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An informative and accurate vegetation map for the Greater Everglades of South Florida is in an urgent need
to assist with the Comprehensive Everglades Restoration Plan (CERP), a $10.5-billion mission to restore the
south Florida ecosystem in 30+ years. In this study, we examined the capability of fine spatial resolution
hyperspectral imagery collected from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for vegeta-
tion mapping in the Everglades. In order to obtain an efficient and accurate procedure for vegetation discrim-
ination, we developed a neural network classifier first and then combined the object-based texture measures
with the classifier to examine the contribution of the spatial information for vegetation mapping. The neural
network is capable of modeling the characteristics of multiple spectral and spatial signatures within a class by
an internally unsupervised engine and characterizing spectral and spatial differences between classes by an
externally supervised system. The designed procedure was tested in a portion of the Everglades. An object-
based vegetation map was generated with an overall classification accuracy averaged 94% and a kappa
value averaged 0.94 in discriminating 15 classes. The results are significantly better than those obtained
from conventional classifiers such as maximum likelihood and spectral angle mapper. The study illustrates
that combining object-based texture measures in the neural network classifier can significantly improve
the classification. It is concluded that fine spatial resolution hyperspectral data is an effective solution to ac-
curate vegetation mapping in the Everglades which has a rich plant community with a high degree of spatial
and spectral heterogeneity.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Greater Everglades of South Florida has been designated as an
International Biosphere Reserve, a World Heritage Site, and a Wet-
land of International Importance due to its unique combination of hy-
drology and water-based ecology that supports many threatened and
endangered species (Davis et al., 1994). However, human activities in
the past century has severely altered and threatened this natural eco-
system. This has led to a variety of environmental issues in south
Florida (McPherson & Halley, 1996). To protect this valuable resource,
Congress authorized a project known as Comprehensive Everglades
Restoration Plan (CERP) in 2000 to restore south Florida's natural
ecosystem, while maintaining urban and agricultural water supply
and flood control over this region. CERP is a $10.5 billion mission
that is expected to take 30 or more years to complete (CERP, 2012,
http://www.evergladesplan.org/). With such a high amount of funds
planned for restoration of this unique environment, emphasis has
been placed on developing a thorough understanding of how past
changes in hydrology have affected Everglades plant and animal
rights reserved.
communities and what will be changed when the CERP is completed.
Detailed and accurate spatial data such as vegetation maps are key
factors required to document change in the Everglades (Doren et al.,
1999; Welch et al., 1999).

Remote sensing has been frequently cited as a cost-effective and
labor-saving technique for monitoring and mapping wetlands. A
wide range of studies has been undertaken in a variety of wetland en-
vironments (Adam et al., 2010). To generate detailed and accurate
vegetation maps, researchers traditionally adopt large-scale aerial
photographs assisted with visual interpretation techniques (Madden
et al., 1999; Rutchey & Vilchek, 1999). This conventional approach is
time-consuming, costly, and requires experienced specialists. The re-
sults may be inconsistent if done by different analysts. With the avail-
ability of digital images, it has been anticipated that this procedure
can be superseded by semi-automated or automated digital image
analysis approaches that promise greater efficiency and consistency.
A number of efforts have been made for this purpose by using data
collected either from multispectral or hyperspectral sensors (Adam
et al., 2010). Hyperspectral sensors are more powerful in vegetation
mapping due to their rich spectral contents. The application of this
type of data is the primary research interests in the past decade. Stud-
ies in wetland vegetation characterization using hyperspectral sen-
sors can be grouped into two categories. The first category is the
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application of sensors with a low spatial resolution (i.e. 20–30 m or
larger), such as EO-1/Hyperion and high altitude Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) (e.g., Hirano et al., 2003;
Pengra et al., 2007; Rosso et al., 2005). Limitations of these sensors
include the coarse spatial resolution and complexity of image pro-
cessing procedures (Hirano et al., 2003). The second category is
the employment of hyperspectral data with a fine spatial resolution
(i.e. 4 m or smaller), such as imagery collected from low altitude
Compact Airborne Spectrographic Imager (CASI) and AVIRIS
(Artigas & Yang, 2005; Held et al., 2003; Hunter & Power, 2002;
Jollineau & Howarth, 2008; Kamal & Phinn, 2011; Li et al., 2005;
Schmidt et al., 2004). So far they are the best remotely sensed data
for vegetation mapping with suitable spectral and spatial resolution.

A challenge in the application offine spatial resolution hyperspectral
imagery inwetland environments is the shortage of effective processing
procedures which could take advantage of its fine spatial and spectral
resolution. Most researchers concentrate on the examination of
endmember-based approaches, such as the spectral angle mapper
(SAM) and linear spectral unmixing, which are specifically designed
to extract information from hyperspectral imagery (e.g., Artigas &
Yang, 2005; Belluco et al., 2006; Harken & Sugumaran, 2005; Held et
al., 2003; Hirano et al., 2003; Hunter & Power, 2002; Jollineau &
Howarth, 2008; Li et al., 2005; Rosso et al., 2005; Schmidt et al., 2004).
These approaches may not achieve the expected results in complex
wetlands due to the difficulties inherent in determining hyperspectral
endmembers, a shortage of comprehensive spectral libraries for differ-
ent wetland plants, and the violation of the assumption in the algo-
rithms that only one spectral representative (i.e. the endmember)
exists for each vegetation type. In addition, most of these researches
did not consider the rich spatial information of the data, although it
has been proved useful in image classification (De Jong & van der
Meer, 2004). Innovative new processing techniques with the capability
to solve the above problems and generate more informative and accu-
ratewetland vegetationmaps from fine spatial resolution hyperspectral
data are expected.

The literature has demonstrated that neural network approaches
are attractive options in remote sensing image processing. These
techniques have been extensively employed to analyze multispectral
images and often shown more accurate results than other classifica-
tion approaches (Atkinson & Tatnall, 1997; Mas & Flores, 2008).
More recently Adam et al. (2010) reviewed the multispectral and
hyperspectral remote sensing for mapping wetland vegetation, and
conclude that the neural networks are valuable in mapping wetland
vegetation types. However, their applications in hyperspectral data
analysis are limited because they are assumed to be computationally
demanding for processing large datasets. Efficient and effective neu-
ral networks for analyzing a large volume of hyperspectral data are
desired.

The literature has also illustrated that object-based image analysis
methods are desirable in processing high spatial resolution remotely
sensed data. These techniques decompose an image scene into rela-
tively homogeneous objects or segments and permit the analysts to
use both spectral and spatial information for image classification
(Jensen, 2005). Blaschke (2010) reviewed these techniques for re-
mote sensing and concludes that they are effective approaches in
classification of high spatial resolution data. Several researchers
have evaluated these approaches for wetland mapping and found
that they can generate better accuracy compared with the traditional
pixel-based methods (e.g., Harken & Sugumaran, 2005; Kamal &
Phinn, 2011).

Texture analysis has been of great interest in remote sensing for
more than three decades with attempt to incorporate spatial proper-
ties in classification. A recent review by Warner (2011) concludes
that texture measures are useful but challenging in determining the
optimal kernel scale, an important parameter in texture analysis.
The object-based texture analysis methods may overcome these
challenges by locally adapting the kernel size over the image. A recent
study by Batista and Haertel (2010) demonstrate that by calculating
texture over semantically meaningful objects, rather than arbitrarily
sized square kernels, the issue of separating between- and within-
class texture may be resolved. Kim et al. (2009) demonstrate a sub-
stantial increase in classification accuracy for mapping forest types
using the object-based texture measures.

Neural networks, object-based image analysis, and texture analy-
sis are popular techniques in image classification, as evidenced by
the review papers (Blaschke, 2010; Mas & Flores, 2008; Warner,
2011). These approaches have been primarily tested for multispectral
data processing. A combination of them for hyperspectral data analy-
sis is limited. An effective integration of these three techniques for
vegetation mapping in complex wetland environment to analyze
fine spatial resolution hyperspectral imagery is even scarcer. To this
end, the aim of this study is to develop an efficient and accurate pro-
cessing procedure to analyze high spatial resolution hyperspectral
data for vegetation mapping in the Everglades. In order to take advan-
tage of the fine spatial and spectral information offered by this type of
data, the procedure extracts the object-based texture measures first
and then integrates these texture measures with a designed neural
network classification. Finally, an object-based vegetation map can
be generated. The object-based map is more informative and useful
than a traditional pixel-based map which may be noisy if the wet-
lands have a high degree of spatial heterogeneity and diverse vegeta-
tion types.

2. Study area and data

The study area is a portion of Caloosahatchee River watershed in the
Everglades (Fig. 1). The Everglades is a vast subtropical wetland that oc-
cupies most of the southern peninsula of Florida and extends south-
ward from Lake Okeechobee to Florida bay. Lake Okeechobee serves
as the “water heart” for the Everglades, and the Caloosahatchee River
functions as a primary canal that conveys basin runoff and regulatory
releases from Lake Okeechobee. Caloosahatcheewatershed is an impor-
tant environmental and economic resource in the Everglades. The hy-
drology of this region has been severely changed because many canals
were constructed along the banks of the river to support the agricultural
communities associated with the river. “Get the water right” in the Ca-
loosahatchee watershed is a key component in CERP. Response of the
plant community in this region is a crucial indicator of the restoration
success and detailed vegetation maps can guide the path of restoration.
The selected study area is amosaic of commonwetland vegetation com-
munity, agricultural plant community, exotic species, water bodies, and
man-made concrete features. This is a challenging site for vegetation
characterization from remote sensing.

Data sources used in this study include the hyperspectral imagery col-
lected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
reference data manually interpreted from National Aerial Photography
Program (NAPP) color infrared (CIR) images. AVIRIS is a premier instru-
ment in the realm of Earth Remote Sensing. It delivers calibrated hyper-
spectral images in 224 contiguous spectral channels with wavelengths
from 400 to 2500 nm. The South Florida Water Management District
(SFWMD) collected the AVIRIS data over the Caloosahatchee watershed
on November 16, 1998 through coordinationwith the Jet Propulsion Lab-
oratory (JPL) at the California Institute of Technology. The instrumentwas
on board theNational Aeronautics & Space Administration (NASA)'s Twin
Otter aircraft with a low flying altitude. This resulted in an acquisition of
high spatial resolution hyperspectral data with a pixel size of 4.0 m. A
natural color composite for the selected study area is shown in Fig. 1.
JPL conducted the geometrical correction for the deliverables. The
SFWMD also provided the reference data for this study. The reference
datawere photointerpreted from 1999NAPP CIR 1:40, 000 aerial photog-
raphy and classified using the SFWMD modified Florida Land Use, Land
Cover Classification System. Features were stereoscopically interpreted



Fig. 1. Map of Greater Everglades, Caloosahatchee River, and a color composite generated from the hyperspectral imagery for the study area.

Table 1
Sample size for each class used in this study.

Class
#

Vegetation type Size Class
#

Vegetation type Size

1 Dry Prairie 260 9 Melaleuca 108
2 Improved Pastures 256 10 Hardwood/Coniferous

Mix
250

3 Groves 180 11 Mangrove Swamp 260
4 Fruit Orchards 164 12 Mixed Wetland

Hardwoods
104

5 Upland Shrub and
Brush

146 13 Mixed Shrubs 154

6 Pine Flatwood 326 14 Cypress 62
7 Upland Hardwood

Forest
180 15 Freshwater Marshes 64

8 Brazilian Pepper 66 Total: 2580
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using a stereo plotter and calibrated from field surveys through a project
known as “Land Cover/Land Use Mapping Project” conducted at the
SFWMD. In the project, the data was compiled on screen over
corresponding U.S. Geological Survey (USGS) Digital Orthophoto Quad-
rangles (DOQs). The positional accuracy of the data meets the National
Map Accuracy Standards (NMAS) adopted by USGS. The SFWMD reports
the dataset has a minimum accuracy of 90%. A total of 2580 reference
samples were spatially randomly selected over the study area using a
strategy called equal sample rate in which a fixed percentage of samples
are randomly selected for each class. The number of reference samples for
each class was calculated based on the segmentation result and the
SFWMD reference data. The random selection scheme can minimize the
effect of spatial correlation of data and improve the spectral variability
of each class (Campbell, 1996). The number of selected samples for each
vegetation type is listed in Table 1. To further improve the accuracy of
the selected samples,we overlaid themfirst on the hyperspectral imagery
that was georeferenced by the DOQs, and then visually validated each
sample and manually corrected misclassified samples. For the selected
study area, a total of 15 vegetation coverswere found; they are dryprairie,
improved pastures, groves, fruit orchard, upland shrub and brush, pine
flatwood, upland hardwood forest, Brazilian pepper (exotic species),
Melaleuca (exotic species), hardwood/coniferous mix, mangrove
swamp,mixedwetlandhardwoods,mixed shrub, cypress, and freshwater
marshes. These vegetation types need to be discriminated from the col-
lected hyperspectral imagery using the digital image analysis procedure.

3. Methodology

3.1. Procedure design

In order to generate an informative and accurate vegetation map
from fine spatial resolution hyperspectral imagery, multiple data pro-
cessing steps are required. They are summarized in Fig. 2 and de-
scribed as below.
1) Noisy band removal
Noisy bands are unavoidable in hyperspectral data and need to be
eliminated first. Visual examination of the data revealed 97 noisy
bands which should be dropped for further analysis. The remained
127 bands (i.e. bands 4–6, 10–13, 15, 18, 20–21, 23, 25–26, 28–30,
32, 34, 37, 39–79, 85–103, 121–146, 176–193, 195, and 207–209)
still have rich spectral contents covering the visible, near-infrared,
and shortwave infrared spectral regions. This is sufficient for this
study.

2) Georeference
The original hyperspectral imagery delivered by JPL need to be
georeferenced. An image to image rectification was adopted in
this step by using the USGS DOQs generated from NAPP 1999
CIR aerial photography. All DOQs are referenced to the North
American Datum of 1983 (NAD 83) and cast on the Universal
Transverse Mercator (UTM) projection. The accuracy and quality
of USGS DOQs meet NMAS at 1:12,000 scale for 3.75-minute quar-
ter quadrangles and at 1:24,000 scale for 7.5-minute quadrangles.



Fig. 2. Flowchart of vegetation mapping in the Everglades from hyperspectral imagery.
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The DOQs were also employed by the SFWMD to compile the ref-
erence data. By this way, the imagery was geographically aligned
with the reference data.

3) Vegetation pixel extraction
As shown in Fig. 1, non-vegetation features were also presented in
the selected area, which are not of interest in this study and were
masked out for further analysis. The Normalized Difference Vege-
tation Index (NDVI) can be used to differentiate vegetation and
non-vegetation features. Generally, for hyperspectral imagery, re-
flectance from a red channel centered on 660 nm and a near-
infrared channel centered on 860 nm are used to calculate the
NDVI (Jensen, 2005). We derived a NDVI layer from the hyper-
spectral data and then built a vegetation mask by applying a
NDVI threshold. The optimal NDVI threshold was determined by
visual examinations of several tests with different thresholds.
Non-vegetation pixels will not be processed, which can reduce
the computational cost in the further steps.

4) Dimensionality reduction
Hyperspectral data contain a tremendous amount of redundant
spectral information. Statistical analysis reveals that many of the
bands are highly correlated. The commonly used approach, Mini-
mum Noise Fraction (MNF) transformation (Green et al., 1988)
was used to reduce the high dimensionality of the data and com-
putation requirements of further processing. The MNF transfor-
mation applies two cascaded principal component analyses, with
the first transformation decorrelating and rescaling noise in the
data, and the second transformation creating coherent
eigenimages that contain useful information, and generating
noise-dominated eigenimages. The transformation generates the
eigenvalues and corresponding eigenimages, both of which are
used to determine the true dimensionality of the data. Useful
MNF eigenimages typically have an eigenvalue an order of magni-
tude greater than those that contain mostly noise. We conducted
the MNF transformation in ENVI 4.7. A plot of eigenvalues against
the output MNF layers was generated. A due inspection of this plot
and visual inspection of the eigenimages revealed that 15 MNF
layers should be selected for this study.

5) Object-based texture information extraction
Texture analysis generates a spatial variability measure that can
be integrated with spectral data in the classification methods. Re-
searchers often adopt the kernel-based texture analysis methods
which utilize a single square moving window over which to calcu-
late texture measures for each pixel. One challenge in these
methods is the determination of optimal kernel size. A large win-
dow can produce a stable texture measure, but generates large
edge effects. A small window can minimize edge effects, but
often does not provide stable texture measures (Ferro & Warner,
2002). The object-based texture analysis, i.e. deriving texture in-
formation on the object level, is more reasonable because it calcu-
lates the texture measures in an adaptive window with variable
size and shape. The object-based image analysis offers the capabil-
ity for identifying regions of varying shapes and sizes in an image,
which can be used for subsequent texture extraction (Blaschke,
2010). We thus derived the texture measures on the object level.
The multiresolution segmentation algorithm in eCognition Devel-
oper 8.64.1 was used to generate the image objects. This algorithm
starts with one-pixel image segments, and merges neighboring
segments together until a heterogeneity threshold is reached
(Benz et al., 2004). The heterogeneity threshold is determined by
a user-defined scale parameter, as well as color/shape and
smoothness/compactness weights. The image segmentation is
scale-dependent, and the quality of segmentation and overall
object-based classification are largely dependent on the scale of
the segmentation (Liu & Xia, 2010). In order to find an optimal
scale for image segmentation, an unsupervised image segmenta-
tion evaluation approach (Johnson & Xie, 2011) was used. This ap-
proach conducts a series of segmentations using different scale
parameters first, and then identifies the optimal image segmenta-
tion using an unsupervised evaluation method that takes into ac-
count global intra-segment and inter-segment heterogeneity
measures. A global score can be generated for each segmentation
result. This global score combines the normalized weighted vari-
ance and Moran's I value. It can be used to determine the optimal
scale for the segmentation. For our study area, a series of segmen-
tations was carried out using 10 different scale parameters (2–20
at an interval of 2). Preliminary analyses revealed that scale pa-
rameter larger than 20 generated more under-segmented objects
and smaller than 2 produced more over-segmented objects. For
this reason, segmentation results from scale parameters smaller
than 2 or large than 20 were not evaluated. The global score for
each segmentation was calculated and then the best segmentation
with the lowest global score was selected. The first five MNF layers
were set equal weights with a value of 5 and the last 10 MNF
layers were set equal weights with a value of 1. This specification
was based on the eigenvalues of each MNF layer produced. Color/
shape weights were set to 0.9/1.0 so that spectral information
would be considered most heavily for segmentation. Smooth-
ness/compactness weights were set to 0.5/0.5 so as to not favor ei-
ther compact or non-compact segments. The segmentation
procedure was conducted using eCognition Developer 8.64.1.
Other challenges in texture analysis include the selection of tex-
ture order, measures, and spectral bands. The review of texture re-
search by Warner (2011) concludes these selections are case- and
class-specific. For this study, the first-order and second-order tex-
ture metrics were tested because the third or higher order texture

image of Fig.�2
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information lacks the theoretical justification. First order texture
measures are statistics calculated from the original image values
and do not consider pixel neighbor relationships. Second order
texture measures consider the relationship between groups of
two pixels in the original image. Hall-Beyer (2007) suggests
choosing one of the contrast measures (contrast, dissimilarity,
and homogeneity), one of the orderliness measures (angular sec-
ond moment, maximum probability, and entropy), and two or
three descriptive statistics measures (mean, variance, and correla-
tion) metrics, because many texture measures are intrinsically
similar. For this study, we tested a combination of one of the con-
trast measures (i.e. homogeneity), one of the orderliness mea-
sures (i.e. entropy), and two of the descriptive statistics
measures (i.e. mean and variance) as the second-order metrics
in the classification. The grey level co-occurrence matrix (GLCM)
algorithm in eCognition was used to extract the object-based
second-order texture measures. The directionally invariant tex-
ture measures were produced by calculating the mean of the tex-
ture results in all four directions (0°, 45°, 90°, and 135°). The
calculation of GLCM texture measures in eCognition is indepen-
dent of the image data's bit-depth. The software can dynamically
interpolate the input data to 8 bit before evaluating the co-
occurrence. All image object pixels are scanned and employed in
the GLCM calculation. To reduce the object border effects, pixels
bordering the segments directly (surrounding pixels with a dis-
tance of 1) are additionally taken into account in the calculation
(Trimble, 2011). For comparison purpose, the mean, variance,
and entropy were selected as the first-order texture metrics and
calculated in eCognition at the object level. These texture mea-
sures were only calculated for the first three MNF layers because
they contain most of the information in the original hyperspectral
data. Finally, three additional images were produced. The first one
integrated 15 MNF layers and 9 first-order texture layers, and the
second one combined 15MNF layers with 12 second-order texture
layers, and the third one combined 15 MNF layers with 9 first-
order and 12 second-order texture layers. These images will be ex-
plored for vegetation mapping in further steps.
Fig. 3. Topological structures
6) Neural network classification
Neural network is inspired by the structure of the neurons and
synapses of human brains. The commonly used neural networks in
remote sensing include multi-layer perceptron (MLP), radial-basis
function (RBF), adaptive resonance theory (ART), and self-
organizing map (SOM). For hyperspectral image processing, the
learning vector quantization (LVQ) neural network classifier (i.e. su-
pervised SOM) (Kohonen et al., 1996) is desirable due to its relatively
simple structure and less parameters to be specified. However, the
original LVQmethodmaynot achieve expected accuracy for complex
wetland vegetation discrimination because it assumes each class has
the same number of spectral representatives (i.e. codebooks). This
may lead to overestimation or underestimation of the number of sig-
natures for some classes, thus will inevitably have negative impacts
on the final classification accuracy (Zhang & Qiu, accepted for
publication). The Everglades has a very complicated plant communi-
ty with diverse types, varying ages and growing conditions, and high
spatial heterogeneity. These factors combined result in a high degree
of between-class spectral and spatial confusion and a great deal of
within-class spectral and spatial variability. Multiple signatures
often appear for one vegetation type in this complex environment.
It is thus necessary to improve the LVQ so that the between-class
spectral and spatial confusion and within-class spectral and spatial
variability can be modeled, as well as the true number of signatures
for each class can be characterized. A variety of modifications of LVQ
were reported in the literature to ensure faster convergence, a better
adaption of the receptive fields to optimum Bayesian decision, or an
adaptation for complex input data structure (Villmann et al., 2003).
However, an adaption of the competitive neurons with an attempt
to obtain the true number of signatures within a class was not
reported. We therefore developed an Adaptive LVQ (ALVQ) neural
network for vegetation classification in the Everglades. The topolog-
ical structures of original LVQ without hidden layers and the ALVQ
are shown in Fig. 3.
Unlike the LVQ that is unable to well model the multiple signatures
within a class (Fig. 3A), the ALVQ has three layers: an input layer, a
competitive layer, and an output layer (Fig. 3B). The neurons in the
of LVQ (A) and ALVQ (B).

image of Fig.�3
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input layer correspond to the digital values of input data. The num-
ber of input neurons (i.e. N) equals the number of layers or bands
of the input imagery. The number of neurons in the output layer
equals the number of vegetation types (i.e. M). The number of neu-
rons in the competitive layer can be equal to or greater than that of
the output classes. When the number of competitive neurons is
more than the number of output classes, each class is allowed to
have multiple clusters so that the modeling of possible multimodal
distributions in the data is possible. The ALVQ classifier can automat-
ically adapt the number of neurons in the competitive layer based on
a Student t-test. Externally the ALVQ is a supervised system, but inter-
nally, it has a fully unsupervised engine that can generate an appro-
priate number of competitive neurons for each output class. The
output and competitive layers are not fully connected, as shown in
the illustration. The ALVQ consists of four components: 1) unsuper-
vised clustering, 2) supervised learning, 3) determination of number
of competitive neurons, and 4) object-based vegetation classification.
Each component is described in detail below.

Unsupervised clustering: To effectively model the characteristics

of multiple signatures within each vegetation type, internally
unsupervised SOM clustering for each class is performed first
with a predetermined number of clusters (e.g. 5). SOM is
often used to group inputs into different categories with the
‘winner-take-all’ strategy. In the ALVQ algorithm, a winner
whose weight has the minimum distance from the input vec-
tor will be determined first, and then the network updates
the weight of this winner via a learning rule. In this way, the
competitive neurons become selectively tuned to the input
patterns presented during this competitive-learning proce-
dure. In this study, for a pixel with N layers as an input vector
(x1, x2,…xN), the winner output neuron is decided by:

min xi−cij
��� ���� �

j ¼ 1;2;…Lð Þ ð1Þ

where cij is the weight linking the ith layer input and jth cluster
of an output class. cij is also known as the codebooks, prototypes,
and mean in the literature. N is the dimensionality of x, L is the
total number of clusters for each class, and ||*|| is any norm ex-
pressing the similarity between an input vector and theweights.
For this study, the similarity is determined by Euclidean
distance.
Supervised learning: The weight (cij) which represents the signa-

tures of each class is updated during the training process by
using the externally supervised learning algorithm, which is,
utilizing the true vegetation type information provided by
the training data. The updating scheme is:

Δcij ¼ η xi−cij
� �

if neuron j is the winner ð2Þ

Δcij ¼ 0;otherwise ð3Þ

where η is the learning rate. The winner is determined through
within-class competition instead of between-class competi-
tion. The vegetation type is informed by the training data.
Note that the LVQ algorithm and many modifications push cij
away from the unmatched (incorrectly classified) input pat-
tern, ALVQ uses only one learning scheme for the mean param-
eter because of the high degree of similarity of spectral
characteristics between vegetation types. The “pushing away”
scheme may push the mean parameter far from the center of
the cluster, resulting in unexpected learning results.
Determination of number of competitive neurons: After the

unsupervised clustering and supervised learning, the input
training data for each class will be grouped into clusters. To
generate the true number of signatures for each class, a two
sample Student t-test is used to assess the similarity of two ad-
jacent clusters. The two-sample Student t-test can test the
equality of two means from two groups with equal sample
sizes and equal variance, or with unequal sample sizes and
equal variance, or with unequal sample sizes and unequal var-
iance. After the unsupervised clustering, clusters within each
class should have different sample size and variance. Thus
the two-sample t-test for unequal sample sizes and unequal
variance was used with the equations as:

t ¼ cij−c iþ1ð Þj
scij−c iþ1ð Þ j

ð4Þ

sci j−c iþ1ð Þ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ ij

2

n1
þ σ iþ1ð Þj

2

n2

s
ð5Þ

where cij is the same parameters as for Eq. (1), and n1 and n2
are the total number of samples for cluster i and cluster i+1,
respectively. σij is the standard deviation of ith layer input for
the jth cluster. A p value for each test can be calculated based
on the t distribution. If the p value is greater than 0.05, indicat-
ing the two clusters are not statistically different, then the two
adjacent clusters are merged; otherwise, they are kept separat-
ed. The merging of the clusters can be conducted iteratively
until no more merging is needed. In this way, the number of
competitive neurons for each vegetation type can be finally de-
termined automatically.
Object-based vegetation classification: All the automatically gen-

erated codebooks from the internally unsupervised clustering
and externally supervised learning can be used to directly clas-
sify the data. For this study, an object-based classification was
conducted according to the nearest neighbor rule. A mean pro-
file of the input data for a segmented object is calculated first,
and then this mean profile comes into the system as an input
vector. This segmented object will be assigned to a vegetation
type whose codebook has the minimum distance to this input
vector. The ALVQ algorithm was implemented using Visual
Basic.NET programming language under Microsoft Visual Stu-
dio 2010 developing environment.
7) Accuracy assessment
It is necessary to assess the accuracy of the finally generated
object-based vegetation map. The conventional error matrix and
Kappa statistics approaches in remote sensing (Jensen, 2005)
were used to evaluate the performance of the developed proce-
dure and the derived vegetation map.

3.2. Experimental analyses

To obtain an effective and accurate procedure for vegetation clas-
sification in Everglades, a number of tests were conducted. We first
designed two experiments to examine the impact of the MNF trans-
formation on vegetation discrimination. The first experiment (here-
after Experiment 1) used the original hyperspectral data with noisy
bands eliminated (i.e. N=127), and the second experiment (here-
after Experiment 2) used the MNF transformed imagery with 15
MNF layers selected (i.e. N=15). To assess the usefulness of the
object-based texture information in vegetation discrimination, we
designed another three experiments, leading to experiments 3, 4
and 5. Experiment 3 combined the first-order texture measures, ex-
periment 4 combined the second-order texture measures, and exper-
iment 5 combined both first-order and second-order measures with
the MNF layers as inputs in ALVQ respectively. To evaluate the perfor-
mance of the ALVQ, three conventional classifiers, minimum distance
method, spectral angle mapper (SAM) approach, and maximum



Table 2
Classification accuracies and statistical tests from five designed experiments in ALVQ.

Accuracy and Kappa statistics for each experiment

Experiment # Overall accuracy Kappa value z-score
1 55% 0.52 34.56⁎

2 86% 0.84 79.60⁎

3 90% 0.89 99.73⁎

4 92% 0.91 111.52⁎

5 94% 0.94 135.37⁎

Pairwise statistical test

Experiment Kappa (z-score) McNemar (z-score)

1/2 18.19⁎ 21.9⁎

2/3 3.59⁎ 3.0⁎

2/4 5.16⁎ 5.8⁎

3/4 1.60 0.6
3/5 4.01⁎ 2.2⁎

4/5 2.43⁎ 3.4⁎

Notes:
Experiment 1: original hyperspectral data with 127 bands.
Experiment 2: MNF data with 15 layers.
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likelihood (ML) technique were applied in the classification. The LVQ
neural network method without hidden layers and another machine
learning based technique, support vector machines (SVMs), were
also tested for comparison. The literature has shown that the SVMs
are promising methods in hyperspectral image analysis. The aim of
SVMs is to find a hyperplane that can separate the input dataset
into a discrete predefined number of classes in a fashion consistent
with the training samples. Detailed descriptions of SVM algorithms
are given by Huang et al. (2002) and Melgani and Bruzzone (2004)
in the context of remote sensing. Kernel based SVMs are commonly
used for remote sensing image classification, among which the radial
basis function (RBF) kernel and the polynomial kernel are frequently
employed. For the RBF kernel method, the penalty error parameter
(C) and kernel width (γ) need to be defined. The polynomial kernel
method needs to define the degree parameter (p). For this study,
both methods were examined and the one producing the best accura-
cy was compared with the ALVQ result. Similar to experiment 5, first-
order and second-order texture measures were combined with the
MNF layers and then classified by these methods.
Experiment 3: first-order texture layers and 15 MNF layers.
Experiment 4: second-order texture layers and 15 MNF layers.
Experiment 5: first-order and second-order texture layers and 15 MNF layers.
The critical value of z-score is 1.96 at a confidence level of 0.95.

⁎ : significant with 95% confidence.
4. Results

4.1. Experiment results

The performance of different experiments was evaluated based on
the error matrix whose information can be summarized as an overall
accuracy and Kappa value. The overall accuracy is defined as the ratio
of the number of validations pixels that are classified correctly to the
total number of validation pixels irrespective of the class. The Kappa
value describes the proportion of correctly classified validation pixels
after random agreement are removed. Most researchers generated
these two measures with a one-time running of the selected algo-
rithms. The reported values of the accuracy measures may be biased
if different training and testing data are utilized. For this study, we
ran each experiment and testing classifiers many times with an at-
tempt to produce robust accuracy measures. For each running, refer-
ence data (i.e. 2580 samples) were randomly split into 50% for
training and 50% for testing with a constraint of ensuring no over-
lapping between the training and testing data. The procedure will
not terminate until a stable averaged overall accuracy and Kappa
value were obtained. This is similar to the commonly used Monte
Carlo experiment in statistics.

The generated overall accuracies and Kappa values from experi-
ments 1 and 2 are displayed in Table 2. The application of all spectral
bands (i.e. 127 bands) produced a lower accuracy. TheMNF technique
increased the overall accuracy from 55% with a Kappa value of 0.52 to
86% with a Kappa value of 0.84 (Table 2). To examine the significance
of the result, the Kappa z-score statistical test based on the error ma-
trix was conducted. The derived values of z-score for experiments 1,
and 2 are 34.56 and 79.60 respectively (Table 2), which suggests
both experiments are significantly better than a random classification
at the 95% statistical confidence level. Kappa techniques are also often
used to test the statistical difference between results. A z-score value
of 18.19 was obtained based on the error matrix generated from ex-
periments 1, and 2. The Kappa test assumes the samples used in the
calculation are independent, an assumption that was unsatisfied in
most studies because the samples were related. The McNemar test
(Foody, 2004) is one of alternatives to evaluate the statistical signifi-
cance of differences in accuracy for related samples. This test is based
upon a confusion matrix (2 by 2 in dimension) generated from two
classifications and the reference data. The result from McNemar test
for experiments 1 and 2 is displayed in Table 2. A z-score value of
21.9 was generated, indicating that experiment 2 generated signifi-
cantly better outcomes than experiment 1. This was confirmed by both
Kappa and McNemar tests.
Similarly, after running experiments 3, 4, and 5 many times using
the ALVQ, the averaged overall accuracy and Kappa statistics are gen-
erated and displayed in Table 2. Combination of the texture informa-
tion with the MNF transformed image largely improved the
classification result. The first-order texture measures increased the
overall accuracy to 90% with a Kappa value of 0.89. Better accuracy
was achieved by combining the second-order texture measures,
which had an overall accuracy of 92% and a Kappa value of 0.91. The
best accuracy was achieved by combining both first-order and
second-order texture measures with the MNF layers, which generat-
ed an overall averaged accuracy of 94%, and a Kappa value of 0.94.
Similarly, the Kappa statistical tests were carried out for the outcome
from each single experiment first, and then results between experi-
ments. The tests reveal that all the experiments generated significant-
ly better results than a random classification, with values of z-score of
99.73, 111.52, and 135.37 respectively. The Kappa and McNemar tests
of between-experiment outcomes illustrated that object-based tex-
ture measures significantly improved the accuracy, with the second-
order measures contributing more in classification; there was no sig-
nificant difference between first-order measures and second-order
measures in this case; combination of both first-order and second-
order measures to the MNF layers generated significantly better re-
sults than combining any single order measures. Further tests for
each texture measure reveal that the selected three measures at the
first order had similar contributions to the classification. For GLCM
texture measures, the mean and variance contributed more than the
homogeneity and entropy in classification. The GLCM mean and vari-
ance had similar contributions, and the GLCM homogeneity and en-
tropy had similar contributions.

4.2. Performance of different classifiers

The performance of classifiers was also evaluated using overall ac-
curacies and Kappa values. The minimum distance, SAM, maximum
likelihood, and SVM algorithms have been integrated into ENVI 4.7
that is written using the Interactive Data Language (IDL) program-
ming language. Multiple implementations of these algorithms can
be achieved under IDL. Similarly, we ran these algorithms many
times with random training and testing data selected for each run-
ning. The classification accuracies and Kappa statistics from these
methods are listed in Table 3. The minimum distance, SAM, and LVQ
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classifiers generated same overall accuracies (75%) and Kappa values
(0.73) with slightly different z-score values. The maximum likelihood
(ML) method presented a poor result with an overall accuracy of 67%
and Kappa value of 0.65. The SVM produced a better result with an
overall accuracy of 88% and Kappa value of 0.86. Kappa statistical
tests illustrate that the results from these methods are significantly
better than a random classification at a confidence level of 0.95. Com-
parison of the outcomes from these methods with the result listed in
Table 2 from ALVQ (i.e. experiment 5) illustrated that the ALVQ
achieved the best accuracy in this case. The Kappa and McNemar sta-
tistical tests for the between-classifier performance indicate that the
ALVQ generated significantly better result than the traditional classi-
fiers and the LVQ neural network, as supported by the higher z-score
values listed in Table 3. The McNemar test, however, indicates the
ALVQ was not significantly different from the SVM in classification.

Researches of neural networks in remote sensing illustrated that
some neural networks such as the most commonly used MLP are sen-
sitive to the size of training set (Atkinson & Tatnall, 1997). To exam-
ine the sensitivity of ALVQ to the size of training data, a series of
implementations of ALVQ were conducted using different size of
training data. We first randomly selected 20% of the reference data
as a separate testing dataset, and then changed training sample
sizes from the remaining reference data (10%–70% at an interval of
10%) for running ALVQ. Again, for each implementation, we ran the
ALVQ many times to generate an averaged overall accuracy and
Kappa value. Note that the selected testing data were not changed
for each running and implementation to ensure an unbiased assess-
ment. The results from these tests are displayed in Table 4. It suggests
that the ALVQ is not sensitive to the size of training data. Similar over-
all accuracies and Kappa values were produced using different train-
ing samples. For our case, the overall accuracy and Kappa values
became stable when 40% or more training data were selected.

4.3. Object-based vegetation mapping

From the above two subsections, we can see that experiment 5
which combined first-order and second-order texture measures with
the selected MNF layers as the input neurons in the ALVQ produced
the best accuracy. Thus, the final spatial and spectral codebooks learned
from experiment 5 were used to generate the object-based vegetation
map in our study area, as shown in Fig. 4. The vegetationmap at the ob-
ject level is more informative and useful than a traditional pixel-based
Table 3
Classification accuracies from other fiver classifiers.

Classifier Overall accuracy Kappa value z-score

Minimum distance 75% 0.73 56.26⁎

SAM 75% 0.73 56.43⁎

LVQ 75% 0.73 55.95⁎

ML 67% 0.65 47.05⁎

SVM 88% 0.86 86.73⁎

Pairwise statistical test

Classifier Kappa (z-score) McNemar (z-score)

Minimum distance/ALVQ 14.16⁎ 9.4⁎

SAM/ALVQ 13.89⁎ 9.3⁎

ML/ALVQ 18.92⁎ 14.2⁎

SVM/ALVQ 6.14⁎ 1.8
LVQ/ALVQ 14.26⁎ 15.5⁎

Notes:
SAM: spectral angle mapper
ML: maximum likelihood
SVM: support vector machine
LVQ: learning vector quantization
ALVQ: adaptive learning vector quantization
The critical value of z-score is 1.96 at a confidence level of 0.95.

⁎ : significant with 95% confidence.
one which may be noisy due to the high degree of spatial and spectral
heterogeneity of the Everglades. The derived error matrix and
corresponding producer's and user's accuracy for each type from ex-
periment 5 are listed in Table 5. The producer's accuracy varies from
74% to 100%, and the user's accuracy ranges from 78% to 100% for differ-
ent vegetation type. Hardwood/Coniferous mix (class 10) and mixed
wetland hardwoods (class 12) have a relatively lower accuracy due to
the spatial and spectral complexity caused by the mixture of different
hardwoods. An accuracy of 100% was achieved for mangrove swamp
discrimination, which is encouraging because they play critical roles
in supporting a variety of habitats in the Everglades. Good accuracies
was also obtained for two invasive exotic species, Brazilian Pepper
(class 8), andMelaleuca (class 9). Accurate identification of invasive ex-
otic species in south Florida is critical because tremendous time, effort,
and expense are required for their discrimination, eradication, and con-
trol in the Everglades. The use of hyperspectral data provides the great
potential to detect these exotic species.

5. Discussions

5.1. MNF transformation

Many researches in hyperspectral applications for vegetation map-
ping used the MNF transformation to determine the endmembers of
the vegetation covers and conducted the classification from the original
spectral bands (e.g., Artigas & Yang, 2005; Rosso et al., 2005). The
endmember-based algorithms are commonly dependent of a spectral
library thatwas built from the originalmeasured spectrum. It is difficult
to evaluate the impact of the inherent noise in hyperspectral data on
final classification using the endmember-based methods because it is
complicated to implement MNF transformation to the spectral library.
Several researchers have found that the MNF transformed hyper-
spectral imagery is more effective in vegetation mapping (e.g. Belluco
et al., 2006; Yang et al., 2009). The result from this study confirms
these findings. The MNF transformation not only helps reduce the di-
mensionality of hyperspectral data to save the computational cost, but
also largely improves the classification accuracy. This may be attributed
to the fact that theMNF technique is capable ofminimizing the inherent
noise in the image. Thus, it is suggested that the MNF transformation is
not only necessary, but also important for vegetation mapping in the
Everglades from the hyperspectral data.

5.2. Classification techniques

The study illustrates that the proposed ALVQ is an effective classi-
fier for vegetation mapping in complex wetland environments. The
minimum distance, SAM, and LVQ all assume a single signature for
each class. The minimum distance method takes the mean profile of
a class from the training data as the signature for this class, while
the SAM uses the endmember as the signature, and the LVQ employs
the finally trained codebook (i.e. the weight) as the signature. These
three methods generated fair accuracies because of the high degree
of heterogeneity in the Everglades. The maximum likelihood (ML)
algorithm requires the spectral response of each class displays a
Table 4
Overall accuracies and Kappa values generated from ALVQ using different size of train-
ing data.

Training data Overall accuracy Kappa value

10% 90% 0.89
20% 92% 0.91
30% 93% 0.92
40% 94% 0.94
50% 94% 0.94
60% 94% 0.94
70% 94% 0.94



Fig. 4. Object-based vegetation map for the study area.
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Gaussian distribution. Several hyperspectral studies in vegetation
mapping have found that ML produced better accuracy than other
traditional methods (e.g., Belluco et al., 2006; Jollineau & Howarth,
2008; Yang et al., 2009). However, in our study, the ML produced a
poor result, which may be caused by the adoption of a combination
of spectral and spatial features in the classification. This integration
can hardly guarantee the Gaussian distribution of the data.
Table 5
Error matrix for the classification from experiment 5 using ALVQ.

Class 1 2 3 4 5 6 7 8 9

1 125 2 3
2 2 126
3 90
4 77
5 72
6 152 4 2
7 3 86 1
8 33
9 54
10 6 8 6
11
12 1 3 1
13 3 1
14
15
Col.
Total

127 126 92 77 75 159 104 41 60

Total accuracy: 94%
Kappa value: 0.94
PA: producer's accuracy
UA: user's accuracy
The column is the reference data, and the row is the classification data
The support vector machine (SVM) algorithm is a promising
methodology in hyperspectral image analysis. In recent years there
has been a significant increase in SVMworks on remote sensing prob-
lems. A recent review of SVMs by Mountrakis et al. (2010) reported
that a key advantage of SVMs compared with other classifiers is that
they can achieve better results when a limited amount of reference
data available. A major setback concerning the practice of SVMs for
10 11 12 13 14 15 Row total PA (%) UA (%)

130 96 98
128 98 100
90 100 98

1 4 82 94 100
1 73 98 96

1 1 3 163 93 96
90 96 83
33 100 80
54 100 90.

93 7 5 125 74 96
130 130 100 100.

47 52 90 78
1 72 77 94 87

1 30 31 97 100
1 31 32 97 100

96 130 60 82 30 31 1290

image of Fig.�4
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remote sensing image classification is the choice of kernels and the
setting of other parameters, which can substantially affect the classi-
fication accuracy (Yang, 2011). For this study, the optimal setting of C
and γ in the RBF kernel SVM algorithm was determined by a grid
search strategy that tests possible combinations of C and γ in a
user-defined range. The optimal setting of the degree parameter (p)
in the polynomial kernel SVM algorithm was determined by a series
of tests using different p values in terms of accuracy. Testing results
reveal that the polynomial kernel is more suitable for our dataset
and the best accuracy from this method is displayed in Table 3. The
SVM obtained a comparable accuracy with the ALVQ. The high spatial
resolution of the data permits the on-screen collection of a large num-
ber of reference pixels for classifier training, thus the advantage of the
SVMs may not be clear for this scenario. Among these methods, the
ALVQ achieved the best accuracy in discriminating 15 vegetation
types in this study. This may be attributed to its capability to model
the multiple spectral and spatial signatures within each class through
the built-in unsupervised clustering, as well as its power to character-
ize the spectral and spatial differences between classes. The adapt-
ability of the competitive layer in ALVQ and the learning scheme
used the ALVQ excluding the “pushing away” strategy are also helpful
for the achieved results.

Qiu and Jensen (2004) developed a neuro-fuzzy system by modi-
fying the LVQ to model the multiple within-class spectral signatures
and applied it to hyperspectral image classification after further im-
provements (Qiu, 2008). Similar to the original LVQ approach, one
setbacks of this neuro-fuzzy system is that it assumes each class has
the same number of spectral representatives, which will inevitably
have negative impacts on the final classification accuracy. To address
this issue, Zhang & Qiu (accepted for publication) improved the algo-
rithm and developed an Adaptive Gaussian Fuzzy Learning Vector
Quantization (AGFLVQ) classifier that can automatically determine
the number of within-class signatures. An application of AGFLVQ
achieved a reasonable accuracy to identify urban tree species from
hyperspectral imagery. However, one of the limitations of both the
original and improved neuro-fuzzy classifiers is that the system will
become unstable if only one signature exists for a class. This is be-
cause the standard deviation parameter that models the within-
class data dispersion may become a small number (close to zero) in
the learning step if the training data for this class have very similar
spectral profiles. The small number will lead to a crash of the system
since this parameter appears as a denominator in the adopted Gauss-
ian function. Elimination of the Gaussian fuzzification idea from the
algorithms should make them more operational and robust in prac-
tice. This is confirmed by this study. Exclusion of the Gaussian
fuzzification can also reduce the computational cost in classification.

5.3. Potential contribution of hyperspectral technology to the Everglades

Mapping vegetation types in the Everglades is a challenge in remote
sensing due to its high spatial and spectral heterogeneity and rich veg-
etation types. A number of efforts were undertaken to produce vegeta-
tion maps for subareas of the Everglades from air photos or very high
spatial resolution satellite data (Jones, 2011). To provide baseline vege-
tation composition data for CERP, a hybrid approach relying on visual
interpretation of color infrared photography through analytical stereo
plotters has been developed (Rutchey et al., 2008).With the emergence
of hyperspectral remote sensing data, it has been anticipated that the
generation of vegetationmaps with adequate accuracy can be automat-
ed. This is particularly urgent for the current CERP. But exploitation of
increased spectral data for plant study in the Everglades environment
is not simple. Hirano et al. (2003) reported a moderate accuracy
(i.e. 66% correct) for vegetation mapping over the southern end of the
Everglades National Park. This moderate accuracywas caused by the in-
adequate spatial resolution of their adopted hyperspectral data
(i.e. 20 m) and their limited examination of data transformation and
classification techniques. They only examined the SAM method and
did not test any advanced approaches which are capable of characteriz-
ing thewithin-class features. For our study, we obtained an overall clas-
sification accuracy ofmore than 90%. This is believed to be a result of the
high spatial and spectral resolution of the data, the effectiveness of the
ALVQ, the adoption of data transformation, plus the combination of use-
ful texture information in the classification. Belluco et al. (2006) have
indicated that the use of high spatial resolution dataset for vegetation
mapping is particularly advantageous in heterogeneous wetland envi-
ronments where such datasets can reduce within-pixel heterogeneity,
thereby increasing spectral separability. In addition, fine spatial resolu-
tion permits the collection of a large number of reference pixels for
classifier training, which can improve the classification. Data transfor-
mation is important in hyperspectral applications. Although hyper-
spectral techniques provide rich spectral contents that largely
enhance their power in material identification, the redundant bands
and inherent noises in the data, on the other hand, may severely reduce
their capability. Determination of the true dimension of the data to
make a balance of these two sides is important in their applications.
The selection of classification algorithms in the Everglades is also very
important. The relatively simple classifiers may not generate an
expected accuracy, especially for regions with very high spatial hetero-
geneity. Advanced approaches such as neural networks or machine
learning techniques are more attractive to characterize vegetation in
the Everglades. Texture information is critical in vegetation classifica-
tion, especially for analyzing fine spatial resolution data. Some vegeta-
tion covers may have similar spectral contents but different textures.
Combination of texture measures may significantly improve the map-
ping results.

The study indicates that fine spatial resolution hyperspectral data
is promising to replace the current air photo based vegetation map-
ping to support CERP. The potential application of hyperspectral
data in the Greater Everglades could be quite significant if
implemented in an appropriate manner. One key aspects of hyper-
spectral technology is that the data collected can be dissected and
reassembled in many different ways, thus allowing the same data col-
lection effort to be used to answer different questions. While one pro-
ject may be interested in exotic vegetation spread and control, and
the other project is concerned the impacts of restoration on commu-
nity structure, hyperspectral data collected from the same flight can
be used to address both questions at the same time or on different
dates. This allows both the concepts of economy of scale and funds
leveraging to be applied, thus significantly reducing the cost. Hyper-
spectral technology can not only benefit the on-going CERP, but also
help with the management of entire South Florida.

6. Conclusions

The purpose of this study is to explore the potential of fine spatial
resolution hyperspectral imagery for vegetation mapping in the
Greater Everglades. To generate an informative and accurate vegeta-
tion map, we designed an automated procedure that combines four
remote sensing fields: object-based image analysis, texture analysis,
neural networks, and hyperspectral technology. The results derived
from this study indicate that a combination of these four techniques
is powerful for vegetation mapping in the Everglades. The study illus-
trates that the developed Adaptive Learning Vector Quantization
(ALVQ) is able to accurately classify vegetation because of its capabil-
ity in characterizing the within-class spatial and spectral variation
and modeling the between-class spatial and spectral confusion. The
ALVQ is also efficient in processing hyperspectral data due to its rela-
tively simple structure and straightforward learning scheme. Com-
bining spatial information in the form of object-based texture
measures with the developed neural network can significantly im-
prove the classification accuracy. This suggests that the spatial fea-
tures in fine spatial resolution imagery are very useful in vegetation
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discrimination. We also find that the MNF transformation not only
can reduce the data dimensionality, but also improve the classifica-
tion. There is no significant difference in classification between the
first-order texture measures and the second-order texture measures
in this study, but a combination of both with the MNF layers as the
input units in the ALVQ achieved the best accuracy. An object-based
vegetation map was obtained with an overall accuracy of 94% and
Kappa value of 0.94. Such a high accuracy is believed to be a result
of the high spatial and spectral resolution of the data, effective data
transformation, adoption of the developed ALVQ, as well as the com-
bination of spatial information in the classification.

The designed procedure and developed algorithm for automatical-
ly processing fine spatial resolution hyperspectral imagery in wetland
vegetation mapping achieved good result in the testing study area.
Considerable additional work is needed in other wetland areas with
different vegetation community and species in order to examine the
robustness and extensibility of this procedure. It is also informative
to compare the object-based texture analysis with the kernel-based
texture analysis to test the performance of these two methods in veg-
etation mapping. The contribution of each texture measure and dif-
ferent combination of these measures also needs to be examined.
These are major dedications in the future study. It is anticipated
that this study can benefit global wetland mapping in general, and
the Greater Everglades in particular.
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