Fish Health of the St. Lucie River Estuarine System in Relation to Canal Discharges and Water Quality Joan A. Browder, C. Mindy Nelson, Michael Kandrashoff, and Fernanda Kandrashoff

NOAA Fisheries, Southeast Fisheries Science Center, Miami, FL Project funded by NOAA and by the Florida State Legislature (St. Lucie Issue Team Initiative administered by the South Florida Water Management District)

Abstract

 three canals. In our multispecies database, species is is maior fatcor
determining abourmaity

 negative relationship with ANY may be due to the sequestering of heavy
metals such as copper. Our results suggest that both discharge volumes
 prevalence of fish with abnormaltities can ne a a powertuti ind dicator of the
cumulative effects of local and regional restoration efforts.

Sampling

 Lucie syste

-SLES-SIN
 A

Hydrology and Water Quality

also indicated.

$-\mathrm{Cl}_{2}$ canal $-\mathrm{C}_{2}$ canal -C 44 canal

 Toulo fall 3 cants

${ }^{-} \mathrm{Cl}_{2}-\mathrm{C}_{24}-\mathrm{C}_{4}$

Statistical Modeling

Examples of two generalized mixed effects regression models of abnormality prevalence (ANY) with hydrology (mean total flow, previous month; mean C44 flow, previous quarter) and species (as a random variable) in the St.
Lucie estuary (SLES). Species differences are apparent. The mean monthly flow model indiciates some species Lucie estuary (SLESS). Species differences are apparent. The mean monthy flow model indicates some species
with increasing prevalence with increasing flow, some species with decreasing prevalence with increasing flow and
some with itile change in prevalence with flow. The mean uaarter flow trom the C C44 canal model shows a general with increasing prevalence with increasing flow, some species with decreasing prevalence with increasing tiow and
some with ittle change in prevalence with flow. The mean quarter flow trom the C44 canal model shows a general some with itite change in prevalence with fiow. The mean Guarter fiow trom the C 44 c
increase in prevalence with increasing flow, although some species show litte change.

Odds ratios, probability of a change in abnormality prevalence (ANY) with a change in flow-weighted water quality
WO) Shown is the eflect of P PM (rovevious 30 -day WO))r prev (previous 90 -day WO) Sigiticant odds ratios (WQ). Shown is the effect of PM (previous 30 -day WQ) or prev3 (previous 90 -day WQ). Significant odds ratios
(indicated by asterisk) above 1.00 indicate increasing prevalence with an increase in WQ parameter; significant (indicated by asterisk) above 1.00 indicate increasing prevalence with an increase in WQ
odds ratios below 1.00 indicate decreasing prevalence with an increase in WQ parameter.

Conclusions

Detrimental effects of freshwater flow on fish heath, as suggested by the positive relationship of ANY with flow, are
stronger and more unequivocal for C C44 flow, which contains Lake o okeechobee discharges, than for C C23 and C24

flow. The AMY spies that follow the hurricane-related canal flows of 2004 and 2005 suggest a delay of 3 to 5
months between high tlows and their effects.
-Color and chlorophyll a may have a beneficial effect on fish health, as suggested by their negative relationship with
ANY. The effect may be due to the abiity of the dissolved organic carbon compounds associated with color and ANY. The effect may be due to the ability of the dissolved organic carbon compounds associated with color and
chlorophyll t to adsorb contaminants such as copper and render them biologically inactive. pH changes (as occurs Chlorophyil a to adsorb contaminan
with ingestion) may alter this effect

