal water
level were taken from the SFWMD DBHYDRO data base. The daily soil moisture data for
multiple depths below surface (10 cm, 40 cm and 100 cm) were obtained from the NOAA-
Global Land Data Assimilation System (GLDAS) website. The soil moisture is available at
0.125° for the USA from the National Land Data Assimilation System (NLDAS).

Table 1 Sampling distribution of wells

Miami limestone Tamiami formation Undifferentiated

Peat Sandy Bare peat Sandy bare peat Sandy bare

Urban 1 1 1 1 1 1

Forest 1 1

Crops 1 1
Scrub/Range 1 1 1
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Fig. 2 Rivers, canals, lakes and ot
well sites

® Wells  cajp0sahatchee rit
o o boro Canal
I LIMESTONE

|_ SHELLY SAND AND CLAY :
[ | MED. FINE SAND AND SILT
[ PEAT ./ ’x
B WATER w- —— —MileS

01530 60 90 120

Backward and forward stepwise regression method was applied for each groundwater
monitoring station to identify potential exploratory variables using the AIC Criterion. Upon
parameterizing rainfall and soil moisture by their respective regional average and normaliz-
ing the nearest canal/river water levels, a curve fitting method was used to analyze patterns
of the explanatory variables and dynamic factor trends. Finally, invoking a spatial structure
into the loading through interpolation using Inverse Distance Weighted (IDW) method, a
regional groundwater level was developed at daily scale.

6 Analysis

Using Eq. (3), which offers several model types depending on the experimental design, a
framework was chosen assuming all factors are latent. So the component of explanatory
variable in Eq. (3) was substituted by latent factor and formulated the model as:

Response variable (groundwater level) = m common trends + noise (6)

Applying the assumption, m>1, the model served for factor analysis on smaller data sets (~20
events) as suggested in (http://www.brodgar.com/index.htm). The DFA analysis was employed
on each month separately in 2004 for which complete data was available for the majority of the
wells. The minimum AIC as well as the RMSE of the model was employed as a criterion to
determine the number of common factors ‘m’ for the regional groundwater fluctuation.

The DFA analysis was done using normalized groundwater level data series from the 13
wells selected. The normalization is required expecting different units of the dynamic

Table 2 AIC values of the DFA

m  Jan. Feb. March  April  May  June July Aug. Sep. Oct.  Now. Dec.

187 612 827 634 851 692 650 886 882 590 331 928
178 711 685 506 546 567 563 730 698 439 221 794
171 584 574 366 454 487 509 657 619 327 167 730
230 542 470 322 359 450 471 615 544 229 37 651
243 520 464 373 359 407 452 634 516 205 26 599
142 492 437 311 347 361 402 538 507 189 5 563
195 493 447 366 370 497 400 681 520 271 61 578

N O W N =
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Fig. 3 a Simulated and observed groundwater level, January 2004. b Dynamic trends (factors), January 2004

factors, for instance rainfall (mm), soil moisture (kg/mz) and water level (m). Also the
normalization removed the local trend 1 from Eq. (3), and reduce the complication which
could rather be added on the output. The analysis was conducted using the averaged daily
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Fig. 4 a Simulated and observed groundwater level, July 2004. b Dynamic trends (factors), July 2004

data from 2004 to 2009 in iterative fashion increasing the number of common factors
mentioned in Eq. (3) starting from 1. The analysis of the DFA for each month showed that
minimum AIC was achieved when dynamic common factors are six (Table 2).

The analysis was further conducted for 2004, a year with complete dataset. The common
dynamic factors were fixed this time to 6 and analysis was made each month using
normalized daily data. The DFA analysis extracts a fit of the observed and simulated
groundwater levels (Figs. 3a and 4a) and the six dynamic trends (Figs. 3b and 4b). In this
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Table 3 RMSE values at each well site for January and July 2004

Stations RMSE Ground water level (m.a.s.l)

January July Minimum Maximum Mean
PB_1642 0.02 0.04 1.69 2.62 2.27
PB 1491 G 0.06 0.04 0.02 2.54 1.17
OSF_66 0.06 0.02 14.17 16.89 15.81
MUSEWELLS 0.04 0.01 11.13 13.52 12.70
MAXCEY N G 0.02 0.08 20.13 33.01 27.22
H 15A G 0.03 0.12 18.20 19.60 18.99
G3554 0 0.04 1.18 1.96 1.59
AVON P G 0.07 0.01 42.22 43.38 42.75
var3ANIW4 GW2 0.01 0.03 3.07 4.19 3.67
SKYLAKE G 0.03 0 13.28 18.35 15.42
POS 12 0.01 0 19.03 21.06 20.14
ST3G G 0.04 0 8.09 9.62 8.98
G 12 13 G 0 0.05 -1.28 0.99 0.00

paper, only outputs for the month of January and July are presented with the intention to
represent dry and wet seasons. The maximum RMSE was only 0.12 m for the month of July
showing a good fit of the observed and simulated (Table 3).

Associated with the six identified factors are their loadings that have similar meaning to a
weight factor. The retrievability of the loadings at each observation point in space (Tables 4
and 5) offers an opportunity to introduce the spatial structure through interpolation in the
regional spatiotemporal simulation process. The loadings on Tables 4 and 5, related to the
January and July dynamic trends indicated in Figs. 3b and 4b, are derived on condition of
minimum AIC.

Table 4 Loadings (weights) of each trend for the month of January

Stations Trend 1 Trend 2 Trend 3 Trend 4 Trend 5 Trend 6
PB 1642 0.144 0.035 0.104 —0.047 0.187 0.09

PB 1491 G —0.01 —0.404 —0.002 —0.07 —0.036 0.001
OSF _66 —0.009 —0.017 —0.539 0.032 0.017 0.03

MUSEWELLS 0.056 0.163 0.046 0.392 0.013 0.038
MAXCEY N G —-0.001 0.056 0.063 0.14 0.345 —0.052
H 15A G 0.063 0.17 —0.052 0.095 0.241 —-0.071
G3554 0.147 —-0.015 0.016 0.04 0.105 —0.038
AVON P G -0.025 0.128 -0.299 -0.077 -0.238 —-0.069
var3ANIW4 GW2 0.154 0.109 0.051 0.035 0.143 0.012
SKYLAKE G —-0.062 —0.053 —0.166 0.314 0.162 —0.043
POS 12 —-0.138 —-0.08 —0.132 0.264 0.107 —-0.09

ST3G_ G 0.025 0.034 -0.12 0.019 0.307 —-0.107
G 12 13 G 0.013 —0.008 —0.141 0.002 —0.119 0.292
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Table 5 Loadings (weights) of each trend for the month of July

Stations Trend 1 Trend 2 Trend 3 Trend 4 Trend 5 Trend 6
PB 1642 —0.246 0.006 0.022 0.204 0.036 —-0.083
PB 1491 G —-0.119 0.358 —0.046 —0.098 —-0.099 0.196
OSF_66 0.098 -0.076 0.129 —0.083 0.016 —0.032
MUSEWELLS —-0.002 0.029 —0.066 0.149 —0.067 —0.056
MAXCEY N G —0.165 —0.38 —0.053 —-0.08 0.02 0.163
H 15A G —0.045 0.1 -0.012 0.108 0.151 -0.369
G3554 0.587 0.014 0.018 0 0.043 -0.077
AVON P G —-0.027 0.141 -0.078 0.086 0.021 0.078
var3ANIW4 GW2 0.124 —0.004 0.112 —0.095 0.057 —0.101
SKYLAKE G 0.088 —0.058 0.001 —0.001 0.429 —-0.019
POS 12 0.033 0.013 0.403 0.009 0 0.019
ST3G G 0.164 0.046 —-0.005 -0.017 —-0.036 -0.48

G 12 13 G 0.234 —0.001 0.052 0.211 —0.007 —0.136

Explaining the dynamic factors in terms of the physically known variables is the key
aspect of the development of a generic spatiotemporal model. Most physically known
variables of the water budget that dictate groundwater level include soil moisture, rainfall
and surface water level (Ritter and Mun’oz-Carpena 2006). Assumption was made that
evapotranspiration is embedded in the soil moisture storage estimation and hence it is an
already reduced factor. Accordingly, exploratory factor analysis was done in a stepwise
regression of monthly averaged groundwater level against monthly averaged values of
rainfall, soil moisture, and canal water level. Factor selection was on the basis of the
condition of AIC (Table 6).

The relationship of the dynamic factors obtained from DFA and possible explanatory
variables was established fitting normalized and parameterized time series of regional
average rainfall, regional average soil moisture and surface water level. Results showed that
the three dynamic factors were found related to three surface water bodies namely: the Lake
Kissimmee water level in the north (Fig. 5a and b); the Caloosahatchee River water level in
the west (Fig. Se and f); and the Hillsboro canal water level in the east (Fig. 5i and j) that
drains from Lake Okeechobee to the east coastal area. The two other factors identified from
the DFA were explainable by the regional averaged rainfall (Fig. 5m and n), and regional
averaged soil moisture (Fig. 5q and r). The curve fitting of the dynamic factors against the
explanatory variables show similar trends at all seasons. Only one factor was found
unexplainable (Fig. 5u and v) and assumed as latent factor (Zurr et al. 2003). From the
point of view of the water balance approach, water abstraction would partially explain the
latent factor, though not tested for lack of data.

Table 6 AIC values of the stepwise regression

Hydrogeology Station Rain 010 em 040 em 0100 cm Stage AIC (a)
Tamiami formation, ST3G X X -101.2
Miami limestone G2131_G X X —28.94
Undifferentiated, POS12 X X X X —84.27
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Fig. 5 a Factor 1 Fit - July, b Factor 1 fit - January, ¢ Factor 1 Loading - January, d Factor 1 loading - July, e
Factor 2 fit - January, f Factor 2 fit - July, g Factor 2 Loading - January, h Factor 2 Loading - July, i Factor 3 fit
- January, j Factor 3 - July, k Factor 3 Loading - January, 1 Factor 3 loading - July, m Factor 4 fit - January, n
Factor 4 fit - July, o Factor 4 Loading - January, p Factor 4 Loading - July, q Factor 5 fit - January, r Factor 5
fit - July, s Factor 5 loading - January, t Factor 5 Loading, u Factor 6 fit - January, v Factor 6 fit - July, w Factor
6 loading - January, x Factor 6 Loading - July

The spatial association of the loadings to the explanatory factors was also found in
agreement with the exploratory factor analysis. The analysis showed a localized higher
weight in the north as shown in Fig. 5c and d, attributable to factor 1 (Lake Kissimmee water
level); higher weight in the south, Fig. 5g and h, attributable to factor 2 (Caloosahatchee
River water level); and discernible higher local weight in the east, Fig. 5k and 1, attributable
to factor 3 (the Hillsboro canal water level). The effect of factor 4 (rainfall average) is
spatially variable and event dependent, and hence assumes the loading spatial variability
accordingly as shown in Fig. 50 and p. The effect of factor 5 (soil moisture) in most part of
the region is observed shifting with seasonal changes as shown in Fig. 5s and t.

The dynamicity and spatiotemporal implicit nature of the loadings was observed from the
changes over the seasons confirming the applicability of Eq. (5) after Gamerman (2010). The
increased loading of the soil moisture from east (Miami limestone area) to west as observed
on Fig. 5s and t suggests the lagging effect of the overlying clayey soil on recharge. The
higher loading of most factors in the extreme southern part supports the fact that the area is
under high water table over most seasons of the year.

7 Simulated Groundwater Level

Convolving the dynamic factors with the spatially interpolated loadings, a regional scale
spatiotemporal groundwater level was simulated. Cases were observed for four arbitrary dates
of January 15, January 30, July 15 and July 30 as shown in Fig. 6a, b, ¢ and d, respectively, all
from year 2004. The results show those highest water levels in the east, west and northern part,
seemingly a result of the management effect. The lowest drop of groundwater level below the
monthly average, on January 30 (drier month), was —60.42 cm in the east coast as shown in
Fig. 6b. The pattern could be traced for each day of the drier months and observe risks of
oceanic water intrusion during the dry season. Similarly, the maximum groundwater rise on July
302004 (Fig. 6d) was 67 cm above the monthly average and such trends could be traced for the
wettest months to oversee flooding risks. The validation conducted on three wells, not included
in the simulation, show that the maximum RMSE is 17 cm.

8 Conclusion and Recommendation

The spatiotemporal model was developed extracting dynamic factors and their respective
loadings from time series observations of groundwater level using a dynamic factor analysis
(DFA) method. The DFA served to extract common latent factors at regional scale together
with their loadings in which the latter allow incorporation of the spatial structure for a
spatiotemporal modeling of groundwater levels.

The results of the analysis showed that the surface ground-water interaction in the SFWMD
is governed by regional averaged rainfall, regional averaged soil moisture, Lake Kissimmee
water level in the north, Caloosahatchee River in the west and Hillsboro canal water level in the
East. A regional water level was simulated using a combination of the factors and interpolated
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loadings at regional level. Further study into the inclusion of water extraction as part of the
explanatory variables should help for groundwater level management.

This is a first time test to understand applicability of the Dynamic Factor Analysis
approach for a regional scale spatiotemporal groundwater level model. Workability of the
approach is a major achievement for this study. The validation conducted at arbitrary
regional points of well sites result shows that a sound agreement exists between the observed
groundwater level and the simulated water level with maximum RMSE of 0.12 m. The
model in combination with the point scale groundwater prediction model (Chebud and
Melesse 2011) would serve for operational prediction and decision making. Employing
DFA over SFWMD was also viable for its low computational intensive nature; and efficient
for its ease of synthesis of regional spatiotemporal groundwater level through data driven
simulation where watershed based approach would not be workable.

The approach will be serving different purposes that need the results of this study as an
input. Pragmatically the study serves to inform groundwater status over sinkhole formation
areas; flooding risk analysis as a result of the shallow water table in urban areas; saltwater
intrusion from the ocean; groundwater nutrient interaction. A case study at micro scale is
evidently vital. A spatiotemporal groundwater level (result of this study), for instance, has
served as an input for groundwater-phosphorus interaction analysis (Chebud 2012). So, this
study recommended a similar case study on groundwater status of karst hydrogeological
areas (especially near sinkhole formations) at micro ecological scale.

The DFA analysis indicated that surface water levels and randomly selected wells
could serve as a starting point for regional spatiotemporal groundwater level simulation
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in data scarce areas. It would just require a strategy of using first year data for factor
analysis on monthly basis and 2 to 5 years data for validation. On the other hand, most
explanatory variables are obtainable from satellite imagery. Rainfall is measured both on
the ground as well as using radar; soil moisture is currently available from programs
such as GLDAS. Also surface water levels are captured by satellite imagery (TOPIX) in
the case of lakes. The economic viability of such inputs from satellite imagery certainly
supports the effort.

Last, apart from synthesizing the regional scale water level dynamics, the model-
ing approach would help for predictions of spatiotemporal groundwater level fluctu-
ation if coupled with the point scale dynamic forecasting as reported by Chebud and
Melesse (2011).
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