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Abstract

Background: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems.
Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and
other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is
determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space
and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method
based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species
turnover.

Methodology/Principal Findings: We model satellite images of regions of interest as textures. We define a texture in an
image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To
compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate
probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a
non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the
multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then
obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that
simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We
measure the difference between two textures’ representative pdf’s via the Kullback-Leibler divergence (KL). Species
turnover, or b diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we
predict species richness, or a diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically
use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions
against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly
predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near
100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which
provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the
Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The
fluctuations are smaller in the wet season when compared to the dry season.

Conclusions/Significance: Texture-based statistical multiresolution image analysis is a promising method for quantifying
interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed
automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal
resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost
effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based
visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of
anomalous data.
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Introduction

Background
Recent decades witnessed a considerable number of alien

species being brought into wetland with significant impacts on

local ecosystem structure and biodiversity richness across taxa [1].

In particular, variation in hydrological regimes that occur due to

natural and anthropic factors strongly affect water-dependent

ecosystems [2,3,4]. Wetlands are particularly fragile due to host

species’ high sensitivity to variations in water regime fluctuations.

In fact, wetlands respond to nutrient enrichment of associated

waters in typical fashion [5]: some shift in plant community

composition occurs first after nutrient levels in soil increase,

followed by changes in both aquatic and wetland-dependent

animal communities [6]. In oligotrophic wetlands, such as

peatlands and ombrotrophic bogs, responses to eutrophication

may be more rapid, more dramatic, and longer lasting, naturally

implying an intrinsic strong correlation between water, soils, and

vegetation [7,5]. Particularly not well understood is the correlation

between species richness and rainfall [8,2]. Yet, an understanding

of linkages between soil properties in wetlands and above-ground

landscape patterns is critical to developing quantitative soil-

landscape models that will aid in detecting, localizing, and

characterizing changes in species composition.

Currently, assessment of biodiversity at local and regional scales

often relies on fieldwork-based data collection [9]. Species

assessment in relatively large or weakly accessible areas is a

longtime challenging task for ecologists. As stressed in [10], a key

factors need to be determined before a sampling design is ready for

implementation, such as: (i) the number of sampling units; (ii) the

spatial placement of the sampling units; (iii) clear definition of the

statistically meaningful species of concern; and, (iv) an operational

definition of a species community. Moreover, field-based ap-

proaches are typically labor intensive and costly, and only a small

fraction of a study area may be sampled [10]. The same holds true

for hydrological and geological fieldworks that aim to better

understand the dynamics of water and soils.

The above discussion attests to a crying need for methods that

extract information and accurately analyze remote sensing images

nowadays available. High-resolution satellite imagery provides

detailed spatial characteristics over large areas of ecosystems and

offers a promising potential for accurate vegetation mapping

[11,12,13,14,15]. However, most multispectral image classification

techniques more commonly focus on spectral discrimination of

ground objects for single-species detection [16,17], and may

overlook pertinent information extractable through analysis of

spatial, indeed spatiotemporal, pixel intensity variation residing in

high resolution images [18], not to mention the multiscale nature

of these variations. Noteworthy, the work in [18] emphasizes the

need for methods that rapidly and objectively forecast species

diversity thru spatiotemporal data analysis. The work in [18] also

demonstrates how previous techniques produced poor assessment

of species-richness, or a diversity, and particularly pairwise species

dissimilarity, or b diversity. While the work in [19] focuses

attention on b diversity as an important measure of species

dissimilarity between communities, the spatial analysis presented

do not consider the time varying aspects of species dissimilarity.

Besides the pairwise species dissimilarity, species-turnover, or b
diversity, reflects the change of environmental variations, such as

of rainfall and soil, as dictated by either natural events, anthropic

events, or both [2]. Species turnover is a major motivation for the

work in [20,21], and a significant number of research efforts

analyze a diversity at different spatial scales (e.g.

[22,23,24,8,25,26]). Yet, apart from [10], time variations in

species composition is often overlooked.

Greater Everglades Ecosystem Restoration
In this study we consider the Water Conservation Area 1 (WCA

1) in the Greater Everglades Restoration Area, also known as the

Arthur R. Marshall Loxahatchee National Wildlife Refuge. This is

a constructed tropical wetland (Figure 1). We demonstrate our

approach for 28 year wet and dry seasons using Landsat

observations. Among wetlands worldwide, the Greater Everglades

Ecosystem Restoration area (GEER) has undergone the most

considerable changes in ecohydrological patterns. The changes are

due to the constructions of a set of levees and canals aimed to

control water flow in the area. Thus, GEER is a reference wetland

among ecohydrologists and environmental scientists at large

[7,1,27,4,3]. The work in [4] analyzes the effect of rainfall

variation induced by climate change for the whole Everglades

National Park. This study evidenced the importance of rainfall for

the Everglades, an ecosystem defined as strongly rainfall-

dominated. Within GEER, WCA 1 is one area that, in comparison

to others, underwent the smallest ecohydrological changes; rainfall

thus controls the majority of its water. Thus, WCA 1 is a unique

area to test the correlation between climatological and ecohy-

drological patterns. The choice of GEER to demonstrate our

proposed methods is opportune, as there is currently a serious

ongoing debate regarding the restoration of Everglades according

to the original predrainage patterns; the main concern regards

effects that such restoration may bring to the ecosystem [1,27].

Prior to undertaking such restoration it is very important to

develop analytical methods and tools capable of characterizing

and localizing multiscale spatiotemporal changes, such as in

vegetation patterns, as a function of changes that derive from

previous interventions and/or natural changes of climate. Addi-

tionally, the analysis of vegetation, plant species-richness in space

and time in particular, is also crucial to the development of models

that are capable of predicting scenarios of different management

alternatives. Management alternatives for WCA 1 are different

configurations of the levee system that regulates the ecohydrology

in the area. Generally, ecological models are calibrated and

validated on observed data, and accurate parameter estimates are

therefore critical to enabling these models. Regarding WCA 1, we

are only aware of the effort of [28] for evaluating the restoration of

the Everglades using satellite imagery. However, [28] did not

consider any species richness indicator.

Approach
In a new approach to this problem, we aim to extract species

richness in space and time from multispectral satellite imagery,

using statistical multiresolution wavelet texture analysis. We adapt

the approach in [29], used for retrieval, to texture classification.

We demonstrate our analysis of WCA 1’s ecohydrological patterns

by considering interseasonal and interannual species dissimilarity -

which is better known as ‘‘species-turnover’’ [21,20] - and species

richness for twenty-eight years of Landsat observations. The

approach consists of applying wavelet decomposition, and

statistically modeling then comparing these coefficients either thru

a non-parametric histogram, or thru an appropriate probability

density function. We elect a model that embraces a wide spectrum

of central and tail behavior that can be represented by varying just

two parameters at each subband. Specifically, the coefficients from

each scale, even each subband of the decomposition are

considered samples from a generalized Gaussian (GG) probability

density function (pdf). The coefficients provide estimate of the

characterizing GG pdf parameters. We next assume independence

Species-Richness and Species-Turnover from Texture
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across scales and across subbands within scales and obtain a joint

pdf for each textured image region. The independence assumption

is only an approximation, but experience has shown that it

provides accurate results when the objective is to quantitatively

examine differences across regions and time points. There are

many ways to quantitatively assess differences between pdf’s; we

choose the relative entropy, known as the Kullback-Leibler

divergence (KL). Other methods, such as likelihood ratios, and

various metrics, could also be examined. We use the KL

divergence and the Shannon entropy to assess species dissimilarity

in time (b diversity), and species richness (a diversity) respectively.

Entropy is widely reported as a proxy of species richness [30],

while spectral heterogeneity measured by reflectivity is a measure

to quantify the entropy [31,32].

Figure 1. Remote-sensed images for the Arthur R. Marshall Loxahatchee National Wildlife Refuge (WCA 1) during the dry season for
the period 1987–2011. The first three years (1984–1986) images are not represented. The representative region in which the texture analysis is
performed is delineated in red for each image. The red regions are characterized by a cloud cover lower than 20%. The green regions identify where
the data of species are available. Figure S1 reports the images for the wet season.
doi:10.1371/journal.pone.0046616.g001
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We validate our predictions on independent data from the

Global Biodiversity Information Facility [33] that are composed

by field-data. We do not compare directly our method with other

multispectral analysis methods (e.g. see [18] for a review) as we

prefer to provide a novel theoretical and methodological

framework - tested against long duration data records - for

analyzing multispectral images.

Previous Research
To the best of our knowledge this is the first time that a

statistical model based multiresolution texture analysis is applied to

satellite imagery for quantifying species-turnover, a multiscale

spatiotemporal phenomenon. Previously, the work in [19], [34]

and recently [35] used the KL divergence for estimating b
diversity in space as a theoretical construct without any model. In

[36], texture analysis predicts avian biodiversity richness based on

satellite imagery. Species turnover, however, was not considered.

Other previous texture-based calculation used the intensity of

imagery for estimating biodiversity variables. Texture-based

analysis have investigated species habitat relationships [37],

successional attributes of forest species [38], classification of

species [39], species richness as a function of spatial and spectral

resolution [15], intercorrelations of vegetation biodiversity and soil

dynamics at both local and regional scales [40], and different band

combinations of images [41].

None of the above authors, however, specifically account for

multiple scale variations in both space and time. Statistical

multiresolution texture analysis proved successful in other appli-

cations; it is previously applied to classify stem cell colonies

[42,43,44], thus enabling non-invasive analysis of these cells. Non-

invasive analysis of cells is a disruptive technology that carries the

potential of supplementing, even replacing invasive and at times

destructive chemical biomarkers. As such, in addition to lowering

cost, it provides two advantages: (1) it provides a quantitative

statistical assessment of these cells; and (2) enables the preservation

of these cells for their intended use, such as drug testing and tissue

formation. For the ecological study of concern here, the analysis

will have similar advantages: it will reduce the need for costly field

fieldwork-based data collection [9]. It is also non-invasive, while

fieldwork data may also perturb the ecosystem and the reliability

of the collected data may be low because of the generated

disturbance or because of the limitedness of the sampled data

[45,1].

Summary of Contributions
The overall objective of this study is to investigate the

spatiotemporal relationships between soil, water, and vegetation

patterns derived from remote sensing data in a tropical wetland.

We adapt and apply a multiresolution statistical texture analysis to

remote sensing imagery. The methodology developed aims to

account for both the statistical and multiscale spatiotemporal

nature of the above mentioned relationships, thus enabling more

parsimonious inference at higher spatial and temporal resolution.

We also investigate the accuracy of the KL divergence as a

measure of b diversity in time versus conventional approaches

such as the difference of the Shannon entropy. We detect: (i) the

hydrological footprints in term of correlation between water,

vegetation, and soil changes; (ii) the interseasonal variation of

species-richness in which dry and wet seasons are compared for

each year (Figure 2); and, (ii) the interannual variation of species-

richness for the same season between consecutive and non-

consecutive years (Figure 2). We verify that the use of the KL

divergence estimated on texture performs better than conventional

methods. This analysis is performed successfully on low-medium

resolution data (Landsat images). Moreover, we illustrate the

results with a novel color based visualization that provides insight

into the ecological variations, and enables a quick recognition of

anomalous data.

Materials and Methods

Satellite Imagery
The satellite images of the Water Conservation Area 1,

described in Figure 1 and Text S1, are derived from the Landsat

database of [46] and [47]. Figure 1 and Figure S1 show WCA 1

for the 1987–2011 period in the dry and wet season respectively.

The resolution of these images is 30 m. The images from 1984 to

1998 are from the L4–5 TM dataset, from 1999 to 2003 from the

L7 ETM+ with SLC-on (1999–2003), and from 2003 to present

from the L7 ETM+ with SLC-off. The Scan Line Corrector (SLC)

stopped working on May 31, 2003 and that caused striping of

remote sensed images [48]. Thus, we do not consider in our

analysis the striped parts of these images. Each Landsat image is

cropped along the boundaries of the Water Conservation Area 1

provided by the South Florida Water Management District. The

representative area of analysis for each image is selected in oder to

guarantee a cloud cover lower than 20% on average for each

selected area and a minimum area requirement for the texture

method (Section). At the same time, we strived to maximize the

extension of the selected area and its representativeness of the

whole landscape. For each year two images are collected, one for

the dry season, December to April, and one for the wet season,

May to November. Images were selected in January and August,

the most representative months for the dry and wet season

respectively. In Figures 1 and S1, the red squares show the regions

selected for texture analysis. We analyze the satellite images for

each visible band defined as:

We analyze the satellite images for each visible band defined as:

N Band 1: (Blue; electromagnetic wavelength: 0.45–0.52 mm),

which is useful for mapping water, differentiating between soil

and plants, and identifying manmade objects such as roads and

buildings;

N Band 2: (Green; electromagnetic wavelength: 0.52–0.60 mm),

which spans the region between the blue and red chlorophyll

absorption bands, and shows the green reflectance of healthy

vegetation (thus vegetation that changes across seasons and

years). It is useful for differentiating between types of plants,

determining the health of plants, and identifying manmade

objects;

N Band 3: (Red; electromagnetic wavelength: 0.63–0.69 mm),

which is one of the most important bands for discriminating

among different kinds of vegetation. It is also useful for

mapping soil type boundaries and geological formation

boundaries. It is considered as a proxy of soil types.

Species Occurrences
The species richness for WCA 1 is compiled by assembling

together data from fieldworks of [45], the Global Biodiversity

Information Facility database [33], and the Comprehensive

Everglades Restoration Project database [49]. In order to compare

the predicted species richness from the analysis of the green band

of Landsat images, we build a species richness matrix at 30 m

resolution from the aformentioned sources. For more information

about WCA 1 we refer the reader to Text S1.

The ‘‘base’’ local species-richness (or a diversity) of plant

communities is built from the Global Biodiversity Information

Species-Richness and Species-Turnover from Texture
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Facility[33]datathatprovideoccurrencesofspecies inspaceandtime

at 1 km resolution. The green squares in Figure 1 and S1 indicate the

regions where the GBIF data are available. We consider data from

1984 to 2011 such as for the Landsat images. For the GBIF data we

downscale the information of species richness from 1 km2 to 30 m2

using a simple coarse-graining algorithm [50]. A grid of smaller boxes

is created and the number of species are counted at the resolution of

the smaller grid. The estimation of species richness is also refined with

point data of plant species occurrences from CERPzone, that is the

database of the Comprehensive Everglades Restoration Project [49].

CERPzone data are available from 2001. In the species richness

matrixwealso includethedataof[45],whereatotalof30plantspecies

are found along the Loxahatchee National Wildlife Refuge transect

which goes from the westernmost to the easternmost boundary of

WCA 1 at its maximum width. According to [45] the species-richness

atagiven siteneverexceeded8m{2.Of these30species, only11were

found in both 1989 and 1999 (Table 2 in [45]).

The occurrences of these three datasets are compared together

after creating a grid over WCA 1 in which the unitary pixel is

characterized by an area of 30 m2. The point occurrences of

CERP and [45] are downscaled to 30 m2 following the approach

of [51] that is a shot-noise Cox process method. All the unique

occurrences of species from all datasets are assigned to each pixel

according to a distance criterion. Each occurrence characterized

by geographic coordinates is assigned to the nearest neighbor

pixel. The local species-richness or a diversity is calculated by the

sum of unique species in each pixel, and the average local species-

richness of WCA 1 is the average over all the species-richness

values of each pixel. Species turnover or b diversity is calculated

on the data of [33] as complementary to the Jaccard Similarity

Index (JSI) evaluated in time at resolution of 30 m. JSI is given by

the ratio of the number of common species in two pixels

considered and the number of all species in both pixels.

Specifically, b~
aij

aizaj{aij

, where ai and aj are the numbers of

species present in pixel i and j at different seasons or years). We

also note that c diversity is the number of distinct species in the

whole domain of the green squares (Figure 1).

Specific Study Hypothesis
Our study is based on the following hypothesis formulated on

some previous studies and data.

1. Rainfall is the main driver of vegetation patterns in WCA 1

and in tropical wetlands [1]. This is evidenced by hydrologic

studies [4] and by analysis of satellite imagery pre- and post-

construction of the levee-canal drainage systems [1] We do not

anticipate any relationship between changes in soil, water, and

vegetation richness in WCA 1 because non-linearities were

evidenced among these variables [5]. However, because of the

high seasonality of climate [8,1] we expect variation of species

richness within each year for the wet and dry season such as

was reported for single species [52].

2. Landsat RGB imagery, despite its low resolution,reveals

information about the spatiotemporal structure of ecosystem

components [53,54]. As stated by [54] high resolution imagery

is not always available for free for all the regions in the world.

Moreover, imagery of higher quality does not always guarantee

better estimation of biodiversity variables. This is particularly

true in tropical ecosystems where the resolution of high quality

imagery can be too small compared to the extent of each single

species [54]. We believe that the improvement of methodol-

ogies for assessing biodiversity variables and other environ-

Figure 2. Graphical explanation of the analysis performed for the WCA 1. Landsat images (from 1984 to 2011) are acquired for the dry and
the wet season. The example is reported for the years 1997 and 1998. The changes in vegetation composition are analyzed using a and b diversity
among seasons and among years. For the interseasonal analysis the time-scale is on average six months between seasons of the same year, while for
the interannual analysis the time-scale is about a year between the same season of different years. a and b diversity from data are compared to the
estimates of the Shannon entropy (Equation 5) and of the KL divergence (Equation 4) for the green band of the images respectively.
doi:10.1371/journal.pone.0046616.g002
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mental variables of ecosystems such as in this paper, can

overcome the low quality of imagery such as the Landsat

imagery.

3. The Shannon entropy of the green band can be considered as

the spectral heterogeneity (reflectance) of plant species in

water-dominated ecosystems [55,56,57,58,59,60,61,62,63,

64,65,66]. The blue and red bands can be considered as the

spectral signatures of water and soil heterogeneities in the

ecosystem [55]. Different species have different reflectance

levels for different bands of the Landsat images. The higher the

range of reflectivity, the higher the entropy because there are

potentially more plant species with different degree of

reflectivity. In ecology there is an large discussion that different

reflectance levels do not always characterize different species,

but ‘‘functional species’’ [55,58,59,67,53,68]. The issue about

species diversity versus functional diversity is a longstanding

issue in ecology. Functional diversity, which is different but

related to taxonomic diversity (i.e., species richness), is crucial

to ecosystems and the services they provide to humans [59]. In

this paper we talk about ‘‘species’’ rather than ‘‘functional

species’’; nonetheless, we make clear that similar reflectance

levels may characterize functional species or vegetation types

(within the same spectral group) rather than the same species.

No distinction is made here between invasive and endemic

species; however, the variation of species richness can also be

attributed to the invasion of non-native species and inform

species management. Other sources of variation in surface

reflectance, such as directional effects and shadowing, are also

sources of texture variations in Landsat scenes. Nonetheless, we

believe our algorithm is capable of detecting the average

texture generated by species differences.

4. a and b diversity are related to the Shannon entropy and to the

KL divergence of the green band respectively. Previous studies

investigated these relationships based on data and theoretical

constructs [19,35]. We also hypothesize that a and b diversity

in time are independent measures of biodiversity richness as

suggested by previous studies [69,70,71,72,73,20]. We conjec-

ture that the average a diversity is a lower but close estimate of

c diversity. This is because the distribution of species is quite

homogeneous within WCA 1 as verified by data [33] and as

reported in [74]. Thus, because the number of species is on

average the same in any representative region within the whole

ecosystem and for the period considered, scale-invariance of a
diversity is hypothesized.

5. The difference between Shannon entropies provides a worse

estimate of b diversity in time than the KL divergence. We

expected that this occurs because the KL divergence, that is not

calculated on the intensity of the Shannon entropy, potentially

accounts for the pairwise interactions between vegetation

communities in time (i.e. the mutual information in informa-

tion theory). On the contrary, the difference between Shannon

entropies does not capture the community pairwise interactions

[19].

Texture Image Analysis
We model the region of interest as textures. Texture models

abound in the literature and textbooks (see e.g. [75]). We favor a

model that captures what in our view are two essential properties

of texture: variations of intensity across pixels that: (i) occur at

multiple scale, and (ii) are stochastic in nature. Such a model

suggests that a wavelet analysis can decompose the spatial intensity

variation into multiple scales, and subbands within scales, after

which the coefficients of the decomposition at each scale can be

analyzed statistically. The across scale statistical analysis charac-

terizes the texture. This is the approach followed in [29] for

texture retrieval. As wavelet analysis decomposes a signal locally

according to orientation and scale, it is especially apt for modeling

texture, characterized by intensity randomness at multiple scales.

Note that perceived image texture is closely related to the degree

of random fluctuation in image gray-scale intensity at multiple

frequencies. An n-level wavelet decomposition produces 3n detail

subbands, three per level, whose coefficients convey information

about the fluctuation at a particular scale and orientation (one

oriented horizontally, one vertically, and one diagonally). We

compute textural features from these subbands by modeling the

empirical pdf of the coefficients in each subband. Moving from

one level to the next the scale increases. The above method was

also adapted to texture comparison and classification, and used to

non-invasively and quantitatively classify stem cell colonies

[42,43], without using chemical markers, thus preserving the

colonies for use. The method is also used to classify nuclei in

[44,76,77]. We will adopt this method here to compare Landsat

images of regions across seasons and years, and demonstrate in the

next section that it successfully predicts species turnover. A

complete description of this approach is beyond the scope of this

paper, byt the approach is thoroughly developed in [29] and [42].

We briefly outline the steps below. For representing a texture by a

probability model:

1. Texture window selection. For the texture of interest

within the image, select the largest possible representative window

where the patch (or region) of the image is analyzed; a minimum

of 64|64 pixels is required. The patches have different size from

year to year. The size of the patches varies because we aim to

select the largest cloud-free regions possible. Thus, size is increased

until the cloud coverage in the area is lower than 20%. We used a

moving window in space to select each patch. The size of the

patches varies from 10% to 96% of the total area of WCA 1 that is

588 km2 (Figure 1). Thus the area of the patches varies from 58 to

564 km2 approximately.

2. Wavelet decomposition. Apply a multiscale wavelet

decomposition to the selected window. Collect the coefficients at

each detail scale of the decomposition. The specific choice of

wavelet and the number of scales is a design choice, and more than

one choice will yield appropriate representations. Wavelet analysis

is a generalization of Fourier analysis that quantifies the degree at

which pixel intensity varies at multiple scales or electronic

magnifications. As wavelet analysis decomposes a signal locally

according to orientation and scale, it is especially apt for modeling

texture, characterized by intensity randomness at multiple scales.

Note that perceived image texture is closely related to the degree

of random fluctuation in image gray-scale intensity at multiple

frequencies. An n-level wavelet decomposition produces 3n detail

subbands, three per scale, whose coefficients convey information

about the fluctuation at a particular scale and orientation (one

oriented horizontally, one vertically, and one diagonally). We

compute textural features from these subbands by modeling the

empirical pdf of the coefficients in each subband. Moving from

one level to the next the scale increases.

3. Probabilistic modeling at each scale. For each decom-

position scale, either represent the coefficients by a non-parametric

histogram, or instead select a probability density function (pdf) as a

model and use the coefficients to estimate the pdf’s parameters. In

[76], the first approach, non-parametric histograms, is used, while

in [29,43,44,77], the Generalized Gaussian (GG) probability

density function was selected as an appropriate model for the

wavelet coefficients at each scale. The GG pdf for detail

coefficients at scale s is given by:

Species-Richness and Species-Turnover from Texture
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f (xs; vs,ps)~
ps

2vC(1=ps)
e{(DxD=vs)ps

: ð1Þ

Here, xs is the random variable or detail coefficient at scale s, and

vs and ps are the distribution width factor and shape parameter,

respectively, for subband s. Additionally, C(z)~
Ð?

0
tze{tdz

indicates the Gamma function. We assume the location parameter

(i.e. process mean) to be zero as the detail coefficients are the

outputs of a high-pass filters. The GG density may be used to

model a wide variety of symmetric, unimodal density functions;

special cases include the (standard) Gaussian ((v, p) = (
ffiffiffi
2
p

s, 2)),

standard Laplacian ((v, p) = (s=
ffiffi
(

p
2), 1)), and uniform (p??)

densities. s is the standard deviation, which for a GG Distribution

process (GGD) is s~v
C(3=p)

C(1=p)

� �1
2
. A variety of techniques exist

for estimating parameters v and p, including moment-matching

[78] and maximum-likelihood [29,79,76].

4. Texture joint pdf model. Construct the joint pdf for the

texture by combining the pdf’s for each scale’s subbands, assuming

independence across scales. We note that such an assumption is

not true in reality, but it eases the computational burden while

providing good results for classification. For S scales, with

v~ v1, . . . ,vs, . . . ,vSð Þ, and p~ p1, . . . ,ps, . . . ,pSð Þ.

f (x; v,p)~ P
S

s~1
f (xs; vs,ps) ð2Þ

One of the key advantages of the GG distribution model is that a

closed-form solution exists for the KL between two GGD processes

simplifying computation: DGGD(f DDg)~log
v2p1C(1=p2)

v1p2C(1=p1)

� �
z

v1

v2

� �p2 C½(p2z1)=p1�
C(1=p1)

{
1

p1
. Textures are compared in a pairwise

fashion by obtaining the difference between their respective pdf’s.

Specifically, to compare two textures with pdf’s

fi(x)~f (x; vi,pi), i~1,2, respectively, we calculate a measure of

the pdf’s divergence or difference. There are many ways to express

the divergence between pdf’s, including likelihood functions, various

metrics such as the L1 divergence (
Ð

Df {gD), the Bhattacharyya

distance, and the KL divergence. We elect the latter as it is inspired

by the relative entropy between pdf’s. The information divergence is

especially convenient as it admits a tractable closed-form solution

for GG distributions. Specifically, we have for the Kulback-Leibler

divergence,

DKL(f ,g)~

ð?
{?

f (x) log
f (x)

g(x)
dx , ð3Þ

that theoretically is {Ef ½log g�{H(f ) where Ef ½log g�~
Ð

f log g

is the expectation under f of log g, and H(f ) is the true entropy in f ,

i.e. H(f )~{
Ð

f log f . The divergence in Equation 3 is not

symmetric, meaning that DKL(f ,g)=DKL(g,f ). To obtain a

symmetric version, we define

Dsym(f ,g)~
X3n

i~1

ki DKL(f ,g)zDKL(f ,g), ð4Þ

summing across all 3n subbands, where ki are simply weights

assigned to particular subbands i~1, . . . ,3n. In general, we set all

ki~1, but the weights might be used to emphasize or penalize

certain bands according to prior knowledge. In the results and

discussion section, we demonstrate that the above symmetrized KL

divergence is an effective predictor of species turnover.

Ecological Equivalence
The ecological equivalence of texture analysis is based on the

assumption that the entropy and the KL divergence represent the

potential species-richness and the dissimilarity in time of species-

richness within communities (a and b diversity respectively). In the

following we propose a theoretical description of entropy and KL

divergence in ecology making analogies to the definition of these

quantities in image analysis (Section). Because of our hypothesis on

the reflectance of species, the entropy in shades of green means

diversity in types of plants, which determines a diversity. KL

divergence between two regions at different times means different

shades of green for the two regions, which determines b diversity

in time. a and b diversities are among the most employed

theoretical concepts in ecology and biodiversity conservation. For

most ecologists, a diversity traditionally reflects the within-habitat

diversity [80], whereas b diversity is the component of ‘‘total

diversity’’ that is produced by differences in species composition

among the sampling units [81]. The need to partition diversity

within and among habitats has both theoretical and applied

interests. Species-richness is a diversity index of order zero,

Shannon entropy is a diversity index of order one, and all

divergence measures are diversity indices of order two [30,18].

Because the Shannon entropy is a first order measure of species

diversity [30], the variation of Shannon entropy in time is as well a

first order measure of species diversity between the same or

different regions.

The Hill order [82] is the order of any information measure that

is derived from the generalized expression
PS

i~1 p
q
i or limits of

such functions as q approaches unity, where pi is a probability

distribution function and S is the number of equally common

species that compose a community. The diversity metrics from

(
PS

i~1 p
q
i )1=(1{q) are often called ‘‘Hill numbers’’, but they are

more general than [82]’s derivation suggests [30]. The exponent

and superscript q may be called the ‘‘order’’ of the diversity; the

true diversity depends only on the value of q and the species

frequencies, and not on the functional form of the index. For q
that approaches unity the information functions are the species

richness, Shannon entropy, all Simpson measures, all Renyi

entropies, all HCDT or ‘‘Tsallis’’ entropies, and many others. All

values of q less than unity give diversities that disproportionately

favor rare species, while all values of q greater than unity

disproportionately favor the most common species [83,30].

Generally the higher the metric’s order the better the estimation

of the ecological metric. With the knowledge of entropy the

species-turnover could be potentially calculated as difference of

entropies between two different time steps. However, we consider

whether the KL divergence is a better measure with respect to the

difference of entropies. In fact, the KL divergence captures the

pairwise variation of species-richness of local communities and not

only their independent variation of species-richness [19]. For

example [84] showed how the pairwise interaction is not negligible

in grasslands and this has profound implications for the ecosystem

functioning. Recently the KL divergence was related to the

Shannon entropy and the species-richness in the whole ecosystem

analyzed [35]. We consider that the species-richness and

dissimilarity estimations are representative of the whole region

extending the analysis from the subregions in which the texture

analysis is performed. The entropy calculated by our texture

analysis method can be assumed to be an estimate of the
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maximum likelihood estimation of the Shannon’s index [19]

defined as:

EP(t)~{
XS

i~1

fi(t) ln fi(t) , ð5Þ

where fi(t) is the observed sample fraction a local community P

(Ni=N, where N can be considered as the number of individuals of

species S, and Ni is the number of individuals of the i-th species) at

time t. The entropy here introduced has the same meaning of the

entropy calculated using the intensity of the green band images.

The same entropy can be calculated over an other local

community Q for an other function g. The entropy as defined

above is one of the most commonly used index of a diversity

[19,71], that is the number of species in a subarea of the region

considered, in theoretical ecology and ecological modeling.

Certainly there are other metrics to estimate a diversity, but the

entropy is one of the most profound and useful of all diversity

indices. However its value gives the uncertainty rather than the

diversity. Thus, the entropy needs to be rescaled to diversity given

some data or calculated as in [30]. The entropy is easily derived

from the ‘‘order generating function’’ of [81]. The predicted a
diversity is tested vs. the estimation of a diversity from the data

described in Section at resolution of 30 m.

The KL divergence calculated by our texture analysis method is

an estimate of the divergence:

KL½P(t) : Q(tzDt)�~DKL½P(t) : Q(tzDt)�

zDKL½Q(t) : P(tzDt)�~

~
XS

i~1

fi(t){gi(tzDt)½ � ln
fi(t)

gi(tzDt)

~ {EP(t){EQ(tzDt)zEPQ(t) ,

ð6Þ

where DKL is the discriminant information introduced by [85]

(Equation 3). Thus, KL is the symmetric version of the divergence

4. Equation 6 is estimated using Equation 4. Let̀s assume that local

communities (or regions) P and Q are composed by the same

species (labelled from 1 to S) with probability distributions

P~f1,f2,:::,fs and Q~g1,g2,:::,gs respectively, with fiw0, giw0

and
PS

i fi~1, gS
i fi~1. P and Q are evaluated at different time

step, t and tzDt where in our analysis Dt is approximatively six-

month and a year for the interseasonal and interannual

comparison of the species dissimilarity, respectively. EP and EQ

are the Shannon entropies of communities P and Q calculated as

in Equation 5, and EPQ is the ‘‘reciprocal information’’. The

reciprocal information can be assessed only after the knowledge of

KL (Equation 4) and of EP and EQ. The reciprocal information

represents the pairwise interactions among vegetation species in

different communities in time (or in space) which is not captured

by completely by the differences of entropies of the two local

communities. The KL divergence gives a measure of how much

the distribution of species within the communities differs from one

another. This has been traditionally called b diversity in ecology.

The b diversity is the most useful metric from which it is possible

to assess the number of species and their abundance. We do not

use the KL divergence for measuring the dissimilarity of species in

space within the same region or between different regions

although this is a possible operation that can be performed. Thus,

Equation 4 is a proxy of Equation 6 of the landscape analyzed.

Results

The entropy of each band for the dry and wet seasons is shown

in Figure 3. The Shannon entropy is calculated on the green band

of the Landsat images using Equation 5. In this paper we use the

Shannon entropy of the RGB bands as spectral signature of

temporal heterogeneity of the landscape for soil, vegetation and

water. Thus, we deviate from [11] which uses the spectral

heterogeneity as the mean of the pairwise Euclidean distances in

the wavebands dimensional space. There is no significant decadal

change in plant community patterns as confirmed by [45]. In fact,

the entropy of the green band that is a proxy of a diversity is

overall constant both for the dry and wet season in the twenty-

eight years analyzed. This may be both related to the confinement

of species within WCA 1 (the set of surrounding levees block

immigration of species) and to the absence of dominating species

that do not spread over large regions. Thus, the set of species living

on WCA 1 is believed to be the same on average. The comparison

of Figure 3 (a) and (b) shows that the fluctuations of the Shannon

entropy for each band in the wet season (Figure 3, b) are

moderately smaller than in the dry season (Figure 3, a). Moreover,

the fluctuations of the Shannon entropy of the red, green, and blue

bands are highly correlated within the same season. We note also

that the Shannon entropy of the RGB bands for the dry and wet

seasons are inversely correlated. This is expected considering the

opposite ecohydrological dynamics in South Florida in the dry and

in the wet season.

The dry season is characterized by a lower density of vegetation

than the wet season which theoretically increases the probability to

detect different species. However, the reflectance of the green

band is higher in the wet season but it tends to be more

homogeneous than in the dry season. The Shannon entropy can

be considered as the probability to detect species in a given area.

Thus, the higher the Shannon entropy, the higher the probability

to find all the species within the area considered. Figure 3 (a, b)

shows that this probability increases during the dry season due to

an higher Shannon entropy than the wet season. Thus, reflectance

and heterogeneity may plays a contrasting role in assessing local

species richness. We observed a considerable turnover of species-

richness that is associated to the fluctuation of the average annual

rainfall (Figure 3, c). The entropy of the red band is higher in the

dry period than in the wet period as well as the entropy of the blue

band in the same season. Despite the decrease of the average

annual rainfall in the last decade (Figure S2 (b) shows this trend

from about the year 2003) the average species-richness is observed

to be constant (Figure S2, a). Figure S2, S3, S4 (Text S1) report the

relationships between the average Shannon entropy and the

average rainfall at the year scale. Figure S2 reports the interannual

entropy and the average annual rainfall derived from [86]; Figure

S3 shows the cross-correlation between these two quantities; and,

Figure S4 shows the functional relationships between the Shannon

entropy and the average rainfall at the season-scale. The

correlation between the interannual entropy and the average

annual rainfall is almost equal to one for a lag equal to zero. Thus,

the highest/lowest species-richness is observed for the highest/

lowest rainfall respectively. This result shows that the driver of

vegetation richness is the average annual rainfall. The nutrient

concentration depends on the water depth that depends itself on

the rainfall. Fires, are local phenomena that shape vegetation

mostly locally and their frequency decrease for lower rainfall. We

believe that the variation of Shannon entropy is a first-oder

measure of dissimilarity of a quantity evaluated in different time

periods. Thus, this explain why the average entropy for all the

bands is higher in the dry season in which the biggest landscape
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heterogeneities are observed. Figure S5 confirms the strong

correlation between the Shannon entropy of the red, green, and

blue band. We consider the Shannon entropy of the green band

(Eg) as the dependent variable as a function of water and soil

composition that are represented by the Shannon entropy of the

blue and red bands respectively. The correlation is very high as

evidenced already by the temporal sequences of Figure 3 and

Figure S2.

The estimated a diversity on the data (Global Biodiversity

Information Facility [33], [45], and the Comprehensive Ever-

glades Restoration Project database [49]) at resolution 30 m after

downscaling of the original data is reported in Figure 4. In 1989,

41 species of vegetation were sampled [45]. According to the

Global Biodiversity Information Facility [33] the species were 38.

The green band Shannon entropy for that year is equal to six

approximatively. Thus, if the entropy is taken proportional to 41

species, we observe that the average number of species fluctuated

between 29 (in 1992) and 46 species (in 2006). The potential

average a diversity is 38 species. In 1999, 30 species of vegetation

were sampled [45]. According to the Global Biodiversity

Information Facility [33] the species were 33. In Figure 4 (b) the

green band Shannon entropy corresponding to the year 1999 is

5.7 that corresponds to 36 species when rescaled to real diversity

[30]. Thus, our estimation of a diversity by image analysis is

capturing the second observation with an error of three species.

Comparing Figure 4 (a) and (b) we observe an high cross-

correlation between the measured and estimated a diversity. The

inset in Figure 4 (c) shows in fact that the entropy of the green

band estimates at least 70% of the measured a diversity. This

percentage is 80% and 77% in the dry and wet season respectively

that confirms the assumption of easier detectability of species

during the dry season. Although we recognize that the Global

Biodiversity Information Facility data [33] is affected by some

uncertainty in the estimation of species occurrence [87], we believe

that the uncertainty for this area is overall lower due to the

extensive sampling campaigns occurred in time (we recorded an

average of 20,000 occurrences for each year considering together

the data from [33] and [49]). Hence, we believe to have captured

the local plant species richness and plant species turnover, that is

demonstrated by the excellent similarity between predictions and

data. We also believe that the texture estimation algorithm on the

red squares in Figure 1 and S1 is a very efficient tool to estimate

the species richness of the green squares which are representative

of the richness of the whole WCA 1. In our study area because the

scale of the patch (or region) considered is very large, and the

variation of a diversity is very low, the maximum a diversity tends

to the average c diversity. Because the species are evenly

distributed c diversity has not a strong dependency to the scale

of analysis. Because the reflectance is capable to distinguish

different species, the larger the scale the more the estimated a
diversity resembles c diversity. Gamma diversity is in general

greater or equal to the maximum value of a diversity. For

ecosystems with very heterogeneous distribution of species this is

no more true and local a diversity, average a diversity, and c
diversity are very different [88].

The average change in species-richness in time is expressed by

the variation of the image entropy. The calculated difference

between Shannon entropies at different time steps was reported as

a worse estimator than the KL divergence of the species-turnover

[19]. Nonetheless, It was shown that Shannon’s diversity (that is

the difference between entropies) is the KL divergence between

the actual plot and the ‘‘average’’ plot within the region [35]. A

plot is defined as the region where the analysis of biodiversity is

performed (e.g. the red squares in Figures 1 and S1). If the average

plot (e.g. the green squares in Figures 1 and S1) is sufficiently big to

contain the plot considered, the pairwise variation of species-

richness due to plot interaction is included in the Shannon

diversity. However this is not always the case because disturbances

(such as clouds and satellite recognition imperfections) limits the

Figure 3. Interannual entropy of WCA 1 Landsat images and
rainfall in the period 1984–2011 considered. (a, b) Shannon
entropy of the representative regions of WCA 1 in the dry and in the
wet season respectively (Figure 1, and Figure S1) for the red, green, and
blue bands. The Shannon entropy for the green bad is proportional to
the a diversity of plant species. (c) Average annual rainfall (in mm) in the
dry (red line) and wet season (blue line).
doi:10.1371/journal.pone.0046616.g003
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extent of the representative average plot of the region. Moreover it

is not easy to define the representative plot due to the intrinsic

heterogeneities of the region.

Figure 5 (a) confirms the independence of b and a diversity as

hypothesized and commonly found in literature

[69,70,72,71,73,20]. In the specific case of WCA 1, the

dissimilarity in species-richness between communities (KLg )

slightly decreases when increasing the local species-richness of

communities (Eg ). Such trend is more markedly observed when

speciation is high and dispersal very limited. In the case of WCA 1

we believe that speciation is fairly high and dispersal is moderately

high, however further species sampling are needed to confirm this

supposition. This independence between b and a diversity is far to

be universal among wetland ecosystems and it is one of the most

discussed biodiversity patterns in ecosystems at large. Figure 5 (b)

shows that the KL divergence (Equation 4) differs from the

Figure 4. Estimated and measured local species-richness. The local species-richness (a diversity) and the estimated local species-richness (i.e.
the Shannon entropy of the green band, Eg using Equation 5) are reported in plot (a) and (b) from 1984 to 2011 respectively. In plot (c) the functional
relationship between the Shannon entropy of the green band and the local species-richness for WCA 1 is reported. The inset, which reports the
normalized entropy, shows the ability of the Shannon entropy to capture at least 70% of the measured local species-richness. This percentage is 80%
and 77% in the dry and wet season respectively. The dashed grey curves are the 95% confidence interval of the linear regression exponent.
Variabilities of measured exponents are found by bootstrapping over points and deriving slopes by the linear and the Jackknife models [92].
doi:10.1371/journal.pone.0046616.g004
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difference of Shannon entropies for the green band. In Figure 5 (b)

we test the hypothesis of the KL divergence as a better measure of

b diversity than the difference of Shannon entropies independently

of the season considered. The difference of Shannon entropies

captures 85% of the b diversity at the most. Instead the KL

divergence represents faithfully the whole b diversity that is

estimated on the data. This suggests that interactions and non-

linearities in vegetation processes are not negligible. The KL

divergence includes the ‘‘reciprocal information’’ of communities

in its estimation (Equation 6). Species-turnover can be in fact,

lower or higher, than the simple difference of species-richness

between the same local communities in time. There may be cases

where the disappearance of one species can bring to a large

dominance of another species (e.g. this is the case of sawgrass and

cattail in many water conservation areas [52]), and cases of

‘‘colonization boom’’ of many alien species that bring the

ecosystem to be very species rich (e.g. this is the case of the

Everglades National Park [89,90,1]). Considering that the

reflectance is characterizing species (or functional species) we

observe fluctuations of the species richness in time without

anomalous spikes that may be related to a net decrease or

increase of species. Thus, we can claim that in WCA 1 there have

not been relevant issues with alien species as confirmed in [1]. This

is potentially related to the confinement of species within WCA 1

by the set of surrounding levees that block immigration of species

from outside. Because we did not perform any species classification

our conclusion is about average ecosystem properties (in terms of

species richness) rather than certainty about no invasion. Some

species whose reflectance is similar to endemic species may be

introduced in WCA 1 but their number is certain low.

By considering Figure 5 (b), we see that the difference of

Shannon entropies is actually a fairly good estimate of b diversity.

This may be related to the quite strong time-invariance of species

composition for the representative regions chosen for the analysis

(Figure 1). Scale dependence in species-turnover has been recently

suggested to reflect variance in species occupancy [91]. Thus, the

variability of scale of the red squares analyzed might be a source of

variability in the estimation of b diversity. The similarity between

the KL divergence, the difference of Shannon entropies, and b
diversity appears moderately high for the dry season. This

potentially occurs because of the high spatial heterogeneity in

species composition and low reflectance of vegetation during the

dry season with respect the wet season. During the dry season the

difference in entropies is capable to reproduce only 47% of the

observed b diversity (Figure S6, b). During the wet season the

difference in entropies is capable to reproduce 76% of the

observed b diversity (Figure S6, a). The KL divergence is capable

to estimate 61% and 82% of the observed b diversity in the dry

and in the wet season respectively. Thus, it is advisable to compute

the KL divergence rather the difference of Shannon entropies for

estimating the b diversity. This is observed to be true both for the

interannual and interseasonal species turnover. Overall we verify

the superiority of second-oder indices of richness (i.e. the KL

divergence) vs first oder indices (i.e. the difference of Shannon

entropies) in reproducing b diversity.

In Figure 6 the KL divergence (Equation 4) is represented as a

symmetric matrix in which the x and y axis are the consecutive

seasons (dry and wet) for each year considered in the analysis. The

plots are matrices representing the pairwise textural divergence.

Figure S7 and S8 provide the KL divergence for the RGB bands

for the dry and wet season respectively. The color scale is

proportional to the relative generalized Gaussian pairwise distance

(i.e. the KL divergence) between images for different seasons/

years. The texture is the set of estimated pdfs for each subband,

and the dissimilarity measure between textures is based on the KL

divergence which is defined between two pdfs (Equation 4). The

dissimilarity between and among years is higher for the blue band

(Figure 6, c) than for the red and green bands (Figure 6, a and b

respectively). In 1991 a red vertical and red horizontal line occurs

in the three plots (a, b, and c). Considering the Landsat image in

1991 (Figure 1) we verify that this occurs because of the high cloud

cover in that year that makes the analysis unreliable. Thus, this

year should be removed by the time series when analyzing

temporal variations of a and b diversity. We include the 1991

image to show that these pairwise textural divergence tables can

also be used as a-posteriori indicators to detect images to be

excluded in the analysis. The matrices of Figure 6 are useful for

comparison of species-richness variation (species-turnover): (i)

between seasons of the same or different years (pixels of the upper

and lower diagonal along the main diagonal; for example

considering the pixels in (a1)); of a selected year with respect to

a historical period or with respect to a period in the past (pixels

along a column; e.g. considering pixels in (a2)); and, (iii) between

periods in time (any group of pixels within a submatrix defined

within the matrix; e.g. considering pixels in (a3)). Considering (a1)

for example, by taking year Y as a row and year Yz1 as a

column, we are capable to estimate the difference in species

between these two years which is the species turnover. Figure S9

reports the KL divergence for the maximum of the RGB signal in

the twenty-eight years period considered. Because the maximum

KL divergence can be from the red, green, or blue band in this

case the KL divergence is representing the overall maximum

ecosystem change (being change in vegetation, soil, or water

structure) in the period of observation. Thus, this matrix may be

useful to detect the periods of maximum change of the ecosystem.

Discussion

The following points are worth reiterating and discussing.

N The study emphasizes the role of spatial and temporal

heterogeneity of the landscape in shaping biodiversity patterns,

as a texture method quantifies the strong differences of each

season in term of species composition, soil structure and water

distribution. Specifically, a positive correlation is found

between the Shannon entropy of the red, green, and blue

band for the dry and wet seasons and the average annual

rainfall of each season. This proves the strong correlation

between hydro-geomorphological and ecological changes of

wetland ecosystems. The hydro-geomorphological and the

ecological changes are represented by the Shannon entropy of

the blu-red bands, and of the green band respectively. A

negative correlation is found between the RGB band

variations of the dry and the wet season as expected because

of the opposite ecohydrological dynamics of the two seasons.

The texture method quantifies the strong differences of each

season in term of species composition, soil structure and water

distribution. We believe that our good predictions of species

richness from data proves that reflectance is a good metric for

assessing taxonomic diversity rather than functional diversity.

N The average species-richness of WCA 1 is found to be constant

in the observed period (1984–2011). Despite the decrease in

the average annual rainfall from 2000 to present the average

species-richness seems to be fairly invariant as reported by [86]

and as shown by the data extracted from the Global

Biodiversity Information Facility [33]. However, a decrease

in species-richness may occur if the drying trend persists in the

future. Thus, the monitoring of wetland spectral heterogeneity,

Species-Richness and Species-Turnover from Texture

PLOS ONE | www.plosone.org 11 October 2012 | Volume 7 | Issue 10 | e46616



performed for example by analyzing image texture, is

suggested as a powerful tool in the management of WCA 1

and in general of ecosystems at large. Large-scale restoration

requires ecosystem performance measures that can function as

rapid quantitative benchmarks of recovery or degradation over

time. One of these measures can be the species richness for

instance. Our study provides a methodology that can be used

for this purpose versus expensive monitoring campaigns post

restoration. Our method can also be useful to detect species

variation due to species invasion. A novel matrix visualization

is proposed to compare the change in species differences (b
diversity) between seasons, years, and multiple years. This is

potentially useful in the analysis of ecological processes and

their coupling with anthropic and natural stressors. We also

Figure 5. Relationship between a and b diversity, and estimation of b diversity using KL divergence and difference of
entropies. (a) Relationship between the interseasonal KL divergence and the green band Shannon entropy for the period 1984–2011, and same
relationship estimated on data. The plot shows the independency of b diversity as a function of a diversity. Plot (b) shows how the KL divergence
better predicts b diversity than the difference of the Shannon entropy between seasons. The dashed grey curves are the 95% confidence interval of
the linear regression exponent. In (a) the dashed grey curves are the 95% confidence interval of the linear regression exponent. In (b) the error in the
estimation of the regression coefficient is +0:04. The R2 is the coefficient of determination. Variabilities of measured exponents are found by
bootstrapping over points and deriving slopes by the linear and the Jackknife models [92].
doi:10.1371/journal.pone.0046616.g005
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emphasize the utility of fast and accurate multispectral image

analysis for ecosystem management versus costly field

campaigns as suggested by [18].

N The Shannon entropy and the KL divergence of the green

band of satellite imagery are verified as good estimators of the

species-richness (a diversity) and of the species turnover (b
diversity). This is certainly true in ecosystems where spectral

heterogeneity is very large. However, the Shannon entropy

needs to be calibrated on data in order to assess the number of

species as already evidenced by [30]. Our texture analysis is

conducted on representative regions of variable extent of the

ecosystem analyzed. We found that the predicted a diversity of

each representative region is a good proxy the average a
diversity for the whole ecosystem. Moreover we realized that

the average a diversity is a lower but close estimate of c
diversity for the ecosystem analyzed after validation of

predictions with the data of the Global Biodiversity Informa-

tion Facility. This proves the scalability of the texture-based

analysis method in assessing species richness for ecosystems

where species is evenly distributed. For WCA 1 the Shannon

entropy of the green band reproduces at least 70% of the

observed a diversity. The Shannon entropy of the green band

has a very high cross-correlation with the average annual

rainfall for a lag equal to zero. Thus, every fluctuation of the

average annual rainfall (every six-months) implies changes in

species-richness and community composition. Therefore we

believe that the Shannon entropy of the green band can be

considered as the spectral heterogeneity (without considering

all the bands as in [11]) for assessing a diversity. We verify the

assumption of independence of a and b diversity.

N The KL divergence reproduces b diversity in time (species-

turnover) better than the difference of the Shannon entropy of

the green band of images between seasons and years. This is

because the KL divergence is capable to consider the non-

independent variation of species-richness between pairs of

local communities which can arise from ecological interactions

and feedbacks of local communities. This was proven for b
diversity in space by [19]. This is particularly true in the wet

season because the higher homogeneity in ecohydrological

conditions compared to the dry season makes lower the

uncertainty in the estimation of the species-richness. Consid-

ering dry and wet seasons together from 1984 to 2011 the

difference in Shannon entropy and the KL divergence

reproduce 85% and 100% of the observed b diversity. The

KL divergence reproduces 61% and 82% of the observed b
diversity for the dry and wet season respectively. In general our

texture analysis method performs better in predicting species

turnover than other indicators used in previous studies, for

example in [10]. However studies of species turnover are still

lacking. We also show that medium spatial resolution Landsat

images can provide extremely good estimates of species

richness and turnover without the necessity of hyperspectral

images.

Conclusions
We analyze species richness, species turnover, and other

spectral heterogeneities derived from satellite imagery for a

constructed wetland ecosystem. We use wavelet-based statistical

multiresolution texture analysis, a method that, to the best of

our knowledge, is new to the field. This method accurately

estimates parameters for the marginal distribution of wavelet

coefficients using Generalized Gaussian density (GGD) and

provides a closed form expression form for the KL divergence

between GGD models of different textures. We demonstrate the

method on remotely sensed images of the Water Conservation

Area 1 in the Greater Everglades Ecosystem Restoration in

Figure 6. Interseasonal KL divergence matrices for the period
1984–2011. (a), (b), and (c) are the season-season comparisons (56 wet
and dry seasons for the period 1984–2011) for the red, green, and blue
image band respectively. The more blue/red the pixel the lower/higher
the potential b diversity between seasons. Matrices are symmetric and
the upper triangular part is made transparent.
doi:10.1371/journal.pone.0046616.g006
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South Florida but it can applied to any ecosystem. The results

suggest that the method is indeed promising for the analysis of

species-richness of any ecosystem with high spatial heterogene-

ity. The method is shown to provide better estimates of a and b
diversity in ecosystems where data-sampling is not feasible (e.g.

inaccessible regions) or when it is partially available in time. In

particular, statistical wavelet based multiresolution analysis

provides a means for estimating divergence between two

textures, specifically the Kullback-Leibler divergence between

the pair of density functions representing the textures. The KL

divergence proved to be a near perfect predictor (R2 = 0.98) of

species turnover, or b diversity. Additionally, the visualization

representing the KL divergence results between texture pairs

provide quick insight into species turnover across many years

and seasons. It also enables quick recognition of anomalous

data. Texture modeling is also helpful to the theoretical

understanding of fundamental ecosystem processes, classifica-

tion of land-cover, classification of species [39], and as inputs to

ecohydrological models that are capable of predicting hydro-

period and runoff of wetlands. We anticipate further effort in

using Generalized Gaussian, as well as other non-Gaussian

multiresolution texture methods, together with the KL and

other divergences for comparing textures, in order to achieve

several tasks of importance, more accurately at a higher

spatiotemporal resolution. These tasks include detecting single

species occurrence and abundance through segmentation

analysis citref [76], assessing species-dissimilarity in space, and

more generally, analyzing satellite imagery including stereo-

scopic images. Mathematical features for representing textures

other than wavelet coefficients and their distribution could also

be of interest, especially if they provide models that are

simultaneously simple and parsimonous. Moreover, the appli-

cation of the presented model to other biological systems (for

example for the identification of cell communities [44,76]) and

other scales of analysis of ecosystems is a promising research

direction. Finally, the methods reduce the need for field-work,

while enabling more effective, less costly monitoring, inference,

and decision making support.

Supporting Information

Figure S1 Remote-sensed images for the Arthur R.
Marshall Loxahatchee National Wildlife Refuge (WCA-
1) during the wet-season for the period 1987–2011. The

first three years (1984–1986) images are not represented. The

representative region in which the texture analysis is performed is

delineated in red for each image. The red regions are

characterized by a cloud cover lower than 20%. The green

regions identify where the data of species are available.

(PDF)

Figure S2 Interseasonal entropy of WCA-1 Landsat
images for the red, green, and blue bands. (a, b) are the

Shannon entropy and average annual rainfall (m) in the period

1984–2011 respectively.

(PDF)

Figure S3 Cross-correlation between the average annu-
al rainfall and the Shannon entropy of the green-band. A

lag is equivalent to a year. For lag = 0 there is an almost perfect

correlation (C(R,Eg)~11) between rainfall and potential a diversity

that shows an almost immediate feedback between rainfall and

vegetation seasonality.

(PDF)

Figure S4 Predicted a diversity as a function of rainfall.
(a) Shannon entropy for the green band vs. average annual rainfall

(m). The maximum of the rainfall is about 600 and 1100 mm in

the dry and in the wet season respectively. (b) Shannon entropy for

the green band in the dry season vs. average annual rainfall (mm)

in the dry season; and, (c) Shannon entropy for the green band in

the wet season vs. average annual rainfall (mm) in the wet season.

Variabilities of measured exponents are found by bootstrapping

over points and deriving slopes by the linear and the Jackknife

models [92].

(PDF)

Figure S5 Functional relationships between Shannon
entropies of ecosystems components (soil, vegetation,
and water spectral signatures). (a) Shannon entropy for

green band vs. blue band, and (b) Shannon entropy for the green

band vs red band. The entropy is calculated for every dry and wet

season of each year in the period 1984–2011. These relationships

hold also considering separately the entropy for the wet- and for

the dry season. The dashed grey curves are the 95% confidence

interval of the linear regression exponent. Variabilities of

measured exponents are found by bootstrapping over points and

deriving slopes by the linear and the Jackknife models [92].

(PDF)

Figure S6 Estimation of the interannual b diversity
using KL divergence and the difference of Shannon
entropies. Relationship between the interannual KL divergence

and the green-band Shannon entropy variation vs. the b diversity

for the period 1984–2011 for the dry and wet seasons respectively

(a, and b). The KL divergence better predicts b diversity than the

difference of the Shannon entropy between years. Variabilities of

measured exponents are found by bootstrapping over points and

deriving slopes by the linear and the Jackknife models [92].

(PDF)

Figure S7 Interannual KL divergence matrices for the
decomposed RGB signal. Plot (a), (b), and (c) is for the red,

green, and blue band, respectively, in the dry season from 1984 to

2011. The higher the KL divergence the higher the dissimilarity (b
diversity for the green band) between seasons of the same or

different years. Matrices are symmetric and the upper triangular

part is made transparent.

(PDF)

Figure S8 Interannual KL divergence matrices for the
decomposed RGB signal. Plot (a), (b), and (c) is for the red,

green, and blue band, respectively, in the wet season from 1984 to

2011. The higher the KL divergence the higher the dissimilarity (b
diversity for the green band) between seasons of the same or

different years. Matrices are symmetric and the upper triangular

part is made transparent.

(PDF)

Figure S9 Interseasonal KL divergence matrix for the
maximum of the RGB signal from 1984 to 2011. The

maximum value of the KL divergence can be considered as total

ecosystem change (in terms of soil, vegetation, and water) among

the years considered. The matrix is symmetric and the upper

triangular part is made transparent.

(PDF)

Text S1 Supporting Study Area Information.

(PDF)
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38. Gallardo-Cruz, Meave JA, González EJ, Lebrija-Trejos EE, Romero-Romero

MA, et al. (2012) Predicting tropical dry forest successional attributes from space:
Is the key hidden in image texture? PLoS ONE 7.

39. Key T, Warner TA, McGraw JB, Fajvan MA (2001) A comparison of

multispectral and multitemporal information in high spatial resolution imagery

for classification of individual tree species in a temperate hardwood forest.

Remote Sensing of Environment 75: 100–112.

40. Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical

heterogeneity of tropical forests. Trends in Ecology & Evolution 23: 424–431.

41. Wulder M (2004) High spatial resolution remotely sensed data for ecosystem
characterization. Biogeoscience 54: 511–521.

42. Jeffreys C (2004) Support vector machine and parametric wavelet-based texture

classification of stem cell images – phd thesis. Technical report, Massachusetts

Institute of Technology. http://dspace.mit.edu/bitstream/handle/1721.1/

16651/56472941. pdf?sequence = 1; Accessed 2012.

43. Mangoubi R, Jeffrey C, Copeland A, Desai M, Sammak P (2007) Non-invasive

image based support vector machine classification of human embryonic stem

cells. International Symposium on Biomedical Imaging: 284–287.

44. Mangoubi R, Desai M, Sammak P (2008) Non-gaussian methods in biomedical

imaging. Applied Image Pattern Recognition Workshop 0: 1–6.

45. Childers D, Doren R, Jones R, Noe G, Rugge M, et al. (2003) Decadal change in

vegetation and soil phosphorus pattern across the everglades landscape.

J Environ Qual 32.

46. GLOVIS (2011) Global visualization viewer. Technical report, USGS. http://

glovis. usgs.gov/; Accessed 2012.

47. USGS (2011) Earth explorer. Technical report, USGS. http://edcsns17.cr.usgs.
gov/NewEarthExplorer/; Accessed 2012.

Species-Richness and Species-Turnover from Texture

PLOS ONE | www.plosone.org 15 October 2012 | Volume 7 | Issue 10 | e46616



48. USGS (2003) Preliminary assessment of the value of landsat 7 etm+ data

following scan line corrector malfunction. Technical report, U.S. Geological
Survey, EROS Data Center, NASA, and Landsat 7 Science Team. http://

landsat.usgs.gov/documents/SLC_off_Scientific_Usability.pdf; Accessed 2012.

49. USACE (2012) Comprehensive everglades restoration project database.
Technical report, US Army Corps of Engineers. http://www.cerpzone.org/;

Accessed 2012.
50. Convertino M, Muneepeerakul R, Azaele S, Bertuzzo E, Rinaldo A, et al. (2009)

On neutral metacommunity patterns of river basins at different scales of

aggregation. Water Resources Research 45: 8424.
51. Azaele S, Cornell S, Kunin W (2012) Downscaling species occupancy from

coarse spatial scales. Ecological Applications: in press.
52. Lagerwall G, Kiker G, Munoz-Carpena R, Convertino M, James A, et al. (2012)

A spatially- distributed, deterministic approach to modeling typha domingensis
(cattail) in an everglades water- controlled wetland. Ecological Processes; special

issue ‘‘Wetland in a Complex World’’ forthcoming.

53. Cho HJ (2007) Depth-variant spectral characteristics of submersed aquatic
vegetation detected by landsat 7 etm+. Int J Remote Sens 28: 1455–1467.

54. Nagendra H, Rocchini D (2008) High resolution satellite imagery for tropical
biodiversity studies: the devil is in the detail. Biodiversity and Conservation 17:

3431–3442.

55. Rose P, Rosendahl P (1979) An application of landsat multispectral imagery for
the classification of hydrobiological systems, shark river slough, everglades

national park, orida. Technical report, South Florida Research Center Report.
http://www.nps. gov/ever/naturescience/upload/SecureTRT-544.pdf; Ac-

cessed 2012.
56. Bubier JL, Rock BN, Crill PM (1997) Spectral reectance measurements of boreal

wetland and forest mosses. Journal of Geophysical Research 102.

57. Rundquist D, Narumalani S, Narayanan R (2001) A review of wetlands remote
sensing and defining new considerations. Remote Sensing Reviews 20: 207–226.

58. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetlands
Ecology and Management 10: 381402.

59. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and

community composition. Ecology Letters 5: 402–411.
60. Tilley D, Baldwin A, Jenkins E (2004) Leaf-scale hyperspectral reectance models

for determining the nitrogen status of freshwater wetlands. Technical report,
Maryland Water Resources Research Center.

61. Rocchini D (2007a) Effects of spatial and spectral resolution in estimating
ecosystem a-diversity by satellite imagery. Remote Sensing of Environment 111:

423–434.

62. Wang C, Menenti M, Stoll MP, Belluco E, Marani M (2007) Mapping mixed
vegetation communities in salt marshes using airborne spectral data. Remote

Sensing of Environment: 559–570.
63. Ajithkumar TT, Thangaradjou T, Kannan L (2008) Spectral reectance

properties of mangrove species of the muthupettai mangrove environment,

tamil nadu. Journal of Environmental Biology 29: 785–78.
64. Sun Y, Liu XH, Wu Y (2011) Identifying hyperspectral characteristics of

wetland species using in situ data. ISPRS Journal of Photogrammetry and
Remote Sensing.

65. Miao S, Zou CB (2009) Seasonal variation in seed bank composition and its
interaction with nutrient enrichment in the everglades wetlands. Aquatic Botany

90: 157–164.

66. Rocchini D, Neteler M (2012) Spectral rank-abundance for measuring landscape
diversity. International Journal of Remote Sensing 33: 4458–4470.

67. Thenkabail PS, Enclona EA, Ashton MS, Meer BVD (2004) Accuracy
assessments of hyperspectral waveband performance for vegetation analysis

applications. Remote Sensing of Environment 91: 354–376.

68. Muneepeerakul R, Rinaldo A, Levin SA, Rodriguez-Iturbe I (2008) Signatures
of vegetational functional diversity in river basins. Water Resources Research 44.

69. Jost L (2007) Partitioning diversity into independent alpha and beta components.
Ecology 88: 2427–2439.

70. Baselga A (2010) Multiplicative partition of true diversity yields independent

alpha and beta components; additive partition does not. Ecology 91: 1974–1981.

71. Jost L (2010) Independence of alpha and beta diversities. Ecology 91: 1969–
1974.

72. Veech JA, Crist TO (2010) Diversity partitioning without statistical indepen-

dence of alpha and beta. Ecology 91: 1964–1969.

73. Wilsey BJ (2010) An empirical comparison of beta diversity indices in
establishing prairies. Ecology 91: 1984–1988.

74. Brandt L, KitchensW(1998) Spatial and temporal changes in tree islands of the

arthur r. marshall loxahatchee national wildlife refuge in response to altered
hydrologies. Technical report, Florida Cooperative Fish and Wildlife Research

Unit, University of Florida.

75. Engler O, Randle V, editors (2009) Introduction to Texture Analysis:
Macrotexture, Microtexture, and Orientation Mapping. CRC Press.

76. Lowry N, Desai M, Mangoubi R, Sammak P (2010) Nonparametric

segmentation and classification of small size irregularly shaped stem cell nuclei
using adjustable windowing. IEEE International Symposium on Biomedical

Imaging: From Nano to Macro: 141–144.

77. Erb T, Schneider C, Mucko S, Sanfilippo J, Lowry N, et al. (2011) Paracrine and
epigenetic control of trophectoderm differentiation from human embryonic stem

cells: the role of bone morphogenic protein 4 and histone deacetylases. Stem
Cells Dev 20: 1601–14.

78. Van DeWouwer G, Scheunders P, Van Dyck D (1999) Statistical texture

characterization from discrete wavelet representations. IEEE Transactions on
Image Processing 8: 592–598.

79. Mangoubi R, Desai M, Sammak P (2008) Performance evaluation of

multiresolution texture analysis of stem cell chromatin. IEEE International
Symposium on Biomedical Imaging: From Nano to Macro: 380–383.

80. MaCarthur R (1965) Patterns of species diversity. Biological Reviews 40: 510–

533.

81. Whittaker RH (1960) Vegetation of the siskiyou mountains, oregon and
california. Ecological Monographs 30.

82. Hill MO (1973) Diversity and evenness: a unifying notation and its

consequences. Ecology 54: 427–432.

83. Keylock CJ (2005) Simpson diversity and the shannonwiener index as special

cases of a generalized entropy. Oikos 109: 203–207.

84. Connolly J, Cadotte M, Brophy C, Dooley A, Finn J, et al. (2011)
Phylogenetically diverse grasslands are associated with pairwise interspecific

processes that increase biomass. Ecology 92: 13851392.

85. Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22:
79–86.

86. Childers D, Boyer J, Davis S, Madden C, Rudnick D, et al. (2006) Relating

precipitation and water management to nutrient concentrations in the
oligotrophic ‘‘upside-down’’ estuaries of the orida everglades. Limnol Oceanogr

51: 602616.

87. Yesson C, Brewer P, Sutton T, Caithness N, Pahwa J, et al. (2007) How global is
the global biodiversity information facility? PLoS ONE 2.

88. Jurasinski G, Retzer V, Beierkuhnlein C (2009) Inventory, differentiation, and

proportional diversity: a consistent terminology for quantifying species diversity.
Oecologia 159: 15–26.

89. Daehler CC (2003) Performance comparisons of Co-Occurring native and alien

invasive plants: Implications for conservation and restoration. Annual Review of
Ecological and Evolutionary Systematics 34.

90. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in

wetlands: Opportunities, opportunists, and outcomes. Critical Reviews in Plant
Sciences 23: 431–452.

91. McGlinn D, Hurlbert A (2012) Scale dependence in species turnover reects

variance in species occupancy. Ecology.

92. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting
methods for allometry. Biological Reviews 81: 259–291.

Species-Richness and Species-Turnover from Texture

PLOS ONE | www.plosone.org 16 October 2012 | Volume 7 | Issue 10 | e46616


