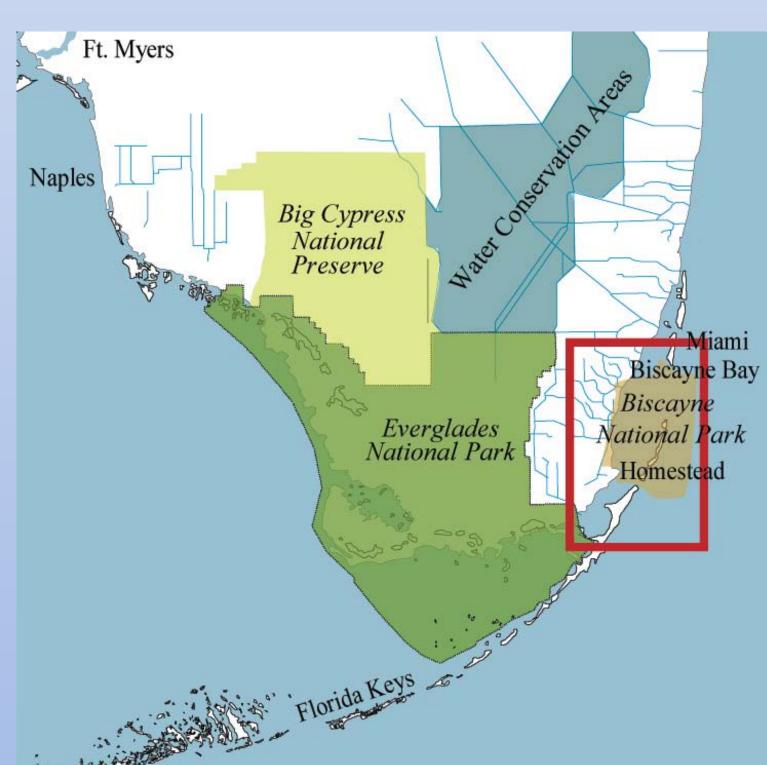
# **BISCAYNE BAY COASTAL WETLANDS PROJECT ADAPTIVE MANAGEMENT PLAN**

**Patrick Pitts<sup>1</sup>**, Stephen Blair<sup>2</sup>, Eunice Ford<sup>3</sup>, Craig Grossenbacher<sup>2</sup>, Andrew LoSchiavo<sup>3</sup>, Brad Tarr<sup>3</sup>, and Steve Traxler<sup>1</sup> <sup>1</sup> U.S. Fish and Wildlife Service, South Florida Ecological Services Office, Vero Beach, FL; <sup>2</sup> Miami-Dade County Department of Environmental Resources Management, Miami, FL; <sup>3</sup> U.S. Army Corps of Engineers, Jacksonville District, Everglades Division, Jacksonville, FL

Project Purpose: The Biscayne Bay Coastal Wetlands Project area encompasses south-central Biscayne Bay from Shoal Point south to Turkey Point. Human activities have degraded the function and spatial extent of the coastal wetlands throughout the western coastline of Biscayne Bay. These changes have modified the function and quality of the nearshore habitats of the bay. The project intends to restore meso-haline coastal tidal wetlands and re-establish optimal salinity conditions for fish and shellfish habitat in the nearshore of south-central Biscayne Bay through redistribution of freshwater runoff from the watershed. The redistribution will result in a more natural and historic freshwater delivery to the bay by decreasing canal discharges, while increasing flow through existing coastal wetlands.


# **Adaptive Management Plan**

#### Purpose:

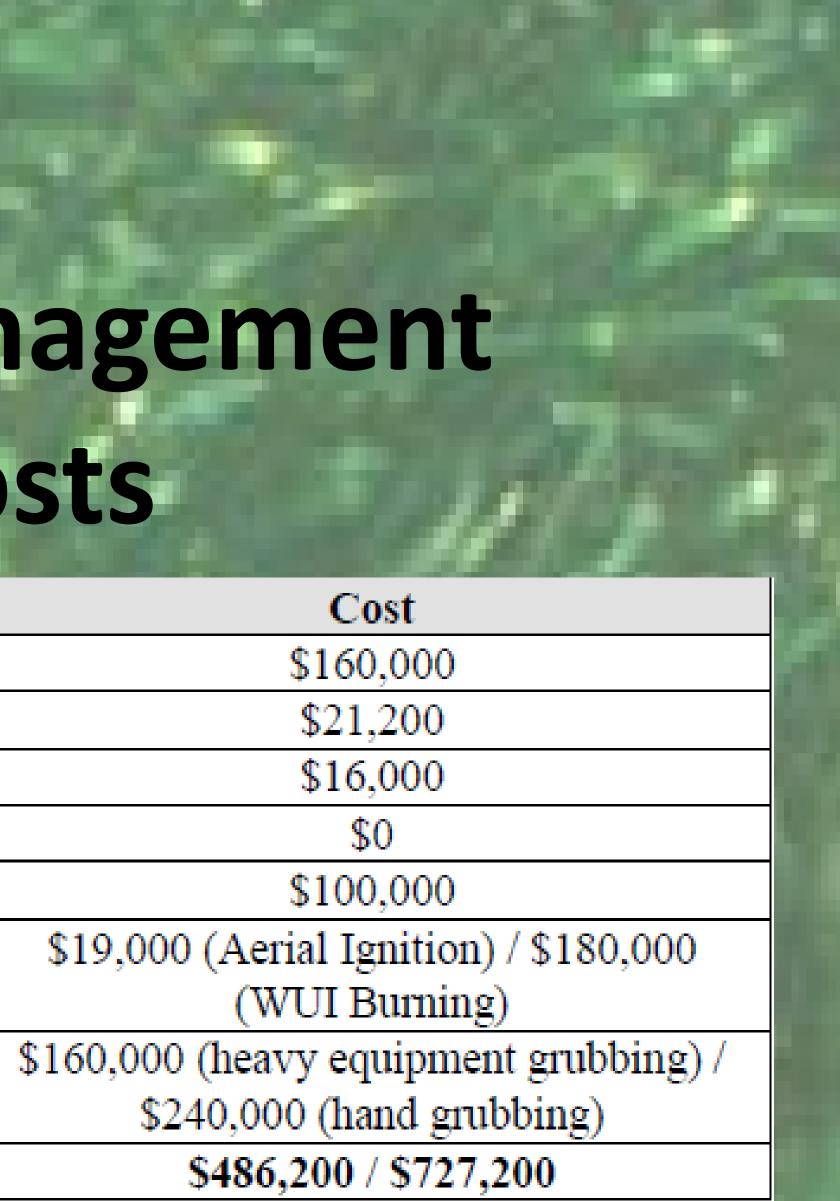
- Describe how the CERP adaptive management principles are applied to address uncertainty associated with the Biscayne Bay Coastal Wetlands Project.
- Provide framework for how ecological response can be utilized to guide future decisions needed to maximize ecological performance.
- Generate new information to address uncertainties about how this project, and subsequent phases, will achieve desired restoration goals and objectives.

### Plan Components:

- **Desired Ecological Responses**
- Uncertainties
- Project-level hypotheses to test and address uncertainties\*
- **Decision Frameworks that link** monitoring to projects goals/ objectives, performance measures (targets and timeframes) to verify success or performance issues, and options and costs to



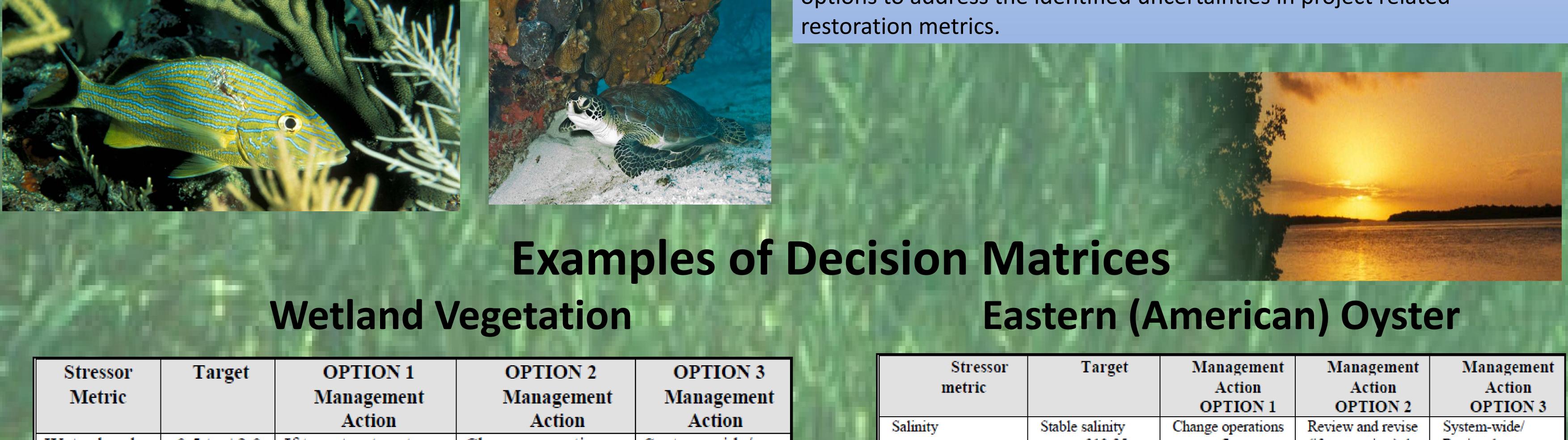
adjust project implementation based on feedback. \*Note: project-level hypotheses not listed in this poster, see:


http://www.evergladesplan.org/pm/projects/project\_docs/pdp\_28\_biscayne/031910\_dpir/031910\_b bcw\_dpir\_vol\_3\_annex\_e.pdf

| Adaptive Ma<br>Plan (                      |      |
|--------------------------------------------|------|
| Management Option                          | C    |
| Oyster shell (cultch) <sup>1</sup>         | \$16 |
| Oyster larvae stocking <sup>2</sup>        | \$2  |
| Oyster spat-on-shell stocking <sup>2</sup> | \$1  |
| Operational Adjustments                    |      |
|                                            |      |

Plug or fill mosquito and drainage ditches Fire

Berm vegetation removal<sup>2</sup>


Total Cost AM Actions



## **Desired Ecological Responses**

Project restoration and redistribution of flow to Biscayne Bay costal wetlands and adjacent bay waters hinge on achieving five positive ecological responses:

- 1. Re-establish productive nursery habitat along the shoreline.
- to improve estuarine habitat.
- freshwater to the bay.
- 4. Preserve and restore spatial extent of natural coastal glades habitat.
- C-111 Basin, Model Lands, and adjacent basins.



|                           |                                                                             |                                                                            |                                                                           |                                                                                           | 1.6.6.1 |                                                 |                                                                                          |                                                                                                                                          |                                                                                              |                                                                                   |
|---------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Stressor<br>Metric        | Target                                                                      | OPTION 1<br>Management                                                     | OPTION 2<br>Management                                                    | OPTION 3<br>Management                                                                    |         | Stressor<br>metric                              | Target                                                                                   | Management<br>Action<br>OPTION 1                                                                                                         | Management<br>Action<br>OPTION 2                                                             | Managem<br>Action<br>OPTION                                                       |
| Water level               | -0.5 to +2.0<br>feet                                                        | Action<br>If target not met,<br>change operations to<br>meet target (i.e., | Action<br>Change operations<br>to meet a different<br>point of the target | Action<br>System-wide/<br>Regional<br>Performance                                         |         | Salinity                                        | Stable salinity<br>range of 10-25<br>psu at creeks                                       | Change operations<br>to meet flows                                                                                                       | Review and revise<br>(if appropriate) the<br>salinity target                                 | System-wide/<br>Regional<br>Performance Iss<br>Analysis (More<br>water)           |
| Hydroperiod               | 28 to 32                                                                    | redirect more water<br>into wetlands)<br>If target not met,                | range<br>Change operations                                                | Issue Analysis<br>(More water)<br>System-wide/                                            |         | Recruitment                                     | Presence/absence<br>adults and larvae                                                    | Stock larvae                                                                                                                             | Stock adults                                                                                 | Change operation<br>to avoid too mu<br>or too little flow<br>key months           |
| - 1                       | weeks                                                                       | change operations to<br>meet target (i.e.,<br>redirect more water          | ~ .                                                                       | Regional<br>Performance<br>Issue Analysis                                                 |         | Substrate<br>Oyster reef                        | Acres of suitable<br>habitat<br>Presence/absence                                         | Add oyster shell<br>cultch<br>Add additional                                                                                             | Try different<br>substrate<br>(e.g., concrete)                                               | Dredge muck                                                                       |
| Salinity                  | 0 psu west<br>of L-31E;<br>0-20 psu<br>east of L-<br>31E (with<br>gradient) | into wetlands)<br>Increase or decrease<br>diversions to attain<br>target   | Fill or plug drainage<br>and mosquito<br>ditches                          | (More water)<br>System-wide/<br>Regional<br>Performance<br>Issue Analysis<br>(More water) |         | development<br>Juvenile growth and<br>mortality | of reefs at least 1<br>m2 in size<br>Attain natural<br>levels of growth<br>and mortality | cultch<br>If flow/salinity<br>events are<br>affecting growth<br>or mortality, adjust<br>operations to<br>eliminate or<br>minimize events | Adjust flows to<br>attain salinity<br>similar to creeks<br>where oyster<br>growth is optimal | Excessive<br>predation may<br>require salinity<br>adjustments<br>through operatio |
| Fire or other disturbance | Natural fire<br>frequency                                                   | Modify fire<br>frequency to meet<br>target                                 | Increase or decrease<br>fire frequency                                    |                                                                                           |         | Disease                                         | Elimination                                                                              | Operate flows to<br>maintain salinity<br>below maximum<br>threshold                                                                      | Lower salinity<br>threshold and<br>adjust operations<br>accordingly                          |                                                                                   |

2. Redistribute freshwater flow to minimize point source discharges

3. Restore and improve quantity, quality, timing, and distribution of

5. Re-establish connectivity between Biscayne Bay Coastal Wetlands,

### Uncertainties

A number of uncertainties were identified that could affect the success of this restoration effort and related to water quantity, sea-level rise, salinity, oysters, seagrass, macroinvertabrates and fish, crocodiles, periphyton, water quality, and achieving wetland structure and function. This poster will focus on a few -

- Whether enough water is available , especially during the dry season, to achieve established salinity targets?
- buildups in the Southern Estuaries?
- What is the current and historical pre-canal distribution of oyster
- Will redistributed water patterns achieve desired structure and spatial extent of adjacent coastal wetlands?



Decision matrices were developed to summarize potential management options to address the identified uncertainties in project related