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As  the  structure  of ecological  models  grows  more  complex,  it becomes  increasingly  important  to  identify
the appropriate  level  of  complexity  for reliable  process  description  and  prediction.  Here,  a suite  of mech-
anistic  biogeochemical  models  with  different  levels  of  complexity  for  representing  phosphorus  cycling
processes  was  developed  and  tested  against  observations  from  a  large  treatment  wetland.  The  study  site
was the  147-ha  Cell  4  of  Stormwater  Treatment  Area  1  West,  which  was  designed  to  help protect  the
greater  Everglades,  FL,  USA,  from  nutrient  over-enrichment.  Six  biogeochemical  models  of  differing  com-
plexity  were  coupled  with  a pre-calibrated  two-dimensional  hydrodynamic  model  of  Cell  4 and  tested
against  field  data.  We  provide  guidance  for evaluating  a set  of  models  with  varying  level  of  complexity
using  key  model  attributes  that  influence  the  suitability  of a  model  or a set  of  models.  Considerations
of model  accuracy,  complexity,  and explanatory  depth  are  combined  into  a single indicator  of  model
effectiveness.  Results  revealed  that  the  most  complex  model  structure  may  not  necessarily  be the  most
effective  in  simulating  the  dynamics  of  total  phosphorus  (TP)  concentrations  in the wetland.  The rate  of
improvement  in  the  model  performance  decreased  as  model  complexity  increased.  Although  the  most

complex  model  reproduced  the field  observations  best,  the  marginal  improvement  in model  performance
compared  to  simpler  models  was  outweighed  by the  higher  costs  of increased  complexity.  Highly  detailed
representations  of system  structures  may  not  be  useful  to simulate  TP  dynamics  in treatment  wetlands
if  comprehensive  data  sets  are  not  available  to constrain  each  pathway.  It  is  crucial  for  model  develop-
ers  and  users  to  evaluate  model  structures  of  differing  complexity  to  identify  the  appropriate  level of
complexity  for given  data  and  questions  of  interest.
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. Introduction

Mechanistic biogeochemical models are becoming critical tools
or predicting nutrient behavior in constructed treatment wetlands
o address a wide range of management and research questions
Christensen et al., 1994; Wang and Mitsch, 2000; Walker and
adlec, 2011; Paudel et al., 2010). However, there is a continu-

ng challenge of constructing or selecting an appropriate model
tructure that adequately represents the nutrient cycling mecha-
isms and establishes a rigorous link to the measured field data to
rovide reliable predictions. Nutrient cycling processes in wetland

ystems are mainly governed by complex, heterogeneous, micro-
cale, physical, chemical and biological processes, which are often
ard to discern and characterize. Given the inherent complexity
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f wetlands, models developed with simplistic assumptions do
ot adequately represent the reality of a dynamic system, losing
hysical meaning to make numerically reliable predictions (Kadlec,
000; Fulton et al., 2003; Haws et al., 2006). Therefore, overly sim-
listic models will likely fail under different field conditions that are
eyond the bounds of the calibration data (Martin and McCutcheon,
999). These failures are attributable to the simplifications in the
odel formulation that do not sufficiently account for complex

nteractions among various wetland components, such as water,
oil, biota, and dissolved/particulate constituents. Conversely, if
he model has too many parameters that surpass the type of data
eeded, calibration to measured data can be non-unique such that
o particular combination of parameters represents the solution
Beven, 1996; Martin and McCutcheon, 1999), and we may not be
ble to discern the underlying causes of system behaviors and make

seful predictions.

When formulating a model structure of an aquatic ecosys-
em, such as a treatment wetland, a common misconception is
hat if one model structure fails to reasonably predict the data or
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xperimental scenario, increasing the level of complexity (i.e.,
reater process descriptions) will improve the model performance.
owever, a review of 153 aquatic biogeochemical models pub-

ished from 1990 to 2002 failed to support this commonly held
otion (Arhonditsis and Brett, 2004). These authors found that
dding complexity to an aquatic biogeochemical model did not
uarantee improved prediction accuracy. A similar finding was  pre-
ented by Min  et al. (2011) in the context of Everglades wetlands.

Complex biogeochemical models usually have fewer restricting
ssumptions and exhibit more flexibility (Snowling and Kramer,
001); however, increasing the level of complexity in the model

eads to an increased sensitivity of the output to the input
Snowling and Kramer, 2001; Lindenschmidt, 2006). This is pri-

arily because large uncertainties may  arise due to the increased
umber of interactions between state variables and unconstrained
arameters (Robson et al., 2008). Incorporating comprehensive
epresentations of biogeochemical processes and their effects into
odels also entails practical limitations. For example, mechanis-

ic biogeochemical models require large amounts of data (Robson
t al., 2008), which may  be relatively scarce. If the model is not
onstrained by the available field data, the cost associated with
tting noise could lead to diminished performance (Friedrichs
t al., 2006). Complex models also need huge human and com-
uter resources (Jorgensen, 2002); therefore, increasing the level
f complexity by incorporating more state variables and processes
ay  not be cost effective, because the majority of the modeling

esources may  then be devoted to developing and maintaining the
odel, rather than its application (Fulton et al., 2003). In addi-

ion, the computational cost of adding more detail may  effectively
nhibit the utility of the model. As a consequence, there is a con-
ict between the desire to constrain the model complexity and to

ncorporate more processes mechanistically.
When developing a biogeochemical model for a specific mod-

ling purpose – such as synthesizing the data/knowledge, testing
ypotheses, assessing management strategies, and forecasting

uture outcomes – a critical question is: how complex should the
odel structure be to produce the most reliable numerical pre-

ictions that balances the tradeoffs between undesirable details
nd unjustified simplifications (Flynn, 2005). Based on the princi-
le of parsimony (Box and Jenkins, 1970), an appropriate model for

 given condition is minimally parameterized with adequate rep-
esentation of the available data so that the model can be tested
ore comprehensively, given the intrinsic limitations of the avail-

ble data (Kirchner, 2006). As wetland ecosystem structures are
ntrinsically complex, the task of formulating an appropriate level
f complexity for simulation models remains a critical and chal-
enging one. Generally, while formulating the model structure,
udgments (which are often implicit) are made about the level of
etails that need to be considered (Cox et al., 2006). However,
onsideration of some standard qualitative as well as quantita-
ive model evaluation criteria in an easily applicable and holistic
pproach is essential to assess the best model approximation for
ny specific purpose.

Evaluating a set of models of wetland systems requires a com-
arative assessment of different model attributes with respect to
he model complexity. Costanza and Sklar (1985) considered model
ccuracy (based on the quantitative goodness-of-fit of models to
istorical data) in their review of several published freshwater wet-

and models. They measured complexity by ‘articulation’ which
ncorporated the size of the model in terms of components (num-
er of state variables), and spatial and temporal resolutions. Model

erformance was measured by ‘effectiveness’ (a quantity used
o represent the trade-off between complexity and model accu-
acy). These authors found that the maximum effectiveness was
or models of moderate complexity. Fulton (2001) presented a

o
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imilar finding in the context of the published literature on marine
cosystem models. However, Myung et al. (2009) emphasized
he importance of considering other model complexity attributes,
uch as explanatory adequacy, interpretability, descriptive ade-
uacy, and generalizability. Here, we used the following model
roperties to compare a candidate set of phosphorus biogeochem-

cal models: (a) modeling cost and effort; which is basically the
evel of model complexity (Haraldsson and Sverdrup, 2004), (b)
escriptive adequacy (whether the model describes the existing
nowledge and field data of the system); (c) predictive adequacy
whether the model predicts the behavior of a system or data out-
ide the existing boundaries); and (d) explanatory depth (whether
he model describes more underlying phenomena to provide the
nowledge/information about the system structure). Even though
ach of these criteria describes a property (i.e., element) of a model
hat can be evaluated on its own, they are intricately related to each
ther. We  suggest that concomitant consideration of all four crite-
ia is essential to fully evaluate the suitability (i.e., effectiveness) of

 model.
Prior studies evaluating the relative effectiveness of models

f varying complexity have relied on reviews of published liter-
ture, in which the set of models were not tested against the
ame field data to qualitatively test the model structure. Here,
e quantitatively analyzed six phosphorus biogeochemical models
ith different levels of mechanistic complexity applied to a single

onsistent data set. The data were from a large-scale constructed
reatment wetland, the 147-ha Cell 4 of Stormwater Treatment
rea 1 West, that was  designed to help protect the greater Ever-
lades, FL, USA, by intercepting runoff and associated nutrients
rom upstream agricultural areas. The models were tested against

 years (1995–2001) of outlet total phosphorus (TP) concentrations
nd 5 years (1995–1999) of spatial soil TP data within the wetland.

This manuscript begins with a review of applications of the
odel properties evaluated here, with an emphasis on environ-
ental and ecological studies. This is followed by the formulation of
odel structures applied in Cell 4, with hierarchal level of process-

omplexity (from low to high level of mechanistic descriptions).
he effectiveness of each model for simulating phosphorus dynam-
cs in a stormwater treatment wetland was then assessed based on
he selected model properties.

. Evaluating model effectiveness

The process of developing a model of complex and dynamic sys-
ems, such as wetlands, requires a robust way  to evaluate the model
redictions relative to observations, as well as an equally robust
ay to compare across models of differing complexity. The purpose

f this section is to systematically define and describe key model
ttributes (i.e., evaluation criteria) that are critical in constructing
r selecting a suitable model structure of wetland environments.

.1. Model complexity (modeling cost and effort)

There are wide ranges of conceptions about model complexity
epending on the type of difficulty focused on, and the type of for-
ulations desired for any specific goal (Edmonds, 2000). Defining

he complexity level of a model is confounded by the diverse nature
f the problems addressed, modeling purpose, assumptions, and
imitations. Snowling and Kramer (2001) related model complexity
o its structure and the level of details in the processes (i.e., number

f parameters, state variables, and the sophistication of the math-
matical relationships that explain the modeling processes). Other
tudies have measured the complexity level only in proportion to
he number of optimized parameters (Gan et al., 1997; Perrin et al.,
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Table  1
Summary of phosphorus cycling model structures.

Number of
components/state
variables

Number of
processes

Number of
process-specific
parameters

Model 1 1 1 1
Model 2 2 2 2
Model 3 3 4 4
Model 4 3 6 6
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Model 5 4 9 9
Model 6 4 9 11

001). That is, the greater the number of optimized parameters,
he greater the complexity of the model. In this study, we  catego-
ized the complexity level of each model structure in terms of the
umber of process-specific parameters, p (Table 1), which reflects
he number of degrees of freedom and therefore the modeling cost
nd effort in estimating these parameters. Here both hydrodynamic
nd biogeochemical parameters were considered in the complexity
etermination.

.2. Descriptive adequacy

To evaluate the robustness of a model, it is obvious that the sim-
lated results need to be compared with observations. In general,
he term ‘descriptive’ refers to models that describe an existing
nowledge and a known behavior of the system (Costanza and
klar, 1985). The degree of adequacy with which a particular model
escribes existing structures and behaviors can be measured in a
umber of ways. Frequently, a residual (misfit) is used to character-

ze the model performance based on how well the model is capable
f producing a particular data set that is used in the calibration
xercise (Friedrichs et al., 2006). Myung et al. (2009) considered
he misfit between the model and data as a critical factor in eval-
ating the relative descriptive adequacy of a set of models. In this
tudy, we used mean squared error (MSE) to quantify the misfit
etween the measured variables (Ojk) and simulated variables (Sjk)
uring the model calibration as a sum of residual squares divided
y the number of observations of each variable, k:

SEk = 1
r

r∑
j=1

[Ojk − Sjk]2 (1)

here r is the number of sampling points in space and time for
hich simulated values correspond to the available observations

f each variable k. In order to make a dimensionless index of misfit
rror, MSEk was normalized by the maximum error (max[MSEk])
mong all complexity levels of each variable k, for which observa-
ions were available to compare with model-predicted values. The
escriptive adequacy index (DAI) of variable k for each candidate
odel was then expressed as:

AIk = 1 − MSEk

max[MSEk]
(2)

his formulation results in a relative index that ranges from 0 to
. The highest value of 1 indicates perfect accuracy and the lowest
alue of 0 indicates accuracy of the worst performing model among
he set of candidate models.

.3. Predictive adequacy
The term ‘predictive adequacy’ refers to the ability of a cali-
rated model to simulate the structural characteristics or behavior
f a system outside the existing data boundaries. Descriptive
dequacy only describes the performance of a model during

E

�
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alibration for a specific data set; however, it is essential to test the
odel against the data that are beyond the calibration boundaries

Friedrichs et al., 2006; Myung et al., 2009). A validation exercise
s just a robust approach to evaluate the predictive adequacy
f a model. The best model should be consistently good when
xtending the simulations across different conditions. Hence, we
mployed ‘predictive adequacy’ as one of the elements of model
valuation. This was  quantified by extending model simulations to

 new, independent data set that was not used in the calibration.
he predictive adequacy index (PAI) was determined in the same
anner as the DAI for validation data.

.4. Model performance index

The overall performance of each candidate model was repre-
ented by a model performance index (MPI) that incorporates both
escriptive and predictive adequacy indices:

PI = 1
nk

nk∑
i=1

(WdDAIk) + 1
nk

nk∑
i=1

(WpPAIk) (3)

here nk is number of state variables for which the measured data
ere available for the comparison, and Wd and Wp are the weight-

ng constants for DAI and PAI. The values of these constants are
ubjectively chosen by considering the importance and availability
f spatio-temporal data. In this study, equal weight was given to
AI and PAI based on the assumption that descriptive and predic-

ive adequacies are equally important. As with DAI and PAI, MPI  is
 relative index that ranges between 0 and 1.

.5. Explanatory depth

Modeling goals for environmental systems include not just
uture forecasting, but also testing hypotheses, analyzing cause-
ffect relationships, and gaining deeper understanding of system
ehaviors. Generally, the explanatory ability of a model can be
elated to the amount of detail it provides about the system com-
onents (state variables), and governing processes. A model is an
bstraction of a real system; hence it will not reflect all of the real-
ty (Wainwright and Mulligan, 2004). Given the complexity of a
ystem, models developed with higher levels of abstraction gen-
rally explain more features of a system structure, not only in
rinciple but also in practice (Beven, 2001). A complex model can
rovide information about the system that is not available from

 simple model (Hannah et al., 2010). We  suggest that in evalu-
ting overall model effectiveness, models that describe the system
tructure with greater detail should be weighted more heavily than
imple models. Many modeling studies in environmental science
ave exhaustively focused on the goodness-of-fit at the expense
f evaluating the effects of model complexity on the performance.

 narrow focus on data fitting can ignore the capacity of a model
o provide more relevant information toward understanding the
ystem behavior.

The term ‘explanatory depth’ (ED) is a more qualitative concept
han goodness-of-fit, and is thus often difficult to assess objectively
Beven, 2001). Here, to decrease the subjectivity, we developed an
ndex to reflect the level of detail for describing the system based on
he relative number of parameters of each candidate model. It was
ssumed that increased complexity will increase the ED of model

 exponentially:
Dm = exp(c�p)∑i=1
m [exp(c�p)]

(4)

p = (pm − pf ) (5)
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Fig. 1. (a) Conceptual diagram of effect of model performance and explanatory
depth on model effectiveness as a function of model complexity. Model perfor-
mance (black dashed line) is the weighted combination of descriptive and predictive
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dequacy, in which a larger value indicates a better performance. (b) Exponential
ncrease in explanatory depth with model complexity for c-values (Eq. (4)) of 0.4,
.15, and 0.05 (top to bottom).

here pm and pf are the number of process-specific parameters for,
espectively, each model m and the model that consists of fewest
arameters among the set of models; c is the exponential scale
actor that determines the shape of the ED curve in relation to
he model complexity. The shape of the exponential curve reflects
ow efficiently additional model processes increase the ability to
escribe the system, as will be discussed further below.

.6. Model effectiveness

Model parsimony has become a guiding principle for multi-
odel selection in environmental science (Burnham and Anderson,

002). A parsimonious model is the one with the greatest expla-
ation and/or predictive performance in relation to the least
rocess-complexity (Wainwright and Mulligan, 2004). As a first
rinciple, the best model is the one that is most parsimonious in
tate variables and parameters as well as satisfying the modeling
bjective. We  suggest that the ‘best’ (most effective) model is the
ne that optimizes the benefits of increased model performance,
s well as providing greater ED in relation to the model complex-
ty (modeling cost and effort) (Fig. 1). Effectiveness is an attempt to
uantify the trade-offs between these model attributes and answer
he question, ‘Given the data, modeling questions and resources,
ow much complexity in the model is appropriate?’

Here, we developed an index to evaluate the effectiveness of
ach candidate model, represented as a ‘coefficient of effective-
ess’ (CE) determined from the weighted resultant of MPI  and ED
ormalized by p for model m:

Em =
√

(KpMPI2
m + KeED2

m)/(Kp + Ke)
pm

× 100 (6)

here Kp and Ke are weighting constants for MPI and ED,  respec-
ively. If both elements are equally valued, Kp = Ke = 0.5. The values
f CEm are relative, and can be used only to compare models within
he same study.

.7. Relationship between model performance, explanatory
epth, and effectiveness

Our general hypothesis is that as the process-complexity of

 phosphorus biogeochemical model of a treatment wetland
ncreases, the model performance also increases. However, at a
ertain complexity level, the benefits of increased performance
ecome outweighed by the cost of added complexity. Thus, there

b
(
d
t
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ill be an optimal level of model complexity, quantifiable as the
ighest CE (Fig. 1).

As illustrated in Fig. 1, additional complexity improves model
erformance. Model effectiveness also increases with complexity

 up to a point, after which it may  or may not be positively corre-
ated to the model performance as complexity increases. Because
f the subjective nature of ED,  there will be several possible effec-
iveness curves for corresponding ED curves. If the model provides
reater useful information (sharp exponential curve; Fig. 1b), such
s in the case of process-based climate models, higher values of ED
esult in a high effectiveness scores at high complexity levels. How-
ver, if the complex model provides little additional information
close to linear curve; Fig. 1b) then the effectiveness curve sharply
eclines after a certain complexity level. The coefficient ‘c’ deter-
ines the shape of the ED curve in Eq. (4).  In this study, we  proposed

 = 0.15 assuming that in distributed wetland biogeochemical mod-
ls, additional useful information increases moderately with higher
omplexity levels, with a type of ED curve depicted in the Fig. 1b
middle plot).

.8. Akaike’s information criterion

Akaike (1973) derived an information criterion that has become
 fundamental basis for selecting the best model from a set of
andidate models (Burnham and Anderson, 2002). Akaike’s infor-
ation criterion (AIC) considers the goodness-of-fit and number

f parameters in the model, and is therefore particularly useful in
electing the most parsimonious, best performing model structure,
here models use the same data set. This approach has been widely

pplied in ecological studies (Burnham and Anderson, 2001).
Here, we  viewed mechanistic biogeochemical models as a prob-

bilistic model of a dynamic system (Ljung, 1987; McDonald
nd Urban, 2010), in which each model describes the probability
istribution of the data. Residuals are assumed to be normally dis-
ributed with a constant variance, �2. Generally, when the ratio of
he number of data points to the number of parameters (r/p) is small
roughly <40), a bias adjustment term is added to the AIC (Hurvich
nd Tsai, 1989). Data are often relatively scarce for wetland bio-
eochemical models such that r/p < 40, and this was  the case in this
tudy (Models 4–6; see Appendix A). The bias-corrected AIC can be
xpressed as:

ICc = −2 ln(L(�̂)) + 2p + 2p(p + 1)
r − p − 1

(7)

here r is the number of data points and L(�̂) is the maximum like-
ihood function of the parameter vector �. Note that there is some
oom for interpretation about how to correctly count p. Burnham
nd Anderson (2002) emphasized that the parameters that are
niquely estimable from the data should be counted for p. In this
tudy, we used process-specific parameters (Table 2) to estimate
ICc values of each model. The log-likelihood is (Burnham and
nderson, 2002)

n L(�̂) = −1
2

ln(�2) − r

2
ln(2�) − r

2
(8)

he second and third terms in Eq. (8) are additive constants that can

e omitted when using identical data for a set of candidate models
Burnham and Anderson, 2002). AICc is a relative value over the can-
idate set of models considered and the lowest value corresponds
o the best model structure.
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Table  2
Mean squared error (MSE), descriptive adequacy index (DAI), predictive adequacy index (PAI), model performance index (MPI), model efficiency index (Reff), explanatory
depth  index (ED), and AICc scores (using outlet TP concentration data for the calibration period, r = 179). Note that p includes the phosphorus cycling parameters from Table 1
plus  10 hydrodynamic model parameters described in Paudel et al. (2010).

Model p Descriptive adequacy Predictive adequacy Outlet TP ED AICc

Outlet TP Soil TP Outlet TP Calibration Validation

MSE  DAI MSE DAI MSE PAI Reff Reff

Model 1 11 142.0 0.00 0.00 0.00 474.0 0.00 −0.22 −2.36 0.07 1395
Model  2 12 107.0 0.25 3.78 0.00 241.0 0.49 0.08 −0.70 0.09 1370
Model  3 14 99.0 0.30 2.90 0.23 190.0 0.60 0.15 −0.35 0.11 1360
Model  4 16 92.0 0.35 2.48 0.34 159.0 0.66 0.21 −0.12 0.16 1353
Model  5 19 91.0 0.36 2.11 0.44 141.0 0.70 0.22 0.00 0.24 1358
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Model  6 21 90.0 0.37 1.94 0.49 

eff = 1 – variance of residuals/variance of observations. Reff ranges from −∞ to 1; an

. Case study: Cell 4 of Stormwater Treatment Area 1 West

.1. Study site

Stormwater Treatment Area 1 West (STA-1W) is located in the
ubtropical region of South Florida (Fig. 2). Cell 4 is one of four treat-
ent cells of STA-1W, that formerly were known as the Everglades
utrient Removal Project (ENRP, Chimney and Goforth, 2006). Cell

 is a 147 ha marsh that, during the study period of 01/1995 to
0/2001, was dominated by submerged aquatic vegetation (SAV).
he bottom elevation in Cell 4 ranged from approximately 2.7 to
.2 m (NGVD 29). Cell 4 was also the most effective of the four
arge ENRP cells for phosphorus removal based on areal TP load
emoval (Chimney et al., 2000). The ENRP was initiated in August
994 to act as a buffer to reduce concentrations of nutrients such
s phosphorus from Everglades Agricultural Area drainage waters

ig. 2. Location and plan view of study area, Cell 4 of Stormwater Treatment Area
 West.
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 0.71 0.23 0.01 0.33 1360

presents the perfect match.

efore entering the adjacent natural wetlands (Chimney et al.,
000).

.2. Modeling framework

A pre-calibrated two-dimensional (2-D) hydrodynamic model
f Cell 4, STA-1W (Paudel et al., 2010) was  used to provide hydro-
ynamic data, such as depth and velocity fields, to candidate
iogeochemical models. Hydrologic simulations were conducted
ith the physically based Regional Simulation Model (RSM, Lal

t al., 2005; SFWMD, 2005), which simulates the coupled move-
ent and distribution of overland and groundwater flow. A water

uality module that was  coupled with RSM (RSMWQ, James and
awitz, 2007; Jawitz et al., 2008; James et al., 2009) was used to
imulate phosphorus transport and reaction equations.

.3. Biogeochemical models

Predicting the phosphorus behavior is often challenging and
ncertain in wetland systems such as Stormwater Treatment Areas
STAs) that comprise many interconnected components that inter-
ct nonlinearly with many feedback loops. Given the inherent
omplexity of these systems, it is often difficult to set an appro-
riate level of abstraction in the model. Here, we developed a
et of six mechanistic phosphorus biogeochemical models with
ierarchal levels of complexity in their process representations.
he model processes were selected on the basis of available data,
xisting knowledge about the system, and experience from previ-
us wetland models (Kadlec, 1997; DBEL, 2002a,b; Dierberg et al.,
005; Kadlec and Wallace, 2008; Walker and Kadlec, 2011). Each
odel was  implemented in the framework of RSMWQ  to simulate

hosphorus dynamics using available data from Cell 4 of STA-
W.  Components, physical processes or parameters were added

n a sequence of relevance to increase the level of complexity. All
odels were applied to the same flow and biogeochemical data;

herefore, the model structures were directly compared.
Conceptually, phosphorus cycling in a wetland is the transfer

or flow) of this element in various forms between different stores,
ften referred to as ‘state variables’ (e.g., water column, macro-
hyte, soil, and periphyton). Process diagrams of all six model
tructures are depicted in Fig. 3 in terms of transfers between
tores. Transfer processes, such as settling, release, plant uptake,
nd burial of TP from senesced plants were described either
y linear (e.g., first-order) or nonlinear (typically second-order,
nd Monod types of transformations) differential equations (see
ppendix A). The number of components/state variables, processes

nd parameters of each model are listed in Table 1.

In the simplest complexity level (Model 1) all phosphorus
emoval processes were ‘lumped’ together as a net settling of TP
rom the water column. This representation included only a single
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Fig. 3. Conceptual process diagram of a set of phosphorus biogeochemical models. Each rectangle represents the component (i.e., state variable), and the arrow represents
the  process. (a) Models 1 and 2: Model 1 considers only the water column TP store and settling process (black rectangle and arrows), but Model 2 extended Model 1 by
i nd 4: 
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ncluding soil TP store and a release mechanism (indicated in red); (b) Models 3 a
ashed lines) but Model 4 considers all components and processes shown in the fig
hosphorus-limited Michaelis–Menten type equation with more parameters than 

eferred  to the web  version of this article.)

omponent (state variable) and a single equation. The apparent net
ettling rate approach has been frequently used to describe phos-
horus removal in wetlands (Walker, 1995; Raghunathan et al.,
001; Kadlec and Wallace, 2008). Model 2 added the effect of
n additional component (e.g., soil TP), in which all phosphorus
eactions were lumped as soil-water uptake and release (Paudel
t al., 2010). These processes were described by first-order reac-
ions, and reflect the effects of a combination of several physical
nd biochemical processes between the water column and soil TP
tores. Water column TP was considered as a mobile (transportable)
omponent, whereas the soil TP was assigned to be stabile (sta-
ionary). Walker and Kadlec (2011) used a similar model structure
n the STAs by simulating TP transfer between two  storage com-
artments (water column and biomass); however, they included
hree transfer processes. Model 3 included the processes of Model

 and added TP storage in macrophytes and transfer processes such
s foliage uptake and burial. Model 4 built on Model 3 by adding
acrophyte TP recycle back to the water column, and root uptake

rom the soil TP store (Min  et al., 2011). Model 5 extended Model 4
y including periphyton TP as an additional component and three
ransfer processes. The uptake of TP by periphyton was assumed
o be proportional to the water column TP concentration. It was
resumed that TP losses from macrophyte and periphyton primar-

ly occur during senescence/decay; therefore, TP loss from these

omponents was  represented by first-order reactions. A fraction of
oth macrophyte and periphyton TP loss was recycled back into
he water column, while the remaining TP fraction was buried and
ssimilated with soil TP (Kadlec, 1997). In Model 6, the complexity

(

b
D

Model 3 does not consider macrophyte TP recycle, and root uptake (shown in red
c) Models 5 and 6: Model 6 simulates periphyton and macrophyte TP uptake with

 5. (For interpretation of the references to color in this figure legend, the reader is

evel was further increased by considering the growth dynamics of
acrophyte and periphyton. The growth dynamics of these plant

ommunities were modeled using Michaelis–Menten type kinetics
Scinto and Reddy, 2003) and TP transfer during growth was esti-

ated based on their corresponding TP fractions (see Appendix
). The TP transfer processes between components were modeled
ither by using linear first-order or non-linear equations.

.4. Model setup

The wetland (Cell 4) was  represented by a 2-D finite ele-
ent mesh of 298 unstructured triangular elements (average

rea: 5100 m2) and 192 nodes for all simulation models. Bio-
eochemical models were fit to weekly auto-sampled composite
time-averaged) TP concentrations, monitored at outlet hydraulic
tructure (Fig. 4). In each simulation, TP inflow concentrations
onitored at inlet hydraulic structures (G-254B, G-254D; Fig. 2)
ere specified as a source boundary condition (Fig. 4). Initial water

olumn TP concentration of 40 �g L−1 was  specified as a spatially
onstant value throughout the model domain, which was the aver-
ge measured value from two  sampling locations (ENR401 and
NR402; Fig. 2) on 10 January 1995, the beginning date of the sim-
lations. A spatially constant TP wet deposition of 10 �g L−1 was
pplied over the entire domain based on measurements at STA-1W

Ahn and James, 2001).

Initial values for TP concentration in the upper 10 cm of soil were
ased on samples collected by South Florida Water Management
istrict (SFWMD) on 20 January 1995 at four sampling stations
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ig. 4. Inflow and outflow TP concentrations used in the model. Inflow TP concen-
ration data at G-254B structure were only available up to 15 December 1998.

ithin Cell 4 (4-2E, 4-2W, 4-1W, and 4-1E; Fig. 2). Peat accretion
as monitored from mid-1995 to mid-1999 using feldspar horizon
arkers throughout STA-1W (Chimney et al., 2000). Soil TP mea-

ured in samples collected at 4-1E and 4-2W on 12 November 1998
nd 20 October 1999 were compared to model-simulated soil TP
evels at these dates.

For Models 3–6 that included macrophyte dynamics, the initial
acrophyte TP concentration was based on a study at the outlet

one of Cell 4, where Najas- and Ceratophyllum vegetation species
ere dominant (DBEL, 2004). These species were considered as rep-

esentative of the SAV biomass for the entire Cell 4 (DBEL, 2002b;
ierberg et al., 2005) and were also considered as dominant for

he simulation period. The initial areal periphyton TP for Models 5

nd 6 was based on data from eutrophic regions of the Everglades
etland (McCormick et al., 1998). Simulated macrophyte and peri-
hyton TP components were maintained at close to equilibrium at

s
h

ig. 5. Observed (gray symbols) and modeled (red lines) for the outlet TP concentrations
olor  in this figure legend, the reader is referred to the web version of this article.)
gineering 42 (2012) 283– 294 289

ny given date, as time-series field observations of these variables
ere not available.

In all model structures, phosphorus cycling processes were
escribed by ordinary differential equations that were solved by
ourth-order Runge–Kutta numerical integration methods. The
nitial values of kinetic rate constants and other parameters in

ost pathways were based on the previous models of STAs, avail-
ble knowledge, and the treatment wetland literature (Buzzelli
t al., 2000; Paudel et al., 2010; Walker and Kadlec, 2011). Later,
hese initial values were adjusted during the model calibration
s field-measured empirical values were not available. As spatial
hosphorus data were limited, biogeochemical model parameters
ere specified as spatially constant values throughout the model
omain.

.5. Calibration

The unconstrained model parameters were adjusted through
alibration against observations to produce an adequate fit
etween model results and measured data (see Appendix B).

n practice, mechanistic biogeochemical model parameters are
enerally calibrated by trial and error (Robson et al., 2008). The
evel of expertise (understanding about the system dynamics and

odel structures) of a modeler and data availability often dictate
he ability to produce best fit with near optimal parameters. Here,
e adopted a trial and error approach to calibrate the model by

djusting individual parameters within literature ranges because
patially explicit models, as in our case, are computationally inten-
ive and prohibited the use of formal comprehensive calibration
The long-term water column TP concentration profiles mea-
ured at weekly intervals from 1995 to 1998 at the wetland outlet
ydraulic structure (G-256) and soil TP concentrations measured

 during calibration, and validation periods. (For interpretation of the references to
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ver the 5-year period 1995–1999 were simultaneously used to fit
he models. Soil TP data included three sampling events (20 January
995, 12 November 1998, and 20 October 1999) at two  locations
ithin Cell 4 (4-1E and 4-2W). Model parameters were adjusted
ntil optimal or near optimal fits were obtained based on the low-
st MSE  of each state variable for which field observations were
vailable. Final values of model parameters are listed in Appendix B.

.6. Validation

For the validation, all simulations were performed against inde-
endent outlet TP concentration data for about 3 years (1 January
999–31 October 2001) to evaluate the predictive adequacy of cal-

brated models. Model validation was limited to water column TP
ata because of the limited availability of soil TP data. We  re-

nitialized the model inputs and extended simulations without
odifications in the calibrated parameters.

. Results

.1. Model performance

The simulated and measured outlet TP profiles during the
odel calibration period are presented in Fig. 5. In general,

escriptive error decreased with increasing level of model com-
lexity. Model 6 (most complex model) resulted in the lowest
isfit error (MSE  = 90) and Model 1 (simplest model) resulted in

he highest misfit error (MSE  = 142). The introduction of an addi-
ional state variable (soil TP) in Model 2 significantly improved
he descriptive performance (Table 2). The gain in DAI by adding
he periphyton TP state variable in Model 5, however, is clearly

uch less pronounced comparing to the gain in DAI by adding
acrophyte TP in Model 3. A comparison between measured and

imulated soil TP shows that all levels of complexity successfully
eproduced the spatio-temporal variation in soil TP over a 5-year
eriod (Fig. 6), with higher concentrations near the cell inlet and
ower concentrations near the outlet, both increasing over time.
s the complexity level increased, there was a slight improvement

n the model fit to the data from station 4-1E; however, the
mprovement was insignificant for the 4-2W station (Fig. 6).

ig. 6. Simulated and observed soil TP content at two locations within Cell 4 for the
pper 10 cm of the soil profile: (a) upstream area, 4-1E and (b) downstream area,
-2W. Observed values are shown as Mean ± 1SD.

t
s
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t
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ig. 7. Slope of each model attributes over model complexity for different vari-
bles. For example, slope of model performance (MPI) is the �MPI/�p between
onsecutive models.

A similar trend of decreased error with increased complexity
evel was  also observed in the prediction errors during the val-
dation period (Fig. 5). The misfit error was  the highest for the
implest model (Model 1; MSE = 474) and lowest for the most
omplex model (Model 6; MSE  = 140) (Table 2). The corresponding
AI values ranged from 0.0 (Model 1) to 0.71 (Model 6), where zero
s the worst performing model and 1 indicates perfect accuracy.
s the complexity level further increased, PAI increased rapidly at

he beginning (low complexity level); whereas the PAI increased
onotonically at the end (high complexity level), with a dimin-

shed rate of improvement in the performance (Table 2). These
esults indicate that the influence on predictive performance of
ncreasing the level of complexity is significant at the lower end of
he complexity spectrum. A variable slope (Fig. 7) illustrates that
very free parameter did not contribute equally to the ability of
he model to fit the observations.

The overall model performance was  evaluated in terms of
PI, which combines both calibration and validation adequacies

or each state variable for which observations were available
o compare with simulated values. The performance increased
ubstantially from Models 1 to 2, as shown by the steep MPI
urve in Fig. 7. The curve flattened notably from Models 5 to 6,
ndicating that increasing model complexity was not supported by
he available field data at upper end of the complexity spectrum.
.2. Model selection

The coefficient of effectiveness (CE) is shown as a function of
odel complexity index with or without considering the ED in

ig. 8. Model performance index, MPI  (left y-axis) and coefficient of effectiveness,
E  (right y-axis) as a function of modeling cost and effort (i.e., model complexity).
1–M6 corresponds to Models 1–6.
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ig. 8. In this study, the most effective models (i.e., Models 3 and 4,
ig. 8) were found to be those of intermediate complexity. Without
onsidering the ED,  the effectiveness curve shifted down particu-
arly at higher complexity zone.

AICc decreased from Models 1 to 4, but increased again from
odels 4 to 6 (Table 2). The inflection point of AICc was identified

t intermediate complexity, as indicated by the minimum value
ith Model 4 (AICc = 1353). Due to the large number of parame-

ers and uncertainties in the structure of the complex model, the
iss-fit error due to variance outweighed the miss-fit error due to

ias; hence, the AICc-value increased again. Based on this criterion,
odel 4 was found to be the best model.

. Discussion

.1. Influence of complexity level on model performance

Our analysis illustrates that sequentially increasing the level of
omplexity in a phosphorus cycling model of a wetland system
lso increased the model performance. Adding each biogeochem-
cal process in the model contributed to the performance but not
n an equal proportion. The largest increase in the performance

as observed when the number of model compartments increased
rom one to two (i.e., soil TP was added as a state variable from Mod-
ls 1 to 2). This is primarily because the simplest model did not
nclude adequate mechanisms to describe the key features of the
P concentration dynamics. Thus, consideration of two  TP transfer
rocesses (e.g., settling and release) between two  compartments is
ritical for representing wetland TP biogeochemical cycling. Model

 included the release mechanism that represented the aggregated
ffects of TP release processes to the water column. For exam-
le, soil TP can be released by mechanisms such as diffusion and
esuspension of sediments to the water column, and may  include
he exchange of both labile as well as non-labile phosphorus. As
ettling and release are represented here as aggregated processes
etween soil and the water column, similar performance may  have
een achieved if the two exchange processes had been between
he water column and vegetation stores, as in the DMSTA model
escribed by Walker and Kadlec (2011).

Including vegetation TP as a state variable with net uptake and
urial mechanisms as in Model 3 significantly improved the model
erformance (Table 2). Thus, with the given data set, expanding
he model size from Models 1 to 3 is justified. Further expansion to

odels 4–6 may  need to be carefully considered because the rate
f improvement in the performance was gradually reduced (Fig. 7).
his was mainly due to the uncertainty associated with additional
ariables and parameters (Snowling and Kramer, 2001; Friedrichs
t al., 2006) and unavailability of field data to independently con-
train each process parameter.

The relative performance of the models evaluated here
ncreased substantially with model complexity. However the abso-
ute performance of even the most complex model was only
omparable to predictions using the mean of the observed data
i.e., Reff ∼ 0, Table 2). Another way to evaluate consistent behav-
or between observed data and modeled trends is to check if the
nputs and outputs are correlated. Outflow phosphorus profiles
n the STAs have been found to be only weakly correlated with
nflow phosphorus loading rate (Juston and DeBusk, 2006). Because
imple settling rate models, such as Model 1, exhibit strong corre-
ation between inlet and outlet concentrations, such models are
nlikely to adequately predict the outflow concentration variabil-
ty. These authors subsequently found (Juston and DeBusk, 2011)
hat adding treatment wetland TP cycling process complexity at
evels generally consistent with our Model 2 (two compartments
nd approximately 3 process parameters), did not improve model

s

m
i
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redictive performance when concentrations were at very low
evels, concluding that a suite of other unidentified processes con-
rolled an apparent ‘background concentration’. Here, we evaluated
everal additional levels of complexity in Models 3–6, and found
hat the performance increased substantially, but there still remain
actors or mechanisms that induced the observed variability in the
ata that are not correctly reflected in the models.

.2. Model effectiveness

For the set of models considered here, the model effectiveness
howed a ‘humped’ curvilinear relationship with respect to the
odel complexity. This indicates that there may  exist an opti-
al  level of model complexity corresponding to the maximum

ffectiveness (Fig. 8). As effectiveness is a function of both model
erformance and explanatory depth, the shape of the curve is
artly determined by how much information the model can pro-
ide. For example, three dimensional global climate models (e.g.,
CMs) that couple components of atmosphere, ocean, cryosphere,
nd biosphere may  include increasingly realistic representations
f numerous processes of the climate system (Harvey, 2004).
uch models tend to be of complex structure; however, they
rovide a number of useful insights concerning the dynamics
f large number of output of interests and interactions among
omponents. In such a case, ED would follow a sharp exponential
urve (top plot of Fig. 1b, with a relatively high c-value in Eq.
4),  e.g., 0.4) and likely result in complex models being highly
ffective. In contrast, simple wetland treatment performance
odels are thought to be capable of consistently describing the

ystem performance (Kadlec, 2000; Walker and Kadlec, 2011).
 complex model structure may  not provide much more useful

nformation than a simple one. In such a case, ED would follow a
ear-linear curve (bottom plot of Fig. 1b) with relatively low c (e.g.,
.05), and the resulting effectiveness curve would sharply decline
fter a point on the complexity spectrum. Based on calculated ED
alues for each model complexity (Table 2), a maximum point on
he concave-downward effectiveness curve was  found, which cor-
esponds to the optimal level of complexity (Fig. 8). Even though,
omplex models (e.g., Models 5 and 6) included better process
escriptions than Model 4, the diminished improvement in the
erformance resulted in lower effectiveness scores in the expense
f higher complexity. Although the results and interpretation of
his analysis was  dependent on the models under consideration,
vailable data, and the definition of model effectiveness used
ere, the pattern in the results may  be valid across other type of
echanistic biogeochemical modeling approaches.
Based on the AICc analysis, Model 4 was  found to be the most

arsimonious model for simulation of phosphorus dynamics in
he STAs. Model 4 compromised between accuracy and com-
lexity and was best supported by the calibration data with the
ewest parameters. In a statistical sense, Model 4 balanced the bias
goodness-of-fit) and variance (uncertainties in estimated param-
ters) of the misfit error. Models 5 and 6 were penalized for the
nclusion of additional parameters in relation to the diminished
mprovement in model fit. The finding of this approach is consis-
ent with the model effectiveness scores (Fig. 8). Neither approach
uggested the most complex model as a best approximating model.
lthough both approaches identified the same model (Model 4)
s one of the best models, AICc technique may  not be adequate if
he modeling goal is to provide understanding about the system
ynamics because it does not account for ED which may  limit the

cope in wetland biogeochemical modeling.

While we rigorously evaluated the important properties of
odel complexity evaluation, there are still other attributes not

ncluded in this study that can potentially influence the evaluation
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rocess, such as quality and availability of data, uncertainties in
odel parameters, understandability, modeling goal, available

esources, and the expertise of a modeler. As noted by Pitt and
yung (2002) “objectively comparing competing models is no eas-

er or less subjective than choosing between competing theories.”
ence, the evaluation approaches used here should be viewed
s a tool to deepen our understanding about the assessment of
ompeting wetland models.

.3. Future directions for treatment wetland phosphorus
iogeochemical modeling

A primary challenge in formulating a phosphorus biogeochem-
cal model of a treatment wetland is how to provide a reasonable
epresentation of a phosphorus cycling structure to address the
odeling questions at hand. This challenge is often characterized

s a choice between adding complexity to explicitly represent more
f the components of the system and using the fewest number of
omponents and parameters to make the model simple. Often, a
odeling goal or the issue under investigation defines the com-

lexity level in the model (Haraldsson and Sverdrup, 2004). For
xample, is the model intended for use as a management or a sci-
ntific research tool? A complex model with greater ED, such as
odel 5 or 6, may  be an appropriate choice to use as a scientific

esearch tool for testing research hypotheses or gaining under-
tanding about the system components and interactions. More
omplex models include more components and processes, and
enerally represent complex systems more comprehensively than
imple models. Beven (2001) emphasized that processes that are
erceived to have an effect in the real system should be included

n the model. Even if data are not available to comprehensively test
he model, complex models may  be useful, particularly for testing a
ide range of interactions/mechanisms, and predicting more state

ariables.
If the models are intended for management purposes, simple

odel structures such as in Models 1 and 2 may also satisfy the
odeling needs because such models consist of few parameters

nd are relatively easy to analyze. Simple models can serve as
ands-on tools for managers to evaluate wetland performance as
ell as performing multiple diagnostic tests of management alter-
atives. For example, DMSTA (Walker and Kadlec, 2011), which has
nly two storage compartments (water column and biomass) and
hree processes (settling, recycle and burial) in a hydraulic reactor

odeling framework (i.e., implicit with no spatial representation)
s widely used for this purpose. Because of fewer spatial details
nd fast run times associated with numerical computations, the
odel is tractable, and involves less effort for calibration and appli-

ation. However, if the management questions demand complex,
eterogeneous systems to be simulated, the case for spatially dis-
ributed model is strong. In such circumstances, Models 1–6 may
rovide greater utility because these models can represent spa-
ial characteristics and predict local variability within the wetland.
he choice of a specific phosphorus model structure may  depend
n the requirements for a given research or management objective.
t should also be noted that an important limitation of distributed

odels is that their computational intensity constrains how com-
rehensively uncertainty analysis of parameters can be performed.

A fundamental approach for identifying the appropriate level
f complexity is to start from the simplest model representations
nd test whether field observations are reproduced reasonably, and
ntroduce added complexity only when the model performance

onsistently improves and adequate information is obtained for
iven questions. Such approaches help identify the potential con-
ergence to an optimal level of model complexity, where the field
ata are fully exploited with adequate information while the model −
gineering 42 (2012) 283– 294

omplexity is minimized (Schoups and Hopmans, 2006). From the-
retical perspectives, it may  be interesting to incorporate more
omplete representations of phosphorus cycling structures into
etland models; however, adding more of the wrong processes will
ot improve the performance. Therefore, a mechanistic understat-

ng of key processes that mediate phosphorus cycling in wetlands
s critical to identify whether additional processes in the model are
ustified. For these reasons, model developers are recommended to
valuate models across varying level of complexity.
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ppendix A. Phosphorus biogeochemical models of
ncreasing complexity

Model 1

dCtp

dt
= −kst1Ctp

Model 2

dCtp

dt
= −kst2Ctp + krs2

zd�wc
Stp

dStp

dt
= kst2zd�wcCtp − krs2Stp

Model 3

dCtp

dt
= −kst3Ctp + krs3

zd�wc
Stp − kup mf 3Ctp

dMtp

dt = kup mf 3Ctpzd�wc − kb3Mtp

dStp

dt
= kst3zd�wcCtp − krs3Stp + kb3Mtp

Model 4

dCtp

dt
= −kst4Ctp + krs4

zd�wc
Stp + krc4

zd�wc
Mtp − kup mf 4Ctp

dMtp

dt
= kup mf 4Ctpzd�wc − krc4Mtp − kb4Mtp + kup mr4Stp

dStp

dt
= kst4zd�wcCtp − krs4Stp + kb4Mtp − kup mr4Stp

Model 5

dCtp

dt
= −kst5Ctp + krs5

zd�wc
Stp + kd m5˛Mtp

zd�wc
+ kd p5ˇPtp

zd�wc

− kup mf 5Ctp − kup p5Ctp

dMtp

dt
= kup mf 5Ctpzd�wc − kd m5Mtp + kup mr5Stp

dP
tp

dt
= kup p5Ctpzd�wc − kd p5Ptp

dStp

dt = kst5zd�wcCtp − krs5Stp + kd m5Mtp(1 − ˛) + kd p5Ptp(1 − ˇ)
 kup mr5Stp
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Model 6

dCtp

dt
= −kst6C2

tp + krs6

zd�wc
Stp +

krec m6M2
tp

zd�wc
+

krec p6P2
tp

zd�wc

− rm

(
Ctp

Ctp + kc m

)
Mtp

zd�wc
− rp

(
Ctp

Ctp + kc p

)
Ptp

zd�wc

dMtp

dt
=rm

(
Ctp

Ctp + kc m

)
Mtp

zd�wc
− kb m6Mtp − krec m6M2

tp+kup mr6Stp

dPtp

dt
= rp

(
Ctp

Ctp + kc p

)
Ptp

zd�wc
− kb p6Ptp − krec p6P2

tp

dStp

dt
= kst6zd�wcCtp − krs6Stp + kb m6Mtp + kb p6Ptp − kup mr6Stp

here Stp = soil TP storage (g m−2); Ctp = water column TP stor-
ge (g m−3); zd = water column depth (m); �WC = water column
orosity (unitless); Mtp = macrophyte TP storage (g m−2); and
tp = periphyton TP storage (g m−2).

Note: (1) The subscript at the end of each parameter corresponds
o the level of complexity models (Models 1–6).

(2) Parameter descriptions are given in Appendix B.

ppendix B. Parameters determined through model
alibration for the set of phosphorus cycling models

Parameter Definition Units Value

kst1 TP settling rate d−1 0.1425
kst2 TP settling rate d−1 0.2678
krs2 TP release rate as a function of

the soil TP
d−1 1.97 × 10−4

kst3 TP settling rate d−1 0.19
krs3 TP release rate as a function of

the soil TP
d−1 1.97 × 10−4

kup mf3 Macrophyte foliage TP uptake
rate

d−1 0.1

kb3 Macrophyte TP burial rate d−1 2.70 × 10−3

kst4 TP settling rate d−1 0.22
krs4 TP release rate as a function of

the soil TP
d−1 1.97 × 10−4

kup mf4 Macrophyte foliage TP uptake
rate as a function of the water
column TP

d−1 0.21

kb4 Macrophyte TP burial rate d−1 2.70 × 10−3

kup mr4 Macrophyte root TP uptake
rate as a function of the soil TP

d−1 2.20 × 10−5

krc4 Macrophyte TP recycle rate d−1 3.50 × 10−3

kst5 TP settling rate d−1 0.18
krs5 TP release rate as a function of

the soil TP
d−1 1.97 × 10−4

kup mf5 Macrophyte foliage TP uptake
rate as a function of the water
column TP

d−1 0.3

kup p5 Periphyton TP uptake rate d−1 0.03
kup mr5 Macrophyte root TP uptake

rate
d−1 2.20 × 10−5

kd m5 Decay rate of macrophyte TP d−1 9.00 × 10−3

kd p5 Decay rate of periphyton TP d−1 0.01
˛  Recycled fraction of

macrophyte TP
– 0.56

ˇ  Recycled fraction of periphyton
TP

– 0.50

kst6 TP settling rate m3 mg−1 d−1 0.01036
k TP release rate d−1 1.97 × 10−4
rs6

rm Macrophyte intrinsic growth
rate

d−1 4.00 × 10−3

rp Periphyton intrinsic growth
rate

d−1 7.00 × 10−3

F

G
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Parameter Definition Units Value

kc m Half saturation constant for P
as limiting nutrient in
macrophyte growth

g m−3 0.01

kc p Half saturation constant for P
as limiting nutrient in
periphyton growth

g m−3 0.015

kup mr6 Macrophyte root TP uptake d−1 2.20 × 10−5

kb m6 Macrophyte TP burial rate d−1 2.70 × 10−3

kb p6 Periphyton TP burial rate d−1 4.80 × 10−3

krec m6 Macrophyte TP recycle rate m2 g−1 d−1 3.11 × 10−3

krec p6 Periphyton TP recycle rate m2 g−1 d−1 3.45 × 10−3
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awitz, J.W., Muñoz-Carpena, R., Muller, S., Grace, K.A., James, A.I., 2008. Devel-
opment, testing, and sensitivity and uncertainty analyses of a transport and
reaction simulation engine (TaRSE) for spatially distributed modeling of phos-
phorus in South Florida peat marsh wetlands. USGS Scientific Investigations
Report 2008-5029, p. 109.

orgensen, S.E., 2002. Integration of Ecosystem Theories: A Pattern. Kluwer Academic
Publishers, Dordrecht, The Netherlands, p. 432.

uston, J.M., DeBusk, T.A., 2006. Phosphorus mass load and outflow concentration
relationships in stormwater treatment areas for Everglades restoration. Ecol.
Eng.  26 (3), 206–223.

uston, J.M., DeBusk, T.A., 2011. Evidence and implications of the background phos-
phorus concentration of submerged aquatic vegetation wetlands in Stormwater
Treatment Areas for Everglades restoration. Water Resour. Res. 47, W01511.

adlec, R.H., 1997. An autobiotic wetland phosphorus model. Ecol. Eng. 8,
145–172.

adlec, R.H., 2000. The inadequacy of first-order treatment wetland models. Ecol.
Eng. 15, 105–119.

adlec, R.H., Wallace, S., 2008. Treatment Wetlands, second ed. CRC Press, Boca
Raton, FL, p. 952.

irchner, J.W., 2006. Getting the right answers for the right reasons: linking mea-
surements, analyses, and models to advance the science of hydrology. Water
Resour. Res. 42, W03S04.

al, A.M.W., Van Zee, R., Belnap, M.,  2005. Case study: model to simulate regional

flow in South Florida. J. Hydraul. Eng. ASCE 131, 247–258.

indenschmidt, K.E., 2006. The effect of complexity on parameter sensitivity and
model uncertainty in river water quality modelling. Ecol. Model. 190, 72–86.

jung, L., 1987. System Identification: Theory for the User. Prentice-Hall, Englewood
Cliffs, NJ, USA, p. 519.

W

W

gineering 42 (2012) 283– 294

artin, J.L., McCutcheon, S.C., 1999. Hydrodynamics and Transport for Water Quality
Modeling. CRC Press, Boca Raton, FL, USA, p. 794.

cCormick, P.V., Shuford, R.B.E., Backus, J.G., Kennedy, W.C., 1998. Spatial and
seasonal patterns of periphyton biomass and productivity in the northern Ever-
glades, Florida, USA. Hydrobiology 362, 185–208.

cDonald, C.P., Urban, N.R., 2010. Using a model selection criterion to identify
appropriate complexity in aquatic biogeochemical models. Ecol. Model. 221,
428–432.

in, J., Paudel, R., Jawitz, J.W., 2011. Mechanistic biogeochemical model applications
for  Everglades restoration: a review of case studies and suggestions for future
modeling needs. Crit. Rev. Environ. Sci. Technol. 41, 489–516.

yung, J.I., Tang, Y., Pitt, M.A., 2009. Evaluation and comparison of computational
models. Methods Enzymol. Comput. Methods 454, 287–304.

audel, R., Min, J., Jawitz, J.W., 2010. Management scenario evaluation for a large
treatment wetland using a spatio-temporal phosphorus transport and cycling
model. Ecol. Eng. 36, 1627–1638.

errin, C., Michel, C., Andreassian, V., 2001. Does a large number of parameters
enhance model performance? Comparative assessment of common catchment
model structures on 429 catchments. J. Hydrol. 242, 275–301.

itt, M.A., Myung, I.J., 2002. When a good fit can be bad. Trends Cogn. Sci. (Regul.
Ed.) 6, 421–425.

aghunathan, R., Slawecki, T., Fontaine, T.D., Chen, Z.Q., Dilks, D.W., Bierman, V.J.,
Wade, S., 2001. Exploring the dynamics and fate of total phosphorus in the
Florida Everglades using a calibrated mass balance model. Ecol. Model. 142,
247–259.

obson, B.J., Hamilton, D.P., Webster, I.T., Chan, T., 2008. Ten steps applied to devel-
opment and evaluation of process-based biogeochemical models of estuaries.
Environ. Model. Softw. 23, 369–384.

choups, G., Hopmans, J.W., 2006. Evaluation of model complexity and input
uncertainty of field-scale water flow and salt transport. Vadose Zone J. 5,
951–962.

cinto, L.J., Reddy, K.R., 2003. Biotic and abiotic uptake of phosphorus by periphyton
in  a subtropical freshwater wetland. Aquat. Bot. 77, 203–222.

FWMD, 2005. RSM theory manual—HSE v1.0. South Florida Water Management
District, West Palm Beach, FL, p. 308.

nowling, S.D., Kramer, J.R., 2001. Evaluating modelling uncertainty for model selec-
tion. Ecol. Model. 138, 17–30.

ainwright, J., Mulligan, M.,  2004. Introduction. In: Wainwright, J., Mulligan, M.
(Eds.), Environmental Modelling: Finding Simplicity in Complexity. John Wiley
&  Sons, pp. 1–4.

alker, W.W.,  1995. Design basis for Everglades Stormwater Treatment Areas.
Water Resour. Bull. 31, 671–685.
alker, W.W.,  Kadlec, R.H., 2011. Modeling phosphorus dynamics in Everglades
wetlands and Stormwater Treatment Areas. Crit. Rev. Environ. Sci. Technol. 41
(S1),  430–446.

ang, N.M., Mitsch, W.J., 2000. A detailed ecosystem model of phosphorus dynamics
in  created riparian wetlands. Ecol. Model. 126, 101–130.


	Does increased model complexity improve description of phosphorus dynamics in a large treatment wetland?
	1 Introduction
	2 Evaluating model effectiveness
	2.1 Model complexity (modeling cost and effort)
	2.2 Descriptive adequacy
	2.3 Predictive adequacy
	2.4 Model performance index
	2.5 Explanatory depth
	2.6 Model effectiveness
	2.7 Relationship between model performance, explanatory depth, and effectiveness
	2.8 Akaike's information criterion

	3 Case study: Cell 4 of Stormwater Treatment Area 1 West
	3.1 Study site
	3.2 Modeling framework
	3.3 Biogeochemical models
	3.4 Model setup
	3.5 Calibration
	3.6 Validation

	4 Results
	4.1 Model performance
	4.2 Model selection

	5 Discussion
	5.1 Influence of complexity level on model performance
	5.2 Model effectiveness
	5.3 Future directions for treatment wetland phosphorus biogeochemical modeling

	Acknowledgments
	Appendix A Phosphorus biogeochemical models of increasing complexity
	Appendix B Parameters determined through model calibration for the set of phosphorus cycling models
	References


