
Water Quality Monitoring Using Remote Sensing
and an Artificial Neural Network

Yirgalem Chebud & Ghinwa M. Naja &

Rosanna G. Rivero & Assefa M. Melesse

Received: 2 February 2012 /Accepted: 12 June 2012 /Published online: 10 July 2012
# Springer Science+Business Media B.V. 2012

Abstract In remotely located watersheds or large
waterbodies, monitoring water quality parameters is
often not feasible because of high costs and site inac-
cessibility. A cost-effective remote sensing-based
methodology was developed to predict water quality
parameters over a large and logistically difficult area.
Landsat spectral data were used as a proxy, and a
neural network model was developed to quantify wa-
ter quality parameters, namely chlorophyll-a, turbidi-
ty, and phosphorus before and after ecosystem
restoration and during the wet and dry seasons. The
results demonstrate that the developed neural network
model provided an excellent relationship between the
observed and simulated water quality parameters.
These correlated for a specific region in the greater
Florida Everglades at R2>0.95 in 1998–1999 and in
2009–2010 (dry and wet seasons). Moreover, the root
mean square error values for phosphorus, turbidity,
and chlorophyll-a were below 0.03 mg L−1, 0.5
NTU, and 0.17 mg m−3, respectively, at the neural
network training and validation phases. Using the

developed methodology, the trends for temporal and
spatial dynamics of the selected water quality param-
eters were investigated. In addition, the amounts of
phosphorus and chlorophyll-a stored in the water col-
umn were calculated demonstrating the usefulness of
this methodology to predict water quality parameters
in complex ecosystems.
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1 Introduction

High phosphorus and nitrogen concentrations mainly
originating from fertilizer-rich agricultural runoffs and
effluents from wastewater treatment plants are threat-
ening many worldwide ecosystems (Reed-Andersen et
al. 2000). Increases of the primary productivity have
already been observed in several waterbodies (Reddy
et al. 1996). Kissimmee River in Florida is one of
these ecosystems characterized by high phosphorus
and nitrogen loadings originating mainly from agricul-
tural runoffs. The situation has been aggravated by the
channelization of the river in 1960, transforming the
167-km-long meandering river into a wide canal only
90 km long (Koebel et al. 1999). Water quality param-
eters, generally used as indicators of ecosystem degra-
dation or restoration, have been intensively monitored
over the vast wetlands of the Kissimmee basin and the
Kissimmee River to assess the river state. The South
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FloridaWaterManagement District (SFWMD) database
(South Florida Water Management District 2010a)
shows that about 1,834 sampling stations are currently
monitoring the water quality status in this basin. This
monitoring program is necessary but not sufficient to
capture pulses of water quality changes, since some of
the sampling stations are set only for biweekly or inter-
mittent measurements. However, frequent and extensive
monitoring of waterbodies and wetland areas presents
logistical difficulties and challenges in terms of cost and
manageability (Dekker et al. 1996).

Remotely sensed data coupled with the application
of a Geographic Information System (GIS) was pro-
posed as a complementary technique to conduct dy-
namic monitoring and prediction of water quality
parameters at operational levels (Glasgow et al.
2004). Several authors suggested that water quality
data could be retrieved from satellite imagery upon
training existing monitored data. Hu et al. (2004)
applied a space-borne optical remote sensing tech-
nique on the shallow waterbodies of South Floridian
estuaries. The same method was also used by Ritchie
et al. (2003) to examine the Mississippi River basin.
These studies have investigated water quality param-
eters namely chlorophyll-a (Chl-a), suspended sedi-
ments, and total phosphorus (TP) at multiple spatial
and temporal scales. In these studies, Chl-a, turbidity,
and TP served as indicators of water quality status due
to the fact that these parameters can be used as a proxy
for phytoplankton biomass growth rate and hence
eutrophication (Wool et al. 2007).

The application of remote sensing techniques to
landscape analysis and habitat monitoring has ad-
vanced in the past three decades (Schowengerdt
2007). The use of this technique in ecology and water
quality monitoring is considered as providing an “out
of the box” solution to resource managers (Sawaya et
al. 2003). The objectives of this paper are (1) to
develop a new cost-effective technique coupling re-
mote sensing with an artificial neural network to mon-
itor water quality parameters (Chl-a, turbidity, and TP)
of large waterbodies and (2) to assess the effectiveness
of this new methodology while examining water qual-
ity parameters in Kissimmee River (South Florida)
during four selected days of the wet and dry seasons
pre (1998–1999) and post (2009–2010) restoration.
The purpose of this paper was not to evaluate the
effect of Kissimmee River restoration on water quality
but to present a cost-effective methodology to track

water quality parameters changes. This methodology
would optimize the cost of monitoring while signifi-
cantly reducing the number of grab samples.

2 Technical Background

Several studies reported that Chl-a and turbidity obser-
vations could be retrieved from combining the visible,
mid-infrared, and infrared bands (Akbar et al. 2010).
Because of the characteristic color of Chl-a, its rela-
tionship with electromagnetic radiation at 500 and
600 μm wavelengths was documented using optical
sensors at laboratory scale (Ritchie et al. 2003) and at
field scale (Sass and Creed 2008). Ritchie et al. (2003)
reported the signatures of Chl-a and suspended sedi-
ments and showed their higher reflectance at the green
and thermal bands. The same paper indicated that the
reflectance value increased when the concentration of
Chl-a increased. This was also true for the suspended
sediments within the same band (Ritchie et al. 2003).

Different water quality parameters were retrieved
using specific space-borne sensors with radiometric
resolutions such as Landsat Thematic Mapper (TM)
(Zhang et al. 2003), Satellite Aperture Radar (Ritchie
et al. 2003; Sass and Creed 2008; Oyama et al. 2009),
Moderate Resolution Imaging Spectroradiometer
(MODIS) (Hu 2009), and Sea-viewing Wide Field-
of-View Sensor (Soto et al. 2009). The possibility of
retrieving TP water quality data was documented by
Shafique et al. (2006) over the Ohio River using
hyperspectral bands of air-borne optical sensors at
554, 564, 710, and 740 nm wavelengths. Han and
Jordan (2005), when mapping Chl-a concentration in
Pensacola Bay (Florida), suggested the use of MODIS
and Landsat TM as preferable because they are eco-
nomical and available for public use. Furthermore,
MODIS has higher radiometric and temporal resolu-
tion (capturing data on a daily basis), whereas Landsat
TM has an advantage in its higher spatial resolution of
30 m (to be compared to 250 m for MODIS) enabling
to obtain observations for individual canals and
rivers.

Landsat TM has seven bands of which three are in
the visible range, three in the near and mid-infrared,
and one in the thermal region. According to Akbar et
al. (2010), Chl-a water quality parameter is potentially
separable at a defined ratio using the green (0.50–
0.60 μm) and red bands (0.60–0.70 μm) of Landsat
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TM. The greenish characteristic of Chl-a-driven algal
system would have higher reflectance at the green
band and higher absorption at the red band. Turbidity
is a measure of the light-scattering properties of water
and is caused by the presence of suspended solids such
as clay, silt, and finely divided organic matter (Nas et
al. 2010). Significant relationships have been reported
between turbidity and suspended sediments and radi-
ance or reflectance from spectral Landsat TM bands.
Using in situ studies, Ritchie et al. (2003) reported that
wavelengths between 700 and 800 nm (band 4) were
most useful for determining suspended sediments and
turbidity in surface waters. Brezonik et al. (2005)
determined that suspended sediments have the highest
contrasting reflectance at the same band (band 4).
Total phosphorus is a combined measure of inorganic,
organic, and dissolved forms of phosphorus and can
be directly related to the biomass of phytoplankton
(i.e., suspended algae and cyanobacteria, typically es-
timated by chlorophyll-a concentration) and indirectly
related to water turbidity (Swanson and Zurawell
2006). In Akbar et al. (2010), the TP levels were
determined through a combination of the green (band
2) and red bands (band 3) of Landsat TM. In Wu et al.
(2010), a combination of Landsat TM bands 1, 2, and
3 and their respective ratios was used to correlate
empirically with the in situ TP measurements.

Despite knowing the water quality parameter sig-
natures, the practical retrieval of their concentration
from shallow waterbodies using optical sensors is
often challenging due to the background effect from
the reservoir floor, embankments, rocks, and sediment
deposits. Hu (2009) and Zhang et al. (2003) indicated
that water quality parameter retrieval methods were
found somehow dependent on the waterbody classifi-
cation (based on its designated use) and water depth
requiring multiple bands with different information
content. Zhang et al. (2003) indicated the need of
comparing multiple approaches namely deterministic,
semi-empirical, and data-driven regression analysis
methods when retrieving water quality parameters. In
Zhang et al. (2003), a framework for Chl-a data re-
trieval was suggested from the blue and green band
combinations of the Landsat TM imagery upon cali-
brating empirical relationships. Ritchie et al. (2003)
suggested the applicability of a nonlinear relationship
model from the results obtained after examining sev-
eral waterbodies in Arkansas and Mississippi, USA.
Brezonik et al. (2005) used a regression analysis of

multiple band combinations and showed that no single
band combination has uniqueness, implying the need
to explore all possible band combinations.

Neural network approaches were used by Jensen
(2005), demonstrating the superiority of this method
over the traditional statistical methods. To capture
both linear and nonlinear relationships, Sudheer et al.
(2006) also suggested a neural network approach as a
more flexible method to retrieve water quality param-
eters. The advantage of neural networks over nonlin-
ear regression approaches is attributable to the fact that
the latter demands a prior knowledge of the parameter
relationships while the neural network does not. This
is vital in view of the complexity of retrieving water
quality parameters affected by atmospheric and other
background factors under non-ideal contexts causing
uncertainties to be accounted for.

The most widely used neural network model is the
McCulloch and Pitt model (Hu and Hwang 2002)
constituted of neurons accumulating a weighted sum
of multiple inputs called “input function” that will
later be subjected to a transfer function called “activa-
tion function” to synthesize the outputs as represented
in Fig. 1. The net function of the McCulloch and Pitt’s
neuron model (Hu and Hwang 2002) is represented as
a weighted linear function as indicated in Eq. (1).
Other higher order net functions could be used for
complex models replacing the single input term by
the product of two or more inputs.

u ¼
XN

j¼1

wjxj þ θ ð1Þ

wi xi + S(N)
N

S

Oxi

Fig. 1 Sketch of the neural network modeling approach. N is
the input function at each neuron that gives the network to
model the linear behavior; w the weight for each input x; δ is
the noise which controls the activation level of the sigmoid; S is
a sigmoid function as described in Hu and Hwang (Environ-
mental Protection Agency 2000) that serves to model nonlinear
relationships (Environmental Protection Agency 2000); and O is
the output
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where wj are weight parameters, xj are network inputs,
θ is the bias (threshold), and N is the number of inputs.

The net output of the McCulloch and Pitt’s neuron
model is a nonlinear transformation of the weighted
linear function u (Eq. (1)) by a sigmoid distribution
called activation function as shown in Eq. (2).

f ðuÞ ¼ 1

1þ e
�u
T

ð2Þ

where T is a target parameter used by the sigmoid
distribution to fit the output distribution.

Other models that serve the same purpose of trans-
formation could be linear, Gaussian radial basis, in-
verse tangent, and hyperbolic tangent. Among the
different types of activation functions, Hu and
Hwang (2002) rated the sigmoid type as the most
commonly used.

3 Methodology

3.1 Study Area

The selected area for this study was the Kissimmee
River basin in South Florida (North of Lake
Okeechobee and South of Lake Kissimmee), within
the Northern Lake Okeechobee watershed (Fig. 2).

This study was conducted focusing on the lower
Kissimmee River basin where the meandering river
channel was straightened by a canal (C-38) in 1960
with a resulting flood plain of 16,200 hectares dried
out. An important restoration strategy was developed
in 1990, implemented by the SFWMD over multiple
phases starting from 1999. Three construction phases
are now complete, and continuous water flow has
been reestablished to 37 km of the meandering
Kissimmee River. According to the SFWMD re-
port (South Florida Water Management District
2010b), the first phase (I) backfilled 12.9 km of
the C-38 canal, while the second (II) and third
(III) phases backfilled 14.5 km of the canal. The
fourth (IV) phase reestablished flow to 9.7 km of recon-
nected river channel. So far, this resulted in 4,960 hec-
tares of wetlands restored. In the present work, the
upper, middle, and downstream sections of the river
were selected to represent phases IV, I, and II/III of the
restoration phases, respectively, as illustrated in Fig. 2 in
order to understand the changes that occurred in the
river course. Technically, the restoration involves water
release in the river original meandering route, backfill-
ing of canals, excavating the river channel, and remov-
ing some water control structures and locks. The four
phased restoration cross-sections, the pre and post res-
toration channels, and the floodplain are indicated in
Fig. 2.

Phases of restoration and 
monitoring stations of 

Kissimmee River

Sampling sites
Re-trained river course
Canal
Floodplain

Phase I

Phase II / III

Phase IV

Lake Kissimmee

S65 E

Fig. 2 Maps of Florida and
of the Kissimmee basin
showing the different resto-
ration phases of the Kissim-
mee River. The locations of
the monitoring stations are
also represented as well as
Lake Kissimmee and S65E
station
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The present work has focused on four selected days
during the dry (November 1 to April 30) and wet (May
1 to October 31) seasons before (dry 1998–wet 1999)
and after restoration (dry 2009–wet 2010). The select-
ed years are considered as average years as could be
noticed when comparing the average temperature and
rainfall. The average annual temperature and rainfall
of the selected years are around 22 °C and 114 cm,
respectively. The temperature and rainfall regional
historical average (more than 50-year period of record)
are around 22 °C and 113 cm.

3.2 Data Compilation and Processing

The stretch from Lake Kissimmee outlet down to
S65E monitoring station, constituting both the old
and retrained courses of the river, was delineated from
the 2006 land-use GIS database from the SFWMD
using ArcGIS 9.3 suite (www.esri.com) (Fig. 2).
After delineating the river bank and the flooding zone,
the Normalized Difference Vegetation Index (NDVI)
values of the extracted image were analyzed.
According to Bhagat and Sonawane (2011), water-
bodies from small-sized dams to large lakes could be
delineated using NDVI. Density slicing of band 5 was
also effective for delineation of waterbodies on river-
ine floodplains (Frazier and Page 2000). Typically,
NDVI values range between −1 and 1, with values
above 0 indicating the presence of vegetation and
values below 0 indicating the presence of water. In
this study, Kissimmee River surface areas with NDVI
values below 0 were identified and depicted as water-
bodies. For the flood plain, the highest NDVI negative
value of −0.2 was selected as a threshold to identify
flooded areas and the presence of water (Kiage and
Walker 2009; Ma et al. 2007). Since the flooded zone
was vegetated, the NDVI showed an excellent contrast
of water versus vegetation for delineation. Moreover,
at the river shoreline where a sharp waterbody bound-
ary exists, the NDVI presented a good visual contrast
very useful for delineation. Upon delineation, water
quality data from the monitoring stations were down-
loaded from the SFWMD web site (DBHYDRO data-
base (South Florida Water Management District
2010a)), overlaid onto the river basin and selected for
further data screening and collection. Accordingly, from
the 1,834 monitoring stations reported in Section 1, a
total of 25 stations were identified along the Kissimmee
River. From these stations, six stations have only TP

(lacking Chl-a and turbidity) and the other seven sta-
tions were inactive since 1997 or earlier. Therefore, only
11 stations were used to capture water quality parame-
ters namely Chl-a, turbidity, and TP as indicated in
Fig. 2. Water quality data were downloaded from the
DBHYDRO database for the dates matching the satellite
pass time (dry season of 1998–1999: December 15,
1998; wet season of 1998–1999: July 24, 1999; dry
season of 2009–2010: November 27, 2009; wet season
of 2009–2010: July 9, 2010) (Table 1). The water qual-
ity monitoring for Chl-a, turbidity, and TP in South
Florida are conducted biweekly at most stations, thus
meeting the temporal resolutions of the Landsat TM
which passes overhead every 16 days. Most of the
selected water sampling dates for the dry and wet sea-
sons of 1998–1999 and 2009–2010 were within 96 h of
the satellite pass time and hence considered acceptable
(Zhang et al. 2002) (Table 1).

Landsat TM images have been widely used for
environmental monitoring, resource management,
and land cover/land use classification (Haack et al.
1987; Park and Stenstrom 2006). Those images pro-
vide adequate spatial resolution for regional coverage
with rather negligible image distortion. The Landsat
images collected from the US Geological Survey—
Earth Resources Observation and Science (USGS-
EROS, http://eros.usgs.gov/) were already prepro-
cessed for geometrical correction and hence did not
need any further action. The digital hydrometry of the
Kissimmee River was compared with maps derived
from the satellite imagery for validation—the results
showed a precise alignment of the maps with the river
hydrometry. Kissimmee River (Florida) lies in a vast
wetland system where high humidity (water vapor)
affects the visible spectrum. Indeed, the high humidity
makes it difficult to obtain cloud-free images (Yang
2009) particularly during the wet season in Florida
(Rivero et al. 2009). For water quality assessment, it
is critical to use imagery without cloud cover or haze
because it can affect the spectral radiometric responses
and cause erroneous results (Olmanson et al. 2008).
Generally, USGS-EROS preprocesses all US Landsat
TM images to at least a 10 % cloud cover level. In rare
cases where atmospheric and illumination effects
remained on the preprocessed Landsat images, an atmo-
spheric correction was conducted using the
Atmospheric Correction for Satellite Imagery (ATCOR
2) methodology (http://www.geosystems.de/atcor/
index.html) implemented into the ERDAS Imagine 9.3
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interface (www.erdas.com). The atmospherically cor-
rected images were then used to capture a subset of the
Kissimmee River before and after restoration.

The river has a width larger than 107 m enabling
thus the capture of 3 or more pixels (each with 30 m
dimension) of the imagery within the river. After over-
laying the water quality monitoring stations onto the
reflectance images, each pixel was read from the seven
Landsat TM bands. The reflectance values from the
different bands were used as inputs to train the neural
network while the corresponding readings of the water
quality parameters were used as targets as shown
schematically in Fig. 3. The training and simulation
were conducted using the MATLAB software
(www.mathworks.com).

The neural network technique was applied after
splitting the data into 60 % for the training and 40 %
for the validation purposes. The iteration was made
changing the hidden number of neurons from three to
five while minimizing the root mean square error
(RMSE) at the training stage. The validation was
tested separately setting the maximum RMSE TP cri-
terion for less than 0.05 mg L−1 corresponding to the
10 % of the maximum contaminant level (MCL) value

published by the US-Environmental Protection
Agency (Environmental Protection Agency 2000).
The Chl-a and turbidity maximum RMSE values were
set at 10 % of the average observed data. Because of
the lack of sampling data, testing was not performed in

Table 1 Water quality data obtained from the different sampling stations identified in Fig. 2

Dry season Wet season Dry season Wet season

Satellite passing date December 15, 1998 July 24, 1999 November 27, 2009 July 9, 2010

Water sampling December 17, 1998 July 22, 1999 December 1, 2009 July 8, 2010

Station name Chl-a Turb TP Chl-a Turb TP Chl-a Turb TP Chl-a Turb TP

KREA91 2.5 1.31 0.019 30.1 2.53 0.098 1.1 32 0.048 NA 3.1 0.085

KREA92 3.5 4 0.171 14.4 2.1 0.06 0.9 35 0.034 2 2.4 0.148

KREA93 4.6 1.31 0.118 11.3 2.9 0.038 7 8.5 0.074 4 5 0.151

KREA94 2.4 0.605 0.075 72.7 3.84 0.067 8 0.073 5 5 8.1 0.175

KREA95 7.1 1.04 0.043 17.3 3.8 0.047 5 4.1 0.044 6 1.6 0.048

KREA97 3.8

KREA98 5.4 0.714 0.034 5.7 0.761 0.025 8 10.1 0.083 4 5.6 0.138

KREA79 7.2 1.99 0.036 26.9 1.81 0.048 19 0.9 0.031 3 5.2 0.079

S65 12.16 23.7 0.151 9.6 5.25 0.096 8 1.9 0.031 14 3 0.111

S65A NA 2.08 0.085 2.6 1.38 0.089 5 1 0.03 6 3.1 0.126

S65D 1.4 1.3 0.112 2.9 1.46 0.27 2 4 0.064 4 2.8 0.078

The sampling dates are indicated as well as the satellite passing date. Data from KREA91, KREA92, KREA94, KREA98, S65, and
S65D stations were used for the training stage

Chl-a chlorophyll-a (milligram per cubic meter), TP total phosphorus (milligram per liter), Turb turbidity (nephelometric turbidity
units), NA not applicable

Chlorophyll-a

Turbidity

Phosphorus

OutputHidden LayersInput Layers

5

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

4

3

2

1

Fig. 3 Schematic diagram of the input and output layers of a
neural network model
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the present paper. Based on the training and validation
results, the model testing with additional DBHYDRO
water quality data from subsequent years and seasons
would be investigated to determine the performance of
the neural network model.

4 Results and Discussion

4.1 Remote Sensing Image Quality and Neural
Network Results

The Landsat TM images obtained from the 2009 to
2010 wet and dry seasons showed only little residual
haziness with much more improvement after haze
removal and atmospheric corrections. The 1998 dry
season image had cloud coverage at the northern tip
portion of the river where no river restoration was
conducted and that portion could thus be removed from
the analysis. The image taken in the 1998 wet season
contained scattered clouds (not over the river course)
and the haze removal and atmospheric correction had
decreased the cloud effect in this image from 10 to 1 %
considered as an acceptable value (Tucker et al. 1985).

The results from the neural network technique
showed that the RMSE values for TP were below
0.03 mg L−1 for all seasons at the neural network
training and validation phases (Table 2). Similarly,
the average RMSE values for Chl-a and turbidity were

0.17 mg m−3 (ranging from 0.03 to 0.54 mg m−3) and
0.5 NTU (ranging from 0.03 to 1.38 NTU), respec-
tively, at the training stage and at the validation stage
(Table 2) below the 10 % level of the observed data
(0.91 mg m−3 and 0.51 NTU, respectively). The regres-
sion coefficients (R2) obtained after graphically fitting
the observed and simulated results were above 0.95.
Figure 4 presents some of these graphical fit results for
the three selected water quality parameters, indicating
the relatively good agreement between the monitored
and the simulated values and revealing that the present
methodology can be used as a suitable technique to
predict water quality data in the Kissimmee River. The
residual error between the relative size and the variation
in the model predicted values ranged from 5 to 20%, the
highest being for TP during the 1998–1999 dry season
as illustrated in Fig. 4.

Several other authors attempted to employ remote
sensing image data in water quality mapping. Nas et
al. (2010) used the Landsat imagery to investigate
spatial water quality patterns in Lake Beysehir. Their
best model led to regression coefficient values ranging
between 0.61 and 0.71 when comparing the measured
and estimated values of water quality parameters. Wu
et al. (2010) attempted to develop empirical models to
estimate TP concentration in the mainstream of the
Qiantang River in China using Landsat data. The
optimal regression model produced a coefficient of
0.77. Olmanson et al. (2008) conducted a 20-year

Table 2 Root mean square error (RMSE) and averaged weights in the neural network inputs

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 RMSE calibration RMSE validation

1998 Dry Chl-a 0.57 0.85 0.15 0.44 0.49 0.11 0.41 0.2 0.03

Turbidity 0.55 0.98 0.48 0.73 0.49 0.48 0.063 0.44 1.38

TP 0.43 0.88 0.68 0.79 0.88 0.56 0.42 0.03 0.03

1998 Wet Chl-a 0.65 0.72 0.75 0.93 0.49 0.7 0.32 0.54 0.14

Turbidity 0.03 0.2 0.0019 0.3 0.97 0.64 0.69 0.03 0.44

TP 0.073 0.64 0.25 0.35 0.59 0.9 0.056 0.03 0.03

2009 Dry Chl-a 0.073 0.064 0.51 0.65 0.96 0.39 0.13 0.22 0.14

Turbidity 0.35 0.76 0.13 0.11 0.73 0.33 0.39 0.83 0.83

TP 0.91 0.96 0.14 0.22 0.98 0.95 0.17 0.03 0.03

2010 Wet Chl-a 0.99 0.5 0.36 0.4 0.68 0.23 0.4 0.03 0.04

Turbidity 0.99 0.076 0.5 0.94 0.99 0.17 0.89 0.03 0.03

TP 0.26 0.42 0.42 0.62 0.46 0.49 0.68 0.03 0.03

The unit of the RMSE is the unit of the quantity being estimated

Chl-a chlorophyll-a (milligram per cubic meter), TP total phosphorus (milligram per liter), Turb turbidity (nephelometric turbidity
units), NA not applicable
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assessment to evaluate the accuracy of a Landsat
method to obtain a comprehensive spatial and tempo-
ral coverage of key water quality characteristics that
can be used to detect trends at different geographic
scales. In the same study, the reliability of the data was
evaluated by examining the precision of repeated
measurements on individual lakes within short time
periods and by comparing water clarity computed
from Landsat data to field-collected Secchi depth data.
The agreement between satellite data and field meas-
urements of Secchi depth within Landsat paths was
strong (average R2 of 0.83 and range 0.71–0.96).

The nonlinear neural network model enables to
produce more accurate estimations than can be
obtained with the more conventional methods.
Especially so when only sparse, gapped data are avail-
able for model training (Abrahart and See 2000; Li et
al. 2010; Srivastava et al. 2006). The main advantage
of using the neural network is that it allows consider-
ing nonlinear multiparameter relationship between re-
flectance from the different spectral bands and the

water quality parameters without prior knowledge of
the parameter relationships (Ceyhun and Yalcin 2010).
The weight of each of the bands used in the linear part
of the neural model averaged over the multiple neu-
rons in each model is presented in Table 2. Since water
quality parameters are expected to change within the
10-year span examined (before and after Kissimmee
River restoration), the neural network allocated differ-
ent weights for the same band and season throughout
the two examined seasons and years. The results indi-
cated that band 1 weighted the highest during the wet
season in 2009–2010. The results also indicated that
the weight of bands 3 and 7 were mostly lower when
compared to other band weight contributions and
showed closer ties. Similarly, band 2 and band 5
showed dominant weights and closer ties averaging
for each parameter type over the years. This could be
attributable to the fact that similar information content
was captured by the different bands, and unlike other
multivariate methods, the neural network would not
remove redundancy (Benediktsson et al. 1990). Most

Dry season 1998 – 1999 Chlorophyll-a (mg m-3) Dry season 1998 - 1999 Phosphorus (mg L-1) Dry season 1998 - 1999  Turbidity (NTU) 

Wet season 2009 - 2010 Chlorophyll-a (mg m-3) Wet season 2009 - 2010 Phosphorus (mg L-1) Wet season 2009 - 2010 Turbidity (NTU)

Fig. 4 Graphical fit results of the three water quality parameters (phosphorus, chlorophyll-a, and turbidity), 1-1 line of predicted (Y)
and targeted (T) for the different seasons of 1998–1999 and 2009–2010
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principal component analysis approaches have con-
firmed this redundancy and concluded that the overlap
of spectral characteristics within the different bands is
a common phenomenon. Peculiar examples are the
overlap of band 2 and band 3 and of band 5 and band
7 with band 6, the latter could be even derived from
the former two (Sidjak and Wheate 1999; Zhou and
Wang 2008). Indeed, although each individual spectral
band reveals different characteristics of the examined
parameters, the dataset as a whole contains a degree of
redundancy due to the correlation between the spectral
bands (Kavzoglu and Mather 2000). Taking into ac-
count this redundancy and after comparing the neural
network model to a traditional regression model,
Wang et al. (2008) estimated the error to below 25 %
using the neural network while estimating water qual-
ity parameters such as suspended solids, dissolved
oxygen, total nitrogen, TP, and Chl-a. Table 2 also
shows that, except during the 2009 dry season, band 2
had the highest weight for Chl-a concentration deter-
mination. This is quite normal knowing that Chl-a has
the greatest reflectance at green wavelengths (band 2).
The thermal band (band 6) did not play a significant
role in the Chl-a determination since this band meas-
ures the amount of infrared radiant flux emitted from
surface water. Hadjimitsis et al. (2006) determined that
thermal bands of Landsat TM sensor are best suited to
monitor temperature variations in inland waterbodies.
The examined small-sized inland waterbody did not
have a significant spatial variation of water tempera-
ture to impact the weights of the thermal band.

4.2 Water Quality Parameters Monitoring

The main purpose of the Kissimmee restoration was
the reestablishment of hydrologic conditions and fluc-
tuations while restoring the Kissimmee River and its
floodplain. However, the impacts of the floodplain
restoration on the water quality remain uncertain
(South Florida Water Management District 2010b). It
is expected that the flooding of the natural wetland
zones adjacent to the Kissimmee River would impact
the selected water quality parameters (TP, Chl-a, and
turbidity). Settlement of sediments, attenuation of nu-
trient levels, and change of vegetation pattern could be
expected in the long run. Colangelo (2007) examined
the response of the river metabolism to restoration of
flows and reported that the post-restoration dissolved
oxygen of the Kissimmee River increased from <2 to

4.70 mg L−1 thus meeting the target values derived
from free flowing and minimally impacted reference
streams. The present work focused on Chl-a, TP, and
turbidity as water quality parameters.

Chl-a is an important parameter considered as an
indicator of a waterbody trophic status. Spatial pat-
terns of Chl-a tend to be complex, being a result of
biological as well as physical and chemical factors.
Figure 5a represents the levels of Chl-a during the
4 days of the dry and wet seasons of 1998–1999 and
2009–2010. The modeling results showed that during
2009–2010, Chl-a decreased from the 5–40-mg-m−3

level to the 0–5-mg-m−3 level during the dry season
and from the 15–40-mg-m−3 level to the 0–15-mg-m−3

level during the wet season (Fig. 5a). During the two
selected days representative of the 1998–1999 dry and
wet seasons, the Chl-a across the river showed higher
values (25–40 mg m−3) at the river bank. These values
decreased to 5–15 mg m−3 in the center of the river.
This agrees with the physical process of sedimentation
along the banks and algae encroachment (Sabater et al.
2008). During the two selected days representative of
the 2009–2010 season, much of Chl-a was retained in
the meandering section of the river course thus de-
creasing the Chl-a levels in the river downstream
(Sabater et al. 2008). While Colangelo (2007) reported
a general increase in the concentration of Chl-a pre-
and post-restoration, the same authors did not compare
the amount of Chl-a stored in the water column during
the pre- and post-restoration periods. Indeed, the
results obtained from the maps generated in the pres-
ent study were further processed to obtain the amount
of Chl-a stored in the water column as summarized in
Table 3 (taking into account the monitored water depth
and the pixel area 30×30 m). The water flow and stage
values were not available for all the stations and thus
not considered. When examining the upper section of
the river, the amount of Chl-a decreased by 67.5 and
88.9 % when comparing the four selected days of the
1998–1999 and 2009–2010 dry and wet seasons, re-
spectively. Except for the middle section of the river
and when comparing the 1998–1999 to the 2009–2010
wet and dry seasons, the same decreasing tendency
could be observed for the middle and lower sections of
the river (Table 3). However, it is worth noticing that
these results are based on comparison between
2 days of the wet and dry seasons before and after
restoration. A longer time period should be inves-
tigated for better establishment of the general
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Fig. 5 Modeling results of chlorophyll-a (a), turbidity (b), and phosphorus (c) levels during the wet and dry seasons of 1998–1999 and
2009–2010
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increase or decrease tendency for Chl-a in the
water column.

The second modeled parameter was the turbidity
generally caused by the presence of suspended and
dissolved matter such as clay, finely divided organic
matter, plankton, other microscopic organisms, and
organic acids. Unlike Chl-a, turbidity did not exhibit
a cross-sectional concentration variation and showed a
decreasing trend from upstream to downstream as
observed in Fig. 5b. This could be presumably due
to the fact that Kissimmee River meanders in the flat
plain which gives enough time for the sediments to
settle down with a resulting decrease in turbidity to-
ward downstream locations.

Similar to Chl-a, the TP concentration de-
creased from the bank towards the center, confirm-
ing their theoretical relationship in trophic
waterbodies (Smith and Shapiro 1981) (Fig. 5c).
During the day selected as representative of the
2009–2010 wet season, TP relocated from the river
course to the wetlands (higher concentrations in
the floodplains generally considered as nutrient
attenuation zones). This elevated TP levels could
originate from the legacy phosphorus of the dried-
up wetlands. Indeed, after transforming the mean-
dering Kissimmee River into a canal, the primary
land use of the drained floodplain was as cattle
pasture and included also some sod farms (Van der
Valk et al. 2009) that would certainly leave behind
important legacy phosphorus deposits in the soil.
The overall trend in TP stored in the water column
presented in Table 3 is not conclusive since an
increase and a decrease in the TP levels were
observed in different sections of the river. It is
worth emphasizing that in the present study, Chl-

a (a proxy for phytoplankton biomass) was used to
determine TP levels while relating the measured
TP to the reflectance values using the artificial
neural network.

5 Conclusions

Optical sensors such as Landsat TM could be used as a
cost-effective technique to monitor water quality
parameters at a basin scale. The developed neural
network model reduced the uncertainty from the ex-
clusion of any of the bands and also captured both the
linear and nonlinear complex relationships. The neural
network model provided an excellent relationship be-
tween the observed and simulated water quality
parameters correlated at R2>0.95. The results showed
that the root mean square error values for phosphorus,
turbidity, and chlorophyll-a were below 0.03 mg L−1,
0.5 NTU, and 0.17 mg m−3, respectively, for all sea-
sons at the neural network training and validation
phases. The trends for changes in the selected water
quality parameters were established while noticing
that these results were based on comparison between
2 days during the wet and dry seasons before and after
restoration. A longer time period should be investigat-
ed to test the neural network, determine its perfor-
mance, and assess the impacts of Kissimmee River
restoration on water quality parameters. The general
increase or decrease tendency of selected water
quality parameters in the water column will then
be established, taking into account the difference
in water depth and surface area before and after
restoration.

Table 3 Percentage of increase
(+) or decrease (−) in the phos-
phorus and chlorophyll-a
amounts stored in the water col-
umn in the upper, middle, and
lower sections of the river

Phosphorus (%) Chlorophyll-a (%)

Upper section of the river

1998 dry–2010 dry −78.8 −67.5
1998 wet–2010 wet +7.4 −88.9
Middle section of the river

1998 dry–2010 dry −99.8 −49.8
1998 wet–2010 wet +2,190 +59.1

Lower section of the river

1998 dry–2010 dry −85.2 −76.0
1998 wet–2010 wet −33.5 −94.8
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